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1. INTRODUCTION

In [3] we attached to any pair of a euclidean space $V$ and a partial abelian
monoid $M$ a space $C(V, M)$ whose points are pairs $(c, a)$ , where $c$ is a finite subset
of $V$ and $a$ is a map $carrow M,$ but $(c, a)$ is identified with $(d, a’)$ if $\mathrm{c}\subset c’$ , $a’|c=a,$

and $\mathrm{a}’(\mathrm{v})=0$ for $v\not\in c.$ If $V$ is an orthogonal $G$-module and NI admits a G-action
compatible with partial sum operations, where $G$ is a finite group, then $C(V, X)$

is a $G$-space with respect to the $G$-action $g(c, a)=(gc, gag^{-1})$ , $g\in G.$

Let $/(\mathrm{R})$ be the partial abelian monoid consisting of bounded l-dimensional
submanifolds in the real line (see [1] and \S 3), and let

$\mathrm{J}(\mathrm{V}, M)=$ C(V, $/(\mathrm{R})\Lambda M$)

for any partial abelian monoid with $G$-action $M$ . The points of $I(V, M)$ can be
represented by the pairs $(P, a)$ , where $P$ is a finite union of parallel intervals,

$1\mathrm{I}_{v\in \mathrm{c}}\{v\}\mathrm{x}P(v)\subset V\mathrm{x}\mathbb{R}$ $(,c \subset V, P(v)\in I(\mathbb{R}))$

and $a$ is a map $carrow M.$

The purpose of this note is to show the following:

If $V$ is sufficiently large then there is a $G$ -equivariant group completion map
$C$( $V$, Af) $arrow I(V, \mathrm{M})$ , and the correspondence $X\mapsto$ { $\pi_{n}I(V,$ $X\Lambda$ A#); $n\geq 0$} defines
a $G$ -equivariant generalized homology theory.

2. PARTIAL ABELIAN MONOIDS

Definition 1. A pointed $G$ space $M$ is called a partial abelian monoid with G-
action, or $G$ -partial monoid for short, if there are $G$-invariant subspaces $NI_{n}$ of
$M^{n}(n\geq 0)$ and $G$-equivariant maps, called partial sum operations,

$M_{n}arrow M,$ $(a_{1}$ , . . . , $a_{n})\mapsto a_{1}+\cdot$ $..+a_{n}$

satisfying the conditions below.
(1) $M_{0}=\{0\}$ .
(2) $M_{1}arrow M$ is the identity of $M$ .
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(3) Let $J_{1}$ , $\cdot$ $\cdot\tau$ , $J_{r}$ be pairwise disjoint subsets of $\{$ 1, $\ldots$ , $n\}$ such that $\{$ 1, $\ldots$ , $n\}=$
$J_{1}\cup\cdots\cup J_{r}$ holds. Let $(a_{1}$ , . . . , $a_{n})\in M^{n}$ and suppose

$C_{j\in J_{k}}$ $a_{j}=a_{\lambda_{k}(1)}+\cdots+a_{\lambda_{k}(j_{k})}$

exists for each $k$ , where $J_{k}=\{\lambda_{k}(1), \ldots, \lambda_{k}(j_{k})\}$ , $\lambda_{k}(1)<1$ $\cdot\tau$ $<\lambda_{k}(j_{k})$ .
Then $(a_{1}, \ldots, a_{n})\in NI_{n}$ if and only if $( \sum_{j\in J_{1}}a_{j}$ , . . . , $\mathrm{j}:_{j\mathrm{e}J},$ $a_{j})\in M_{r}$ and
we have

$Ei_{1<}i\mathit{5}n$ $a_{\mathrm{j}}=Zt_{j\in J_{1}}a_{j}+\cdots+Ei_{j\in J_{\mathrm{r}}}a_{j}$

whenever either the right or the left hand side sum exists.

Among the examples we have
$\circ$ Let $A$ be a topological abelian monoid with $G$-action. Then any G-

invariant subset $M$ of $A$ with $\mathrm{O}\in M$ can be regarded as an G-partial
monoid by taking $M_{n}=$ $\{(\mathrm{a}\mathrm{x}, \ldots, a_{n})\in M^{n}|a_{1}+\cdots+a_{n}\in M\}$.

