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Non-existence of free $S^{1}$-actions on Kervaire
spheres in dimensions less than 130
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The purpose of this note is to show that the Kervaire spheres $\Sigma_{K}^{4k+1}$ where $4k+4$

is not a power of 2, does not admit any ffee $S^{1}$-action provided $k\leq 32.$ Recall
here that the Kervaire sphere $\Sigma_{K}^{4k+1}$ is a homotopy sphere and it is a boundary
of a parallelizable $4k+2$ manifold $W^{4k+2}$ with Kervaire invariant $c(W)=1.$ The
explicit description of the Kervaire sphere is possible and one of the simplest one
is given by the system of equations

$z_{1}^{d}+z_{2}^{2}+\cdot$ . . $+z_{2k+2}^{2}=0$

$|z_{1}|^{2}+|z_{2}|^{2}+\cdots+|z_{2}k+2|’=1$

in $\mathbb{C}^{2k+2}$ , where $d$ is any positive integer such that $d\equiv\pm 3$ mod 8 Those ho
motopy spheres that bound parffielizable manifolds are considered to be “least”
exotic among exotic spheres. Not only are they represented by simple formulas,
but they are abundant in symmetry; the dimension of Lie groups that can ef-
fectively act on them are known to be high. As to free actions of finite groups,
Kervaire spheres have free actions of finite cyclic groups of arbitrary order. Odd
dimensional standard spheres $5^{2n11}$ has free $S^{1}$-actions and so it may seem nat-
ural to expect that Kervaire spheres also have free $S^{1}$-actions. But the case is
quite different as to the free action of Lie groups. In fact, more than thirty years
ago, Brumfiel showed that 9-dimensional Kervaire sphere do not have any free
$S^{1}$-actions. For a long period of time since then, this problem has been left un-
touched. The reason seems simple. BrumfiePs calculation can be extended to
other higher dimensions at least theoretically, and with the aid of computer, we
can actually perform this computation. However the resulting relation is not lin-
ear and it seems extremely hard to draw effective and simple conclusions from
the those data.

In last year’s workshop, we did similar calculation to the one by Brumfiel and
proved that the Kervaire sphere $\Sigma_{K}^{17}$ does not admit any free $S^{1}$-action. It is
not wise to continue this calculation because as dimension gets larger, the result
of the computation gets uncontrollably longer. In this paper, by taking modulo
$2^{r}$ in ffi calculations for an appropriate integer $r$ , we succeeded in solving the
conjecture in dimensions less than 130.

Our main result is the following:

Theorem. The Kervaire sphere in dimensions less than 130 ( except for dimen-
sions 5, 13, 29, 61, 125 ) does not admit any free $S^{1}$-actions.

We shall assume that $k$ stands for a positive integer such that $k+1$ is not a power
of two. Then it is known that the Kervaire sphere $\Sigma_{K}^{4k+1}$ is not diffeomorphic to
the standard sphere $5\mathrm{y}4k$ } $1$ .
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1. SURGERY OBSTRUCTION

If the Kervaire sphere $\Sigma 47^{+1}$ admits a free $S^{1}$-action, the quotient space of the
$S^{1}$ -action $X^{4k}=$ $f\mathit{2}t^{4k+1}/S^{1}$ is homotopy equivalent to the complex projective space
$\mathbb{C}P(2k)$ and the associated $D^{2}$ bundle $N^{4k+2}=(\Sigma_{K}^{4k+1}\mathrm{x}D^{2})/S^{1}$ is homotopy
equivalent to $(S^{4k+1}\mathrm{x}D^{2})/S^{1}$ where the $S^{1}\subset \mathbb{C}$ acts on $S^{4k+1}\subset \mathbb{C}^{2k+1}$ and on
$D^{2}\subset \mathbb{C}$ by complex number multiplication. Let $W^{4k+2}$ be a smooth parallelizable
manifold with $\partial W=\Sigma_{K}^{4k+1}$ and Kervaire invariant $c(W)=1.$ Then by gluing
$N$ and $W$ along the common boundary $\Sigma_{K}$ , we obtain a normal map $f$ : $P=$
$N \bigcup_{\mathrm{E}_{K}}Warrow \mathbb{C}P(2k+1)$ with appropriate bundle data, and its surgery obstruction
$s_{4k+2}$ is equal to $c(W)=1.$ Hence we have a normal map $f$ with target space
$\mathbb{C}P(2k+1)$ with nonzero Kervaire surgery obstruction, but the codimension 2
surgery problem obtained by restricting the target manifold to $\mathbb{C}P(2k)$ has zero
surgery obstruction $s_{4k}$ $=0.$

