ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

詫間電波工業高等専門学校 奥山 真吾 (Shingo Okuyama) Takuma National College of Technology 岡山大学理学部 島川 和久 (Kazuhisa Shimakawa) Department of Mathematics, Okayama University

1. INTRODUCTION

In [3] we attached to any pair of a euclidean space V and a partial abelian monoid M a space C(V, M) whose points are pairs (c, a), where c is a finite subset of V and a is a map $c \to M$, but (c, a) is identified with (c', a') if $c \subset c', a'|c = a$, and a'(v) = 0 for $v \notin c$. If V is an orthogonal G-module and M admits a G-action compatible with partial sum operations, where G is a finite group, then C(V, X)is a G-space with respect to the G-action $g(c, a) = (gc, gag^{-1}), g \in G$.

Let $I(\mathbb{R})$ be the partial abelian monoid consisting of bounded 1-dimensional submanifolds in the real line (see [1] and §3), and let

$$I(V, M) = C(V, I(\mathbb{R}) \land M)$$

for any partial abelian monoid with G-action M. The points of I(V, M) can be represented by the pairs (P, a), where P is a finite union of parallel intervals,

$$[I_{u \in c} \{v\} \times P(v) \subset V \times \mathbb{R} \quad (c \subset V, \ P(v) \in I(\mathbb{R}))$$

and a is a map $c \to M$.

The purpose of this note is to show the following:

If V is sufficiently large then there is a G-equivariant group completion map $C(V, M) \rightarrow I(V, M)$, and the correspondence $X \mapsto \{\pi_n I(V, X \land M); n \ge 0\}$ defines a G-equivariant generalized homology theory.

2. PARTIAL ABELIAN MONOIDS

Definition 1. A pointed G-space M is called a partial abelian monoid with Gaction, or G-partial monoid for short, if there are G-invariant subspaces M_n of M^n $(n \ge 0)$ and G-equivariant maps, called partial sum operations,

$$M_n \to M, \quad (a_1, \ldots, a_n) \mapsto a_1 + \cdots + a_n$$

satisfying the conditions below.

(1) $M_0 = \{0\}.$ (2) $M_1 \rightarrow M$ is the identity of M. ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

(3) Let J_1, \dots, J_r be pairwise disjoint subsets of $\{1, \dots, n\}$ such that $\{1, \dots, n\} = J_1 \cup \dots \cup J_r$ holds. Let $(a_1, \dots, a_n) \in M^n$ and suppose

$$\sum_{j\in J_k} a_j = a_{\lambda_k(1)} + \cdots + a_{\lambda_k(j_k)}$$

exists for each k, where $J_k = \{\lambda_k(1), \ldots, \lambda_k(j_k)\}, \lambda_k(1) < \cdots < \lambda_k(j_k)$. Then $(a_1, \ldots, a_n) \in M_n$ if and only if $\left(\sum_{j \in J_1} a_j, \ldots, \sum_{j \in J_r} a_j\right) \in M_r$ and we have

$$\sum_{1 \le j \le n} a_j = \sum_{j \in J_1} a_j + \dots + \sum_{j \in J_r} a_j$$

whenever either the right or the left hand side sum exists.

Among the examples we have

- Let A be a topological abelian monoid with G-action. Then any G-invariant subset M of A with $0 \in M$ can be regarded as an G-partial monoid by taking $M_n = \{(a_1, \ldots, a_n) \in M^n \mid a_1 + \cdots + a_n \in M\}$.
- Any pointed space X is a G-partial monoid with respect to the trivial partial sum operations, i.e. folding maps $X_n = X \lor \cdots \lor X \to X$. In fact this is a special case of the previous example, as X is a subset of the infinite symmetric product $SP^{\infty}X$.
- Let V be an infinite dimensional real inner product space on which G acts through linear isometries. Then the Grassmannian Gr(V) of finite-dimensional subspaces of V is a G-partial monoid with respect to the inner direct sum operations

$$\operatorname{Gr}(V)_n = \{(W_1, \ldots, W_n) \mid W_i \perp W_j, i \neq j\} \xrightarrow{\bigoplus} \operatorname{Gr}(V)$$

Definition 2. For given G-partial monoids M and N, the smash product $M \land N$ is a G-partial monoid whose partial sums are generated by the distributivity relations:

$$c_1 \wedge d + \dots + c_k \wedge d = (c_1 + \dots + c_k) \wedge d, \qquad (c_1, \dots, c_k) \in M_k$$

$$c \wedge d_1 + \dots + c \wedge d_l = c \wedge (d_1 + \dots + d_l), \qquad (d_1, \dots, d_l) \in N_l$$

Example 3. If X is a pointed space then for any G-partial monoid M we have

$$(X \wedge M)_n = X \wedge M_n, \quad n \ge 0$$

3. The Space of Parallel Strings with Labels

If J is a bounded interval in the real line \mathbb{R} then its endpoint, say a, is called a closed endpoint if $a \in J$, and an open endpoint otherwise. Thus J is a closed (resp. open) interval if its two endpoints are closed (resp. open), and is a half open interval if J has a closed endpoint and an open endpoint.