$\circ$ Any pointed space $X$ is a $G$-partial monoid with respect to the trivial
partial sum operations, i.e. folding maps $X_{n}=X\vee\cdots\vee Xarrow X.$ In
fact this is a special case of the previous example, as $X$ is a subset of the
infinite symmetric product $\mathrm{S}\mathrm{P}^{\infty}X$ .

$\circ$ Let $V$ be an infinite dimensional real inner product space on which $G$

acts through linear isometries. Then the Grassmannian Gx(V) of finite
dimensional subspaces of $V$ is a $G$-partial monoid with respect to the inner
direct sum operations

$\mathrm{G}\mathrm{r}(V)_{n}=\{(W_{1}, \ldots, bV_{n})|W_{\dot{l}}[perp] W_{j}, i\neq 7\}$
$\bigoplus_{arrow}$ Gx(V)

Definition 2. For given $G$-partial monoids $M$ and $N$ , the smash product Af $\Lambda$

$N$ is a $G$-partial monoid whose partial sums are generated by the distributivity
relations:

$c_{1}$ A $d+\cdots+c_{k}\Lambda d=(c_{1}+\cdots+c_{k})\Lambda$ d, $(c_{1}, \ldots, c_{k})\in M_{k}$

$c\Lambda d_{1}+\cdots+c\Lambda d_{l}=c$ $\wedge$ $(d_{1}+\cdots+d_{l})$ , $(d_{1}, \ldots, d_{l})\in N_{l}$

Example 3. If $X$ is a pointed space then for any $G$-partial monoid $M$ we have
$(X\Lambda M)_{n}=X\wedge M_{n}$ , $n\geq 0$

3. THE SPACE OF PARALLEL STRINGS WITH LABELS

If $J$ is a bounded interval in the real line $\mathbb{R}$ then its endpoint, say $a$ , is called
a closed endpoint if $a\in J,$ and an open endpoint otherwise. Thus $J$ is a closed
(resp. open) interval if its two endpoints are closed (resp. open), and is a half open
interval if $J$ has a closed endpoint and an open endpoint.

Following [1], we denote by $I(\mathbb{R})$ the space of all bounded 1-dimensional sub-
manifolds of the real line $\mathbb{R}$ , including the empty set. An element of $I(\mathbb{R})$ can be
written as a union, say $P=J_{1}\cup\cdots\cup J_{f}$ , of finite number of pairwise disjoint
bounded intervals. Here we may suppose $J_{i}<\mathit{1}\mathit{4}\mathit{1}$ holds for $1\leq i<r,$ that is to
say, $x\in J_{i}$ and $J!$ $\in J_{\dot{|}+1}$ yields $x<y.$ But the union $J_{i}\cup J_{i+1}$ in this expression
can be replaced by a single interval $J$ if $J_{i}\cup J_{\dot{\iota}+1}=J$ is a connected interval, and
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$J_{i}$ can be removed if 4 is a half open interval of length 0. The latter means that
half open intervals are collapsible to the empty set.

Let $I(\mathbb{R})_{+}$ be the subset of $I(\mathbb{R})$ consisting of those elements $J_{1}\cup\cdots\cup J_{r}$ such
that every $J_{i}$ is an closed interval. Then $I(\mathbb{R})$ is a partial abelian monoid with
respect to the superimposition,

$I(\mathbb{R})_{n}arrow I(\mathbb{R})$ $(P_{1}, \ldots, P_{n})\mapsto P_{1}\cup\cdots\cup P_{n}$ ,

where $I(\mathbb{R})_{n}$ consists of those $(P_{1}, \ldots, P_{n})\in I(\mathbb{R})^{n}$ such that $P_{i}\cap P_{j}=\emptyset$ , $i\neq j,$

and $I(\mathbb{R})_{+}$ is a partial submonoid of $I(\mathbb{R})$ .
where $I(\mathbb{R})_{n}$ consists of those $(P_{1}, \ldots, P_{n})\in I(\mathbb{R})^{n}$ such that $P_{i}\cap P_{j}=\emptyset$ , $i\neq j,$

and $I(\mathbb{R})_{+}$ is apartial submonoid of $I(\mathbb{R})$ .