Conversely if we are given a normal map $f$ : $P$ ” $\mathrm{C}\mathrm{P}(2\mathrm{k}+1)$ such that the
surgery obstruction $s_{4k+2}$ of $f$ is nonzero and the restricted surgery problem to
$\mathbb{C}P(2k)$ has zero surgery obstruction $s_{4k}=0.$ Then we can perform surgery on
$f^{-1}(\mathbb{C}P(2k))$ and within the normal cobordism class we may assume that $X=$

$f^{-1}(\mathbb{C}P(2k))arrow$ CP(2k) is a homotopy equivalence. The tubular neighborhood
$N$ of $X$ is homotopy equivalent to $\mathbb{C}P(2k+1)_{0}$ and the $\partial N$ is homotopy equivalent
to $S^{4k+1}$ . But the remaining part $W=P$ -int(N) is a parallelizable manifold and
its surgery obstruction for the normal map $Warrow D^{4k+2}$ is nonzero. Therefore
$W$ has nonzero Kervaire obstruction and therefore its boundary is the Kervaire
sphere.

Proposition 1. The following two statements are equivalent.
(a) The Kervaire sphere $\Sigma_{K}^{4k+1}$ does not admit any free $S^{1}$-action
(b) If the normal map $f$ : $M^{4k+2}arrow \mathbb{C}P(2k+1)$ with appropriate bundle data

(1)
$\nu_{M}\downarrow$

$arrow b$

$\downarrow\xi$

$M^{4k+2}arrow f\mathbb{C}P(2k+1)$

has zero $4k$-dimensional surgery obstruction $s_{4k}=0$ for the surgery data
$f|f^{-1}(\mathbb{C}P(2k))$ : $f^{-1}(\mathbb{C}P(2k))arrow$ CP(2k)

then the (lc $+$ 2)-dimensional surgery obstruction $s_{4k+2}$ of $f$ vanishes.

Our objective of this note is to show that the statement (b) in Proposition 1
is true. To do so, we must deal with all possible bundle data that appear in (1).
We point out the following four items that needs consideration:

Bundle data: The stable bundle difference ($;=\nu_{\mathbb{C}P(2k+1)}-\xi$ is fiber hom0-
$\mathrm{t}\mathrm{o}\mathrm{p}\underline{\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{N}}\mathrm{y}$ trivial, namely it belongs to the kernel of the J-homomorphism
$J:\mathrm{K}\mathrm{O}\{\mathrm{C}\mathrm{P}\{2\mathrm{k}+1$ )) $arrow\tilde{J}(\mathbb{C}P(2k+1))$ . The generators of the kernel can
be expressed by Adams operations in KO-theory.

The surgery obstruction $s_{4k}$ in dimension $4k$ : In dimension $4k$ , the
surgery obstruction is given by the index obstruction, which can be com-
puted using Hirzebruch’s $L$ classes. However, the exact form of the ob-
struction gets complicated and requires simplified treatment.
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Surgery obstruction $s_{4k+2}$ in dimension $4k+2:$ The surgery obstruc-
tion $s_{4k+2}$ in dimension $4k+2$ can be dealt with by the results of Stolz( [5])
and Kitada([3],[4]). In fact, the obstruction $s_{4k+2}$ is equal to the two di-
mensional obstruction $s_{2}$ for the surgery data $s_{2}$ , which is essentially the
2-dimensional Kervaire class $K_{2}$ .

