On minimal fields

鹿児島国際大学国際文化学部 福崎䝳治（Kenji Fukuzaki）
Faculty of Intercultural Studies， The international University of Kagoshima

Abstract

An infinite structure M is minimal if every definable subset（using param－ eters in M ）is finite or cofinite．An algebraically closed field is minimal，since it allows quantifier elimination．Podewski $[\mathrm{Po}]$ conjectured that minimal fields are algebraically closed．Wagner［Wa］has shown that a minimal field of non－ zero characteristics is algebraically closed．We discuss minimal fields in all characteristics．

1 Minimal fields with infinite bases

It is well－known that a minimal structure M with an infinite basis is strongly minimal． For we can easily show that M is saturated，and it follows that M is strongly minimal． Since strongly minimal fields are algebraically closed，we get that a minimal field with an infinite basis is algebraically closed．Nevertheless we give a direct proof that a minimal field with an infinite basis is algebraically closed in order to use the arguments of that proof in the next section．

The following facts are well－known．See Hodges［Ho］，and Wagner［Wa］．
Fact 1 Let M be a minimal structure．Then
1．$\left(M, \mathrm{acl}_{M}\right)$ is a pregeometry．
2．Every subset of M has a dimension over any subset．
3．For every independent（over \emptyset ）subsets A, B of M with $|A|=|B|$ ，any bijective map of A to B can be extended to an automorphism of M ．

4．If X is an algebraically closed（in the sense of model theory）infinite subset of M ，then $X \prec K$ ．

Every infinite field with quantifier elimination is algebraically closed．Direct proofs were given by several authors．We prove the following lemma in the same manner as its proof given by Wheeler［Wh］．

Lemma 2 A minimal field K with an infinite basis is algebraically closed.
Proof. Consider the definable set $A=\left\{a \in K: K \models \exists y\left(a=y^{n}\right)\right\}$ for $n \in \mathbb{N}^{*}$. Then A must be infinite, hence cofinite. Suppose $K \backslash A \neq \emptyset$, and let $b \in K \backslash A$. Then $\left\{b c^{n}: c \in K^{*}\right\} \subseteq K \backslash A$, a contradiction. Therefore $A=K$. It follows that K is perfect and $\operatorname{acl}_{K}(\{\emptyset\})$ is infinite, hence $\operatorname{acl}_{K}(\{\emptyset\}) \prec K$.

Claim A Let $n \in \mathbb{N}^{*}$ and a_{1}, \ldots, a_{n} be independent elements of K (over \emptyset). Then the polynomial $X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$ has a root in K.

For suppose that b_{1}, \ldots, b_{n} be independent elements of K , and let $p(X)$ be the polynomial $\prod_{1 \leq i \leq n}\left(X-b_{i}\right)$. Then $p(X)=X^{n}+s_{1} X^{n-1}+\cdots+s_{n}$, where s_{i} is the i-th elementary symmetric polynomial. s_{1}, \ldots, s_{n} are independent, since $\operatorname{acl}_{K}\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)=\operatorname{acl}_{K}\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$. In minimal structures there is an automorophism which takes s_{i} to a_{i}, hence the polynomial $X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$ has a root in K.

Now suppose that K is not algebraicaly closed. Then $\operatorname{acl}_{K}(\{\emptyset\})$ is not algebraically closed, since $\operatorname{acl}_{K}(\{\emptyset\}) \prec K$. Let $K_{0}=\operatorname{acl}_{K}(\{\emptyset\})$. Then there is $\alpha \in \overline{K_{0}} \backslash K_{0}$, where $\overline{K_{0}}$ is the algebraic closure of $K_{0} . \alpha$ is seperable over K_{0}, since K_{0} is perfect. Let α has degree n over $K_{0}(n>1)$ and $\alpha=\alpha_{0}, \ldots, \alpha_{n-1}$ be the distinct conjugates of α. Choose independent elements t_{0}, \ldots, t_{n-1} of K (over \emptyset), and form the polynomial $F(X)=\prod_{i<n}\left(X-\sum_{j<n} t_{j} \alpha_{i}^{j}\right)$. We can write this polynomial as $F(X)=X^{n}+$ $g_{1} X^{n-1}+\cdots+g_{n}$ where each g_{i} is in $K_{0}[t] \subset K$.