Definition 4. For an orthogonal $G$-module $V$ and a $G$-partial monoid $M$ , we put
$\mathrm{J}(\mathrm{V},\mathrm{M})M)=$ C(V, $/(\mathrm{R})\Lambda M$ ), $I_{+}(V, M)=C(V, I(\mathbb{R})_{+}\Lambda M)$

We call $/(\mathrm{V}, M)$ the space of parallel strings in $V$ with labels in $M$ .

To relate $/(\mathrm{V}, M)$ with $C(V, M)$ , we introduce the map $b:I(\mathbb{R})_{+}arrow$ C(R) which

We call $I(V, M)$ the space of parallel strings in $V$ with labels in $M$ .

To relate $I(V, M)$ with $C(V, M)$ , we introduce the map $b:I(\mathbb{R})_{+}arrow C(\mathbb{R})$ which
takes $J_{1}\cup\cdots\cup J_{r}$ to the finite set $\{bJ_{1}, \ldots, bJ_{r}\}$ consisting of the barycenters of
Ji. One easily observes that the natural map

$I_{+}(V, M)arrow C$ (V, $\mathrm{C}(\mathrm{R})\wedge M$)

induced by $b:I(\mathbb{R})_{+}arrow$ C(R), is a homotopy equivalence.
We also have

induced by $b:I(\mathbb{R})_{+}arrow C(\mathbb{R})$ , is ahomotopy equivalence.
We also have

Lemma 5. If $V$ is sufficiently large then the inclusion
$\mathrm{C}(\mathrm{V}, \mathrm{C}(\mathrm{R})\Lambda M)arrow C(V\mathrm{x}\mathbb{R}, M)$

is a $G$ homotopy equivalence.

Proof. Let $i:\mathbb{R}arrow V^{G}$ b$\mathrm{e}$ an linear embedding, and define a homotopy $h$ : I $\mathrm{x}$
$\mathbb{R}arrow$

$V$ by $h(t, x)=(1-t)i(x)$ . If we write $h_{t}(x)=h(t, x)$ then $h_{0}=i$ and $h_{1}$ is the
constant map with value 0. Let $l$ be a $G$-linear isometry $V\mathrm{x}Varrow V.$ Then there
is a homotopy

$H:I_{+}\Lambda C$ ( $V\mathrm{x}\mathbb{R}$ , A#) $arrow C$ ( $V\mathrm{x}$ $\mathbb{R}$ , A#)
such that $H_{t}=H(t, -)$ is induced by the composite

$V\mathrm{x}\mathbb{R}\mathrm{A}\wedge \mathrm{u}arrow.V\alpha_{5}\cdot \mathrm{x}\mathbb{R}\mathrm{x}\mathbb{R}\wedge\wedgearrow..Vf\wedge\wedge \mathrm{x}V\mathrm{x}\mathbb{R}.\wedgearrow V\wedge \mathrm{x}\mathbb{R}$ ,

One easily observes that
(1) $H$ restricts to a map $I_{+}\Lambda \mathrm{C}(\mathrm{V}, \mathrm{C}(\mathrm{R})\Lambda M)arrow$ C(V, $\mathrm{C}(\mathrm{R})\wedge M$),
(2) ${\rm Im} H_{0}\subset$ C(V, $\mathrm{C}(\mathrm{R})\Lambda M$ ), and
(3) $H_{1}$ is induced by the linear isometry $l’\mathrm{x}1:V\mathrm{x}\mathbb{R}arrow V\mathrm{x}$ $\mathbb{R}$ , where $l’$ is

the composite $V=V\mathrm{x}$ $\{\mathrm{O}\}\subset V\mathrm{x}Varrow {}^{\mathrm{t}}V$ .
Since the space of linear isometries of $V$ is contractible, $l$ ’ is equivariantly isotopic
to the identity through $G$-linear isometries. Thus we have $H_{0}\simeq H_{1}\simeq 1,$ hence $H_{0}$

induces a homotopy inverse to the inclusion $C(V, \mathrm{C}(\mathrm{R})\Lambda$ A#) $arrow C$( $V\mathrm{x}$ $\mathbb{R}$ , A#). $\square$