Relation of $K_{2}$ and the first Pontrjagin class $p_{1}$ : Prom the result orig-
inally due to Sullivan, the square of $K_{2}$ for the bundle data $\langle$ is equal to
$p_{1}(\zeta)/8$ mod 2. This fact gives the connection of the integral index ob-
struction and the mod 2 Kervaire obstruction.

2. INDEX OBSTRUCTION $1\mathrm{N}$ DIMENSION $4k$

The kernel of the 2-local $J$-homomorphism $J$ : $\overline{KO}(\mathbb{C}P(2k+1))arrow\tilde{J}(\mathbb{C}P(2k+$

$1))$ is generated by $\mathrm{I}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{e}(\psi_{\mathrm{R}}^{q}-1)$ ( $q$ odd) , where 6; is the Adams operation in KO-
theory and we may assume that $q=3.$ The additive generators of $\overline{KO}(\mathbb{C}P(2k+$

$1))$ are given by $\omega^{\mathrm{j}}(1\leq j\leq k+1)$ where $\omega$ is the realification of the complex
virtual vector bundle $\eta_{\mathbb{C}}-1_{\mathbb{C}}$ . The Adams operation $/\mathrm{j}$ on $\omega$ is given by the
formula
(2) $\psi_{\mathrm{R}}^{j}(\omega)=T_{j}(\omega)$

where $T_{j}(z)$ is a polynomial of degree $j$ characterized by

(3) $T_{j}$ (t $+\mathrm{t}^{-1}-2$) $=\mathrm{t}^{j}+\mathrm{t}^{-j}-$ $2$

Since the coefficient of $z^{(}$

.
in $T_{j}(z)$ is one, we may consider $T_{j}(\omega)(1\leq j\leq k+1)$

as generators of $\overline{KO}(\mathbb{C}P(2k+1))$ . However, when restricted on $\mathbb{C}P(2k)$ , we
have $\omega^{k+1}=0$ and we may safely discard $\omega^{k+1}$ in the actual $\mathrm{c}\underline{\mathrm{o}\mathrm{m}}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$. In our
argument, we do not necessarily need to know the kernel of $J$ : $KO(\mathbb{C}P(2k+1))arrow$

$\tilde{J}(\mathbb{C}P(2k+1))$ . Later computation shows that we can ignore odd multiples of
elements and we have only to know 2-local generators of the kernel. The 2-10cal
generators of the kernel of $J$ is generated by

(4) $\zeta_{j}=(\psi_{\mathrm{R}}^{3}-1)\psi_{\mathrm{R}}^{\dot{f}}(\omega)$ $(j=1,2, \ldots, C)$

and an element of the 2-local kernel of the $\mathrm{J}$-homomorphism has the form

(5) $\zeta=\sum_{j=1}^{k}m_{j}\zeta_{\mathrm{j}}$

where $m_{j}$ are integers.
The surgery obstruction $s_{4k}$ of the surgery data (1) when restricted on $\mathbb{C}P(2k)$

is given by
(6) $8s_{4k}=$ (Index(M) - Index$(\mathbb{C}P(2k))$ ) $=((\mathcal{L}(\zeta)-1)\mathcal{L}(\mathbb{C}P(2k)))[\mathbb{C}P(2k)]$

where $\mathcal{L}$ is the multiplicative class defined by the power series

(7) $h(x)= \frac{x}{\mathrm{t}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}x}=1+.\cdot\sum_{\geq 1}\frac{(-1)+12B_{\dot{1}}}{(2i)!}.\cdot.\cdot x^{2:}$

where $B_{:}$ is the $i$-th Bernoulli number. Remark that all the coefficients of $h$ (x)
belong to $\mathrm{Z}(2)$ the rational numbers with odd denominator because all the de-
nominators of Bernoulli numbers are even but not divisible by four. If the total
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Pontrjagin class of a bundle 4 is given by $p( \xi)=\prod_{i}(1+x_{i}^{2}))\mathcal{L}(\xi)$ is given by
$\prod_{:}h(x_{i})$ and when $M$ is a manifold, we define $\mathcal{L}(M)=\mathcal{L}(\tau_{M})$