Claim B The g_{i} are independent (over \emptyset).
Let the roots of $F(X)$ be r_{0}, \ldots, r_{n-1}, that is, $r_{j}=t_{0}+t_{1} \alpha_{j}+\cdots+t_{n-1} \alpha_{j}^{n-1}$. Then

$$
\left(\begin{array}{cccc}
1 & \alpha_{0} & \cdots & \alpha_{0}^{n-1} \\
1 & \alpha_{1} & \cdots & \alpha_{1}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & \alpha_{n-1} & \cdots & \alpha_{n-1}^{n-1}
\end{array}\right)\left(\begin{array}{l}
t_{0} \\
t_{1} \\
\vdots \\
t_{n-1}
\end{array}\right)=\left(\begin{array}{l}
r_{0} \\
r_{1} \\
\vdots \\
r_{n-1}
\end{array}\right)
$$

Since the matrix M on the left is invertible, we get the t_{j} as linear combinations of the roots r_{j} with coefficients in $P(\bar{\alpha})$ where P is the prime field of K. Then the t_{j} are algebraic over $K_{0}(\bar{g})$ in the sense of field theory, since each r_{i} is algebraic over $P(\bar{g})$ and each α_{i} is algebraic over K_{0} in the sense of field theory. It follows that $\operatorname{acl}_{K}(\{\overline{\}}\})=\operatorname{acl}_{K}(\{\bar{g}\})$, and we conclude that the g_{i} are independent (over \emptyset).

By Claim A, $F(X)=0$ has a root in K. Therefore some $r_{j}=t_{0}+t_{1} \alpha_{j}+\cdots+$ $t_{n-1} \alpha_{j}^{n-1}$ is in K, hence α_{j} has degree at most $n-1$ over K.

On the other hand, α must have degree n over K. For K is separable over K_{0} since K_{0} is perfect, and K_{0} is algebraically closed in K in the sense of field theory. Then K is a regular extension of K_{0}, hence α has degree n over K. Thus we get a contradiction.

Uncountable minimal fields have infinite bases over \emptyset, hence we get:
Corollary 3 An uncoutable minimal field is algebraically closed.
Remark. Note that the proof of lemma2 also gives a direct proof that strongly minimal fields are algebraically closed fields.

2 Minimal elementary extensions

In this section, assuming some common property of minimal fields we show that any minimal field K has a proper minimal elementary extension. Then, under this assumption, we get a minimal field $L \succ K$ which has a dimension $>n$ (over \emptyset) for any $n \in \mathbb{N}$.

We assume the following property.
(\dagger) For any minimalfield, there is no $L(K)$-formula $\psi(x, y)$ such that $\exists \geq n x \psi(x, K)$ and $\exists \geq n x \neg \psi(x, K)$ are cofinite for all $n \in \mathbb{N}$.

Note that algebraically closed fields have the property (\dagger) since they admit quantifier elimination.

Lemma 4 Assuming (\dagger), any minimal field K has a proper minimal elementary extension.

Proof. Let $T=\operatorname{Th}(K)_{a \in K}, c$ a new constant symbol other than $L(K)$, and $T_{0}=$ $T \cup\{x \neq a\}_{a \in K}$. Then T_{0} is a consistent $L(K \cup\{c\})$-theory. Let $L \vDash T_{0}$, and $L_{0}=\operatorname{acl}_{L}(K \cup\{c\})$. We show that L_{0} is a desired structure.