Corollary 6. If $V$ is sufficiently large then there is a rnap of Hopf G-spaces
$\lambda:I_{+}(V, M)arrow C(V, M)$ , which is natural in $M$ and is a $G$ homotopy equivalence.
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Proof. Choose a $G$-linear isometry $l:V\mathrm{x}\mathbb{R}\cong V,$ and define $\lambda$ as the composite
$I_{+}(V, M)arrow \mathrm{G}(\mathrm{V}, \mathrm{C}(\mathrm{R})\Lambda b_{*}\#)$ $arrow C(\subset V\mathrm{x}\mathbb{R}, M)arrow \mathrm{C}$ ( $\mathrm{V},$ NI)

$\iota$.
口

4. MAIN RESULTS

To state the main results we introduce the $G$-category Top(G) consisting of all
pointed $G$-spaces and pointed maps, with $G$ acting on morphisms by conjugation.
As we showed in [2], any $G$-equivariant continuous functor $T$ of Top(G) into itself
is accompanied with pairings

$X\Lambda TYarrow T(X\Lambda Y)$ , $TX\wedge Yarrow T(X\wedge Y)$

natural in both $X$ and $Y$ . One easily observes from this that $T$ preserves G-
homotopies, and there is a suspension natural transformation $T(X)arrow\Omega^{W}T(\Sigma^{W}X)$

defined for any finite dimensional orthogonal $G$-module $W$ .
Suppose $V$ is linearly and equivariantly isometric to the direct product of count-

ably many copies of the regular representation of $G$ over the real number fields.
Such a $G$-module $V$ is said to be sufficiently large. Then we have

natural in both $X$ and $Y$ . One easily observes from this that $T$ preserves G-
homotopies, and there is suspension natural transformation $T(X)arrow\Omega^{W}T(\Sigma^{W}X)$

defined for any finite dimensional orthogonal $G$-module $W$ .
Suppose $V$ is linearly and equivariantly isometric to the direct product of count-

ably many copies of the regular representation of $G$ over the real number fields.
Such a $G$-module $V$ is said to be sufficiently large. Then we have

Theorem 7. In the diagram of Hopf G-spaces
$C(V, M)arrow I_{+}(V, M)arrow \mathrm{I}(\mathrm{V}, M)\lambda\rho$ ,

where $\rho$ is induced by the inclusion $I(\mathbb{R})_{+}\subset I(\mathbb{R})$ , we have
(1) A is a $G$ -homotopy equivalence.
(2) $\rho$ is a $G$ -equivariant group completion, that is to say, $\rho^{H}$ : $I_{+}(V, M)^{H}arrow$

$I(V, M)^{H}$ is a group completion for every subgroup $H$ of $G$ .

Theorem 8. The correspondence $Xarrow$ I(V, $X\wedge M|$ is a $G$ -equivariant continuous
functor of Top(G) into itself and we have

(1) For any orthogonal $G$ -module $W$ the suspension map $I(V, X\Lambda M)arrow$

$\Omega^{W}I(V, iC^{W}X\wedge M)$ is a real $G$ -homotopy equivalence.
(2) There is an $RO(G)$ -graded $G$ -hornology theory $h^{G}$. (-) such that

$h_{n}^{G}(X)=\pi_{n}I(V, X\Lambda M)^{G}$

holds for any $X$ and $n\geq 0.$

where $\rho$ is induced by the inclusion $I(\mathbb{R})_{+}\subset I(\mathbb{R})$ , we have
(1) $\lambda$ is a $G$ -homotopy equivalence.
(2) $\rho$ is a $G$ -equivariant group completion, that is to say, $\rho^{H}$ : $I_{+}(V, M)^{H}arrow$

$I(V, M)^{H}$ is a group completion for every subgroup $H$ of $G$ .