Following [1], we denote by $I(\mathbb{R})$ the space of all bounded 1-dimensional submanifolds of the real line \mathbb{R} , including the empty set. An element of $I(\mathbb{R})$ can be written as a union, say $P = J_1 \cup \cdots \cup J_r$, of finite number of pairwise disjoint bounded intervals. Here we may suppose $J_i < J_{i+1}$ holds for $1 \le i < r$, that is to say, $x \in J_i$ and $y \in J_{i+1}$ yields x < y. But the union $J_i \cup J_{i+1}$ in this expression can be replaced by a single interval J if $J_i \cup J_{i+1} = J$ is a connected interval, and J_i can be removed if J_i is a half open interval of length 0. The latter means that half open intervals are collapsible to the empty set.

Let $I(\mathbb{R})_+$ be the subset of $I(\mathbb{R})$ consisting of those elements $J_1 \cup \cdots \cup J_r$ such that every J_i is an closed interval. Then $I(\mathbb{R})$ is a partial abelian monoid with respect to the superimposition,

$$I(\mathbb{R})_n \to I(\mathbb{R}) \quad (P_1, \ldots, P_n) \mapsto P_1 \cup \cdots \cup P_n,$$

where $I(\mathbb{R})_n$ consists of those $(P_1, \ldots, P_n) \in I(\mathbb{R})^n$ such that $P_i \cap P_j = \emptyset$, $i \neq j$, and $I(\mathbb{R})_+$ is a partial submonoid of $I(\mathbb{R})$.

Definition 4. For an orthogonal G-module V and a G-partial monoid M, we put

$$I(V, M) = C(V, I(\mathbb{R}) \land M), \quad I_+(V, M) = C(V, I(\mathbb{R})_+ \land M)$$

We call I(V, M) the space of parallel strings in V with labels in M.

To relate I(V, M) with C(V, M), we introduce the map $b: I(\mathbb{R})_+ \to C(\mathbb{R})$ which takes $J_1 \cup \cdots \cup J_r$ to the finite set $\{bJ_1, \ldots, bJ_r\}$ consisting of the barycenters of J_i . One easily observes that the natural map

$$I_+(V,M) \to C(V,C(\mathbb{R}) \wedge M)$$

induced by $b: I(\mathbb{R})_+ \to C(\mathbb{R})$, is a homotopy equivalence. We also have

Lemma 5. If V is sufficiently large then the inclusion

 $C(V, C(\mathbb{R}) \land M) \to C(V \times \mathbb{R}, M)$

is a G-homotopy equivalence.

Proof. Let $i: \mathbb{R} \to V^G$ be an linear embedding, and define a homotopy $h: I \times \mathbb{R} \to V$ by h(t,x) = (1-t)i(x). If we write $h_t(x) = h(t,x)$ then $h_0 = i$ and h_1 is the constant map with value 0. Let l be a G-linear isometry $V \times V \to V$. Then there is a homotopy

$$H: I_+ \wedge C(V \times \mathbb{R}, M) \to C(V \times \mathbb{R}, M)$$

such that $H_t = H(t, -)$ is induced by the composite

$$V \times \mathbb{R} \xrightarrow{1 \times \text{diag.}} V \times \mathbb{R} \times \mathbb{R} \xrightarrow{1 \times h_t \times 1} V \times V \times \mathbb{R} \xrightarrow{l \times 1} V \times \mathbb{R},$$

One easily observes that

- (1) H restricts to a map $I_+ \wedge C(V, C(\mathbb{R}) \wedge M) \to C(V, C(\mathbb{R}) \wedge M)$,
- (2) Im $H_0 \subset C(V, C(\mathbb{R}) \wedge M)$, and
- (3) H_1 is induced by the linear isometry $l' \times 1: V \times \mathbb{R} \to V \times \mathbb{R}$, where l' is the composite $V = V \times \{0\} \subset V \times V \xrightarrow{l} V$.

Since the space of linear isometries of V is contractible, l' is equivariantly isotopic to the identity through G-linear isometries. Thus we have $H_0 \simeq H_1 \simeq 1$, hence H_0 induces a homotopy inverse to the inclusion $C(V, C(\mathbb{R}) \wedge M) \rightarrow C(V \times \mathbb{R}, M)$. \Box

Corollary 6. If V is sufficiently large then there is a map of Hopf G-spaces $\lambda: I_+(V, M) \to C(V, M)$, which is natural in M and is a G-homotopy equivalence.

ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

Proof. Choose a G-linear isometry $l: V \times \mathbb{R} \cong V$, and define λ as the composite

$$I_+(V,M) \xrightarrow{o_*} C(V,C(\mathbb{R}) \wedge M) \xrightarrow{C} C(V \times \mathbb{R},M) \xrightarrow{\iota_*} C(V,M)$$

4. MAIN RESULTS

To state the main results we introduce the G-category Top(G) consisting of all pointed G-spaces and pointed maps, with G acting on morphisms by conjugation. As we showed in [2], any G-equivariant continuous functor T of Top(G) into itself is accompanied with pairings

$$X \wedge TY \to T(X \wedge Y), \quad TX \wedge Y \to T(X \wedge Y)$$

natural in both X and Y. One easily observes from this that T preserves G-homotopies, and there is a suspension natural transformation $T(X) \to \Omega^W T(\Sigma^W X)$ defined for any finite dimensional orthogonal G-module W.

Suppose V is linearly and equivariantly isometric to the direct product of countably many copies of the regular representation of G over the real number fields. Such a G-module V is said to be *sufficiently large*. Then we have

Theorem 7. In the diagram of Hopf G-spaces

$$C(V, M) \leftarrow I_+(V, M) \xrightarrow{\rho} I(V, M),$$

where ρ is induced by the inclusion $I(\mathbb{R})_+ \subset I(\mathbb{R})$, we have

- (1) λ is a G-homotopy equivalence.
- (2) ρ is a G-equivariant group completion, that is to say, $\rho^H \colon I_+(V,M)^H \to I(V,M)^H$ is a group completion for every subgroup H of G.

Theorem 8. The correspondence $X \to I(V, X \land M)$ is a G-equivariant continuous functor of Top(G) into itself and we have

- (1) For any orthogonal G-module W the suspension map $I(V, X \wedge M) \rightarrow \Omega^W I(V, \Sigma^W X \wedge M)$ is a weak G-homotopy equivalence.
- (2) There is an RO(G)-graded G-homology theory $h^G_{\bullet}(-)$ such that

$$h_n^G(X) = \pi_n I(V, X \wedge M)^G$$

holds for any X and $n \ge 0$.

5. BRIEF OUTLINE OF THE PROOFS

Outline of the Proof of Theorem 7. We need to show that

(5.1) $\rho^H \colon I_+(V,M)^H \to I(V,M)^H$ is a group completion

holds for every subgroup H of G.

Observe that V is an H-universe for any subgroup H of G. Hence (5.1) for general H follows from the special case H = G. that $\rho^H : I_+(V, M)^H \to I(V, M)^H$ is a group completion follows from the case H = G. But the usual argument using the notion of orbit type family enables us to reduce the proof of this problem to the case where G is trivial. Thus we may assume G = 1 and $V = \mathbb{R}^{\infty}$. Recall from

[3] that there is a weak equivalence of Hopf spaces $\Phi: D(M) \to C(\mathbb{R}^{\infty}, M)$, where D(M) is the realization of the diagonal

$$[k] \mapsto S_k N_k \mathcal{Q}(M) = N_k \mathcal{Q}(S_k M)$$

associated with the bisimplicial set of the total singular complex of the nerve of a permutative category Q(M), whose space of objects is $\coprod_{p\geq 0} M^p$, and whose morphisms from $(a_i) \in M^p$ to $(b_j) \in M^q$ are maps of finite sets $\theta: \{1, \ldots, p\} \to \{1, \ldots, q\}$ such that $b_j = \sum_{i \in \theta^{-1}(j)} a_i$ holds for $1 \leq j \leq q$.

Since Φ is natural in M, Theorem 7 follows from

Proposition 9. The natural map $D(I_+(\mathbb{R}) \wedge M) \to D(I(\mathbb{R}) \wedge M)$, induced by the inclusion $I_+(\mathbb{R}) \subset I(\mathbb{R})$, is a group completion.

The rest of this section is devoted to the proof of this proposition.

Given a map of topological monoids $f: D \to D'$ let B(D, D') denote the realization of the category $\mathcal{B}(D, D')$ whose space of objects is D' and whose space of morphisms is the product $D \times D'$, where $(d, d') \in D \times D'$ is regarded as a morphism from d' to $f(d) \cdot d'$. Then there is a sequence of maps

$$D' = B(0, D') \rightarrow B(D, D') \rightarrow B(D, 0) = BD$$

induced by the maps $0 \to D$ and $D' \to 0$ respectively. Observe that BD is the standard classifying space of the monoid D and B(D,D) is contractible when f is the identity.