First we show that $L_{0} \prec L$, which implies that $K \prec L_{0}$. Consider a sentence $\exists x \varphi(x, \bar{b})$ with $\bar{b} \in L_{0}$ where $\varphi(x, \bar{y})$ is an L-formula, and suppose that $L \models \exists x \varphi(x, \bar{b})$. We show that there exists $a \in L_{0}$ such that $L \models \varphi(a, \bar{b})$. Since each b_{i} is algebraic over $K \cup\{c\}$, there is an algebraic $L(K \cup\{c\})$-formula $\psi(\bar{x})$ such that $L \models \psi(\bar{b}) \wedge$ $\exists=n_{0} \bar{x} \psi(\bar{x})$ for some $n_{0} \in \mathbb{N}$. We choose ψ to make n_{0} as small as possible. Clearly $L \vDash \exists x \varphi(x, \bar{b}) \leftrightarrow \exists x \exists \bar{y}(\varphi(x, \bar{y}) \wedge \psi(\bar{y}))$, and hence $L \vDash \exists x \exists \bar{y}(\varphi(x, \bar{y}) \wedge \psi(\bar{y}))$ Since $\exists \bar{y}(\varphi(x, \bar{y}) \wedge \psi(\bar{y}))$ is an $L(K \cup\{c\})$-formula, we write it as $\varphi_{0}(x, c)$ where $\varphi_{0}(x, y)$ is an $L(K)$-formula.

We show that there exists $a \in L_{0}$ such that $L \models \varphi_{0}(a, c)$. If $\varphi_{0}(x, c)$ dose not involve c, then we are done since $K \prec L$. Suppose that $\varphi_{0}(x, c)$ actually involves c.

If $\varphi_{0}(x, c)$ is algebraic in L, then we are done. Suppose not. Then $L \models \exists \geq n x \varphi_{0}(x, c)$ for all n. It follows that $\exists{ }^{\geq n} x \varphi_{0}(x, K)$ is cofinite for all n, since c does not satisfy algebraic formulas of K. By (\dagger), $\exists^{\geq n} x \neg \varphi_{0}(x, K)$ is finite for some n, which implies that $L \models \exists \exists^{<n} x \neg \varphi_{0}(x, c)$ for some n. Therefore $\neg \varphi_{0}(L, c)$ is finite. It follows that there exists $a \in L_{0}$ such that $L \models \varphi_{0}(a, c)$.

Now take $\bar{d} \in L_{0}$ such that $L \models \varphi(a, \bar{d}) \wedge \psi(\bar{d})$. Since $a \in L_{0}$, there is an algebraic $L(K \cup\{c\})$-formula $\eta(x)$ such that $L \models \eta(a) \wedge \exists^{=n_{1}} x \eta(x)$ for some $n_{1} \in \mathbb{N}$. Again we choose η to make n_{1} as small as possible. Consider $L(K \cup\{c\})$-formula $\theta(\bar{y})=\exists x(\varphi(x, \bar{y}) \wedge \psi(\bar{y}) \wedge \eta(x))$. Then $L \models \theta(\bar{d})$, which implies that $L \models \theta(\bar{b})$. It follows that there exists $a^{\prime} \in L_{0}$ such that $L \models \varphi\left(a^{\prime}, \bar{b}\right)$.

The above argument also shows that L_{0} is minimal. This completes the proof.

Theorem 5 Assuming (\dagger), any minimal field K is algebraically closed.

Proof. Suppose that K is not algebraicaly closed. Again there is $\alpha \in \overline{K_{0}} \backslash K_{0}$, where $\overline{K_{0}}$ is the algebraic closure of $K_{0}=\operatorname{acl}_{K}(\{\emptyset\})$. Let α has degree n over $K_{0}(n>1)$. By lemma4, there is a minimal elementary extension L of K which has dimension $>n$ (over \emptyset). Noting that $\operatorname{acl}_{K}(\{\emptyset\})=\operatorname{acl}_{L}(\{\emptyset\})$, we get a desired contradiction as before.

References

[Ho] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.
[La] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1971.
[Po] K. -P. Podewski, Minimal Ringe, Math. Phys. Semesterberichte, vol. 22 (1973), pp. 193-197.
[Wa] F. Wagner, Minimal fields, J. Symbolic Logic, vol. 65 (2000), pp. 1833-1835.
[Wh] W. H. Wheeler, Amalgamation and elimination of quantifiers for theories of fields, Proc. Amer. Math. Soc., vol. 77 (1979), pp. 243-250.