Theorem 8. The comspondence $Xarrow I(V, X\Lambda M)$ is a $G$ -equivariant continuous
functor of Top(G) into itself and we have

(1) For any orthogonal $G$ -module $W$ the suspension map $I(V, X\Lambda M)arrow$

$\Omega^{W}I(V, \Sigma^{W}X\Lambda M)$ is a weak $G$ -homotopy equivalence.
(2) There is an $RO(G)$ -graded $G$ -homology theory $h^{G}$. (-) such that

$h_{n}^{G}(X)=\pi_{n}I(V, X\wedge M)^{G}$

holds for any $X$ and $n\geq 0.$

5. BRIEF OUTLINE OF THE PROOFS

Outline of the Proof of Theorem 7. We need to show that
(5.1) $\rho^{H}$ : $I_{+}(V, M)^{H}arrow I(V, M)^{H}$ is a group completion
holds for every subgroup $H$ of $G$ .

Observe that $V$ is an $H$-universe for any subgroup $H$ of $G$ . Hence (5.1) for
general $H$ follows from the special case $H=G.$ that $\rho^{H}$ : $I_{+}(V, M)^{H}arrow I(V, M)^{H}$

is a group completion follows from the case $H=G$. But the usual argument using
the notion of orbit type family enables us to reduce the proof of this problem to the
case where $G$ is trivial Thus we may assume $G=$ $\mathrm{t}$ and $V=\mathbb{R}^{\infty}$ . Recall from
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[3] that there is a weak equivalence of Hopf spaces $\Phi:D(M)arrow C(\mathbb{R}^{\infty}, M)$ , where
$D(M)$ is the realization of the diagonal

$[k]\mapsto$ SkNkQ(M) $=$ $7\mathrm{V}7$ $Q(S_{k}M)$

associated with the bisimplicial set of the total singular complex of the nerve of
a permutative category $\mathrm{Q}(M)$ , whose space of objects is $1\mathrm{J}_{p\geq 0}NI^{p}$ , and whose
morphisms from $(\mathrm{a}\{)\in M^{\mathrm{p}}$ to $(b_{j})\in M^{q}$ are maps of finite sets $\theta:\{1, \ldots,p\}arrow$

$\{1, \ldots, q\}$ such that $b_{j}= \sum_{i\in\theta^{-1}(j)}a$: holds for $1\leq j\leq q.$

Since $\Phi$ is natural in $M$ . Theorem 7 follows from

Proposition 9. The natural map $D(I_{+}(\mathbb{R})\Lambda M)arrow D(I(\mathbb{R})\wedge M)$ , induced by the
inclusion $I_{+}(\mathbb{R})\subset$ f(d), is a group completion.

The rest of this section is devoted to the proof of this proposition.
Given a map of topological monoids $f:Darrow D’$ let $B(D, D’)$ denote the re-

alization of the category $\mathcal{B}(D, D’)$ whose space of objects is $D’$ and whose space
of morphisms is the product $D\mathrm{x}D’$ , where $(d, d’)\in D\cross D’$ is regarded as a
morphism from $d’$ to $f(d)\cdot d’$ . Then there is a sequence of maps

$D’=$ B$(0, D’)arrow$ B(D, $D’$ ) $arrow$ B(D, $\mathrm{O}$) $=BD$

induced by the maps $\mathrm{O}arrow D$ and $D’arrow 0$ respectively. Observe that $BD$ is the
standard classifying space of the monoid $D$ and $B(D, D)$ is contractible when $f$

is the identity.
Let $D=D(I_{+}(\mathbb{R})\Lambda M)$ , $D’=D$( $I(\mathbb{R})\wedge$ Af), and let $i:Darrow D’$ be the map

induced by the inclusion $I_{+}(\mathbb{R})arrow I(\mathbb{R})$ . Then we have a commutative diagram
$Darrow$ B(D, $D$) $arrow BD$

(5.2) $:\downarrow$ $\downarrow B(1,i)$ $||$

$D’arrow$ B(D, $D’$ ) $arrow BD$

in which the upper and the lower sequences are associated with the identity and
the inclusion $i:Darrow D’$ , respectively.

Lemma 10. The natural map $Darrow\Omega BD$ is a group completion.

This follows from the fact that $D$ is a homotopy commutative, hence admissible,
monoid.

Lemma 11. The lower sequence in the diagram (5.2) is a homotopy fibration
sequence with contractible total space $B(D, D’)$ .

Proposition 9 can be deduced from these lemmas, because $Darrow D’$ is equivalent
to the group completion map $Darrow QBD$ under the equivalence $D’\simeq$ QBD.