Let $D = D(I_+(\mathbb{R}) \wedge M)$, $D' = D(I(\mathbb{R}) \wedge M)$, and let $i: D \to D'$ be the map induced by the inclusion $I_+(\mathbb{R}) \to I(\mathbb{R})$. Then we have a commutative diagram

$$(5.2) \qquad D \longrightarrow B(D,D) \longrightarrow BD$$
$$\downarrow \downarrow \qquad \downarrow^{B(1,i)} \qquad \parallel \\ D' \longrightarrow B(D,D') \longrightarrow BD$$

in which the upper and the lower sequences are associated with the identity and the inclusion $i: D \to D'$, respectively.

Lemma 10. The natural map $D \rightarrow \Omega BD$ is a group completion.

This follows from the fact that D is a homotopy commutative, hence admissible, monoid.

Lemma 11. The lower sequence in the diagram (5.2) is a homotopy fibration sequence with contractible total space B(D, D').

Proposition 9 can be deduced from these lemmas, because $D \to D'$ is equivalent to the group completion map $D \to \Omega BD$ under the equivalence $D' \simeq \Omega BD$.

Outline of the Proof of Theorem 8. We need the following

Proposition 12. Let T be a G-equivariant continuous functor of the category of pointed G-spaces and pointed maps to itself. Suppose T satisfies the following conditions.

ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

C1: T * = *

C2: $||T(X_{\bullet})|| \simeq_G T(||X_{\bullet}||)$ for any simplicial objects X_{\bullet}

C3: $T(X \lor Y) \simeq_G TX \times TY$

C4: $T(G/H_+ \wedge X) \simeq_G Map(G/H, TX)$ for any subgroup H.

Suppose further that TX^H is grouplike for any X and any subgroup H of G. Then we have

- (a) $TX \simeq_{\mathcal{G}} \Omega^{W} T(\Sigma^{W} X)$ for any real G-module W,
- (b) $X \mapsto \{\pi_n T X^G\}$ defines an RO(G)-gradable equivariant homology theory on the category of pointed G-spaces.

Proof. As TX^H is grouplike for any H the natural map $TX \to \Omega T(\Sigma X)$ is a weak *G*-equivalence. Hence by the argument similar to the proof of [3, Theorem 2.12]

$$TA \to TX \to T(X \cup CA)$$

is a G-fibration sequence up to weak G-equivalence for any pair of pointed G-spaces (X, A). It also follows by the property of G-equivariant continuous functor that T preserves G-homotopies. Thus (a) implies (b).

To prove (a) we need only show that the correspondence $S \mapsto T(S \wedge X)$, where S is any pointed finite G-set, defines a special Γ_G -space in the sense of [2], that is, the natural map

$$T(S \wedge X) \rightarrow \operatorname{Map}_0(S, TX)$$

is a G-equivalence. But this follows from the conditions C3 and C4.

Let $TX = I(V, X \land M)$. We shall show that T satisfies the conditions C1, C2, C3 and C4. This of course implies Theorem 8.

Clearly the condition C1 holds, and C2 is a routine exercise. That C3 holds is proved as follows.

To verify C4 we shall show that $T(G/H_+ \wedge X) \rightarrow Map(G/H, TX)$ has a G-homotopy inverse ρ defined as follows:

- (1) Choose a G-embedding $G/H \to V$ and a linear G-isometry $V \times V \to V$.
- (2) For given $f: G/H \to TX$ write f(gH) = (c(gH), a(gH)), where $c(gH) \subset V, a(gH): c(gH) \to X \land M \land I(\mathbb{R}).$

(3) Define \tilde{c} to be the image of $\bigcup \{gH\} \times c(gH)$ under the embedding $\iota: G/H \times V \subset V \times V \to V$

(4) Define $\tilde{a} \colon \tilde{c} \to G/H_+ \wedge X \wedge I(\mathbb{R}) \wedge M$ by

$$i(\iota(gH,\xi)) = gH \wedge a(gH)(\xi), \quad \xi \in c(gH)$$

(5) $\rho: \operatorname{Map}(G/H, TX) \to T(G/H_+ \wedge X)$ is given by $\rho(f) = (\tilde{c}, \tilde{a})$.

References

- 1. S. Okuyama, The space of intervals in a euclidean space, preprint.
- K. Shimakawa, Infinite loop G-spaces associated to monoidal G-graded categories, Publ. Res. Inst. Math. Sci. 25 (1989), 239-262.
- 3. _____, Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001), 43-72.