It is not difficult to show that the total Pontrjagin class of $\psi_{\mathrm{R}}^{j}(\omega)$ is $1+j^{2}x^{2}$ ,
where $x$ is the generator of $H^{2}(\mathbb{C}P(2k+1))$ . For the virtual bundle $\langle$ in (5), we
have

(8) $\mathcal{L}(\zeta)=\prod_{j=1}^{k}(\frac{3jx}{\tanh 3jx}\frac{\tanh jx}{jx})^{m_{j}}$

Given a power series $f(x)$ in $x$ , we shaU write the coefficient of $x^{n}$ in $f$(x) by
$(f(x))_{n}$ . The $4k$-dimensional obstruction $s_{4k}$ is given by

(9) $(( \mathcal{L}(\zeta)-1)(\frac{x}{\tanh x})^{2k+1}$)
$2k$

$/8.$

To calculate this, we put

(10) $g(x)=( \frac{3x}{\tanh 3x}\frac{\tanh x}{x})-1.$

Lemma 2. All the coefficients of $g(x)$ belong to $8\mathbb{Z}(2)$ .

Prom the expansion (7), we have

$\frac{3x}{\mathrm{t}\mathrm{m}\mathrm{h}3x}\equiv\frac{x}{\tanh x}$ mod 8 in $\mathbb{Z}_{(2)}[[x]]$

and the assertion follows.

We now calculate the $\mathcal{L}$ class:
$\mathcal{L}((;)-1$

$= \prod_{\mathrm{j}}(1+g(jx))^{m_{j}}-1$

$= \prod_{j}(1+m_{j}g(jx)+\frac{m_{j}(m_{j}-1)}{2}(g(jx))^{2}+\cdots)-1$

Prom this, if we want to calculate the $4k$-dimensional surgery obstruction $s_{4k}$ mod
8, we can get it from

$( \mathcal{L}(\zeta)-1)h(x)2k+1\equiv h(x)^{2k+1}\prod_{j}((1+m_{\mathrm{j}}g(jx))-1)$
$\mathrm{m}\mathrm{o}\mathrm{d} 64$

$\equiv h(x)^{2k+1}$ (
$\sum_{j}m_{\mathrm{j}}$

g(jx)) mod 64

and if we want to calculate mod 64 value of the obstruction we may get it from

$h(x)^{2k+1} \prod_{j}((1+m_{j}g(jx)+\frac{m_{j}(m_{j}-1)}{2}(g(jx))^{2})-1)$

$\equiv h(x)^{2k+1}.(\sum_{j}(m_{j}g(jx)+\frac{m_{j}(m_{j}-1)}{2}(g(jx))^{2})$

$+. \sum_{*<j}(m_{i}m_{j}g(ix)g(jx)))$ mod 64.
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Thus we may obtain $4k$-dimensional surgery obstruction formula mod 8 or mod
64 in terms of integers $m_{j}$ . If this obstruction vanishes, we obtain a relation
among the integers $m_{j}$ .

3. First PONTRJAGIN ClaSS AND KERVAIRE SURGERY OBSTRUCTION

In the normal map (1), let $\langle$ $=\nu_{\mathbb{C}P(2k+1)}-\xi$, then it can be written (2-10cally)
$\langle$ $= \sum_{j=1}^{k}$ $m_{j}\zeta_{j}$ where $\zeta_{j}=(\psi_{\mathrm{R}}^{3}-1)\psi_{\mathrm{R}}^{\mathrm{j}}(\omega)$ . The total Pontrjagin class of $u^{m}(\omega)$

is given by
$p(\psi_{\mathrm{R}}^{m}(\omega))=1+m^{2}x^{2}$

and we have

$p( \zeta_{j})=\frac{1+9j^{2}x^{2}}{1+j^{2}x^{2}}$

$p( \zeta)=\prod_{j}(\frac{1+9j^{2}x^{2}}{1+j^{2}x^{2}})^{m_{j}}$

For the first Pontrjagin class, we have

(11) $p_{1}( \zeta)/8=(\sum_{j}j^{2}m_{j})x^{2}$ .