Outline of the Proof of Theorem 8. We need the following

Proposition 12. Let $T$ be a $G$ -equivariant continuous functor of the category
of pointed $G$-spaces and pointed maps to itself. Suppose $T$ satisfies the following
conditions.
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$\mathrm{C}1:T*=*$

C2: $||$ $7$ $(X.)\mathrm{H}$ $\simeq_{G}T(||X.||)$ for any simplicial objects $X$.
C3: $T(X\vee Y)$ $\simeq_{G}$ $TX\cross TY$

C4: $T(G/H_{+}\Lambda X)\simeq_{G}$ Map(G/H, $TX$) for any subgroup $H$ .
Suppose further that $TX^{H}$ is grouplike for any $X$ and any subgroup $H$ of $G$ .

Then we have
(a) $TX\simeq cl^{W}T(\Sigma^{W}X)$ for any real $G$ -module $W$ ,
(b) $X\mapsto\{\pi_{n}TX^{G}\}$ defines an $RO(G)$ -gradable equivariant homology theory

on the category of pointed G-spaces.

Proof. As $TX^{H}$ is grouplike for any $H$ the natural map $TXarrow$ QT{EX) is a weak
$G$-equivalence. Hence by the argument similar to the proof of [3, Theorem 2.12]

$TAarrow TXarrow T(X\cup CA)$

is a $G$-fibration sequence up to weak $G$-equivalence for any pair of pointed G-
spaces $(X, A)$ . It also follows by the property of $G$-equivariant continuous functor
that $T$ preserves $G$-homotopies. Thus (a) implies (b).

To prove (a) we need only show that the correspondence $S\mapsto T(S\Lambda X)$ , where
$S$ is any pointed finite $G$-set, defines a special $\Gamma_{G}$-space in the sense of [2], that
is, the natural map

7 $(S\Lambda X)arrow \mathrm{M}\mathrm{a}\mathrm{p}_{0}(S,TX)$

is a $G$-equivalence. But this follows from the conditions C3 and C4. $\square$

Let $TX=I$( $V$, $X\Lambda$ AM). We shall show that $T$ satisfies the conditions Cl, C2,
C3 and C4. This of course implies Theorem 8.

Clearly the condition Cl holds, and C2 is a routine exercise. That C3 holds is
proved as follows.

To verify C4 we shall show that $T(G/H_{+}\Lambda X)arrow$ Map(G/H, $TX$) has a G-
homotopy inverse $\rho$ defined as follows:

(1) Choose a $G$-embedding $G/H$ $arrow V$ and a linear $G$-isometry $V\cross Varrow V.$

(2) For given $f:G/H$ $arrow TX$ write $f(gH)=\mathrm{c}(\mathrm{g}\mathrm{H})\mathrm{a}\{\mathrm{g}\mathrm{H}$) $:$ , where $c(gH)\subset$

$V$ , $a(gH):c(gH)arrow X\Lambda M\Lambda I(\mathbb{R})$ .
(3) Define $\tilde{c}$ to be the image of $\cup\{gH\}\mathrm{x}c(gH)$ under the embedding

$\iota:G/H$ $\mathrm{x}V\subset V\cross Varrow V$

(4) Define $\tilde{a}:\tilde{c}arrow G/H_{+}\wedge X\wedge$ /(R) $\Lambda M$ by
$\tilde{a}(c(gH, \xi))$ $=gH\Lambda a(gH)(\xi)$ , $\xi\in c(gH)$

(5) $\rho$ : Map(G/H, $TX$ ) $arrow T(G/H_{+}\Lambda X)$ is given by $\mathrm{p}(/)=(\tilde{c},\tilde{a})$ .

(4) Define a$\sim:\tilde{c}arrow G/H_{+}\wedge X\wedge I(\mathbb{R})\Lambda M$ by
$\tilde{a}(\iota(gH,\xi))=gH\Lambda a(gH)(\xi)$ , $\xi\in c(gH)$

(5) $\rho$ : Map(G/H, $TX$ ) $arrow T(G/H_{+}\Lambda X)$ is given by $\rho(f)=(\tilde{c},\tilde{a})$ .
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