We know that the 2-dimensional surgery obstruction 82 for $f|f^{-1}(\mathbb{C}P(1))$ is equal
to $\sum_{\mathrm{j}}j^{2}m_{j}$ mod 2 since in the complex projective space surgery theory, the mod
2 reduction of $p_{1}(\zeta)$ coincides with the square of the 2-dimensional Kervaire class
for the given normal map (see Wall’s book [6, Chap 13.]). And it is known that if
$k+1$ is not a power of 2, then (lc 2)-dimensional surgery obstruction coincides
with 2-dimensional surgery obstruction $([5],[3],[4])$ . From these facts we have
Lemma 3. If $\sum_{j:dd}m_{j}$ is even, then the surgery obstruction $s_{4k+2}$ vanishes.

In fact, we are able to show that if the $4k$-dimensional surgery obstruction $s_{4k}$

vanishes, then $\sum_{j:dd}m_{j}$ is even in dimensions less than 130, i.e. for $k\leq 32$ and
$k+1$ not a power of two. We shall present some typical cases of our computation
in the next last section.

4. SOME EXAMPLES OF COMPUTAT1ON

Case $k=2:$ (Brumfiel’s original case)

$((. \prod_{=1}^{2}(\frac{3jx}{\mathrm{t}u1\mathrm{h}3jx}\frac{\tanh jx}{jx})-1)(\frac{x}{\tanh x})^{5})_{4}\equiv 16m_{1}$ mod 64

If this is zero, then $m_{1}$ must be even.
Case $k=4:$ (Last year’s computation)

( $( \prod_{j=1}^{4}(\frac{3jx}{\tanh 3jx}\frac{\tanh jx}{jx})-1)(\frac{x}{\tanh x})^{9})_{8}\equiv 32m_{1}+$32m3 mod 64.

From this we have $\sum_{\mathrm{j}:dd}m_{j}=m_{1}+m_{3}$ is even.
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Case $k=7:$

$(( \prod_{j=1}^{8}(\frac{3jx}{\tanh 3jx}\frac{\tanh jx}{jx})-1)(\frac{x}{\tanh x})^{15})_{14}\equiv 8m_{1}+8m_{3}+8m_{5}+8m_{7}$ mod 64.

Prom this we have $m_{1}+m_{3}+m_{5}+m_{7}$ is even.
The computation breaks down for $k=8,$ because we obtain no information

from mod 64 computation. We should, instead, perform computation mod 512
for $k$ divisible by 8.

Case $k=8:$

$(( \prod_{\mathrm{j}}^{8}(\frac{3jx}{\tanh 3jx}\frac{\tanh jx}{jx})$ $-1)( \frac{x}{\tanh x})$ $17)_{16}$

$\equiv 128(m_{1}^{2}+m_{3}^{2}+m_{5}^{2}+m_{7}^{2})$

$+256(m_{1}m_{3}+m_{1}m_{5}+m_{1}m_{7}+m_{3}m_{5}+m_{3}m_{7}+m_{5}m_{7})$

$+192m_{1}+256m_{2}-64m_{3}-128m_{4}-64m_{5}+256m_{6}+192m_{7}$ mod 512
This is equivalent to

$+256(m_{1}m_{3}+m_{1}m_{5}+m_{1}m_{7}+m_{3}m_{5}+m_{3}m_{7}+m_{5}m_{7})$

$+192m_{1}+256m_{2}-64m_{3}-128m_{4}-64m_{5}+256m_{6}+192m_{7}$ $\mathrm{m}\mathrm{o}\mathrm{d} 512$

This is equivalent to
$64(m_{1}+m_{3}+m_{5}+m_{7})$ mod 128

So if this vanishes, then $\sum_{j:dd}m_{j}$ should be even. For $k\leq 32$ not a multiple of
8, computation mod 64 solves our problem and for $k\leq 32$ which is a multiple of
8, the computation mod 512 solves our problem too. Namely, in either case, for
$k\leq 32,$ if $s_{4k}=0,$ then $\sum_{j:xm}m_{j}$ must be even and we have $s_{4k+2}=0.$
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