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1. INTRODUCTION

In [3] we attached to any pair of a euclidean space V' and a partial abelian
monoid M a space C(V, M) whose points are pairs (c,a), where c is a finite subset
of V and a is a map ¢ — M, but (c, a) is identified with (¢,a’) if c C ¢/, d'[c = g,
and a’(v) = 0 for v € c. If V is an orthogonal G-module and M admits a G-action
compatible with partial sum operations, where G is a finite group, then C(V, X )
is & G-space with respect to the G-action g(c, a) = (gc,gag™), g € G.

Let I(R) be the partial abelian monoid consisting of bounded 1-dimensional
submanifolds in the real line (see [1] and §3), and let

I(V,M) = C(V,I(R) A M)

for any partial abelian monoid with G-action M. The points of [ (V, M) can be
represented by the pairs (P, a), where P is a finite union of parallel intervals,

Hyee{v} x Pw) cV xR (cCV, P(v) € I(R))

and a is a map ¢ — M.
The purpose of this note is to show the following:

If V is sufficiently large then there is a G-equivariant group completion map
C(V, M) — I(V, M), and the correspondence X +— {m,I(V, X AM);n > 0} defines
a G-equivariant generalized homology theory.

2. PARTIAL ABELIAN MONOIDS

Definition 1. A pointed G-space M is called a partial abelian monoid with G-
action, or G-partial monoid for short, if there are G-invariant subspaces My of
M™ (n > 0) and G-equivariant maps, called partial sum operations,

Mn—’M1 (alﬁ"')a‘n)Ha’1+"'+an
satisfying the conditions below.

(1) Mo = {0}.
(2) My — M is the identity of M.
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(3) Let Jy, -+, Jr be pairwise disjoint subsets of {1,...,n} such that {1,...,n} =
JiU---UJ, holds. Let (ay,...,a,) € M™ and suppose :

Yjes & = Ga 1) o F B G)
exists for each k, where Jg = {Ax(1),..., (k) }, A(1) < -+ < Me(Ji)-
Then (ay,...,a,) € M, if and only if (Ejeh aj,...,zjyr aj) € M, and
we have
EISan @ = s @G+ + ZjEJr a;
whenever either the right or the left hand side sum exists.

Among the examples we have
e Let A be a topological abelian monoid with G-action. Then any G-
invariant subset M of A with 0 € M can be regarded as an G-partial
monoid by taking M, = {(a1,...,a,) € M* |a1 +--- +a, € M}.

e Any pointed space X is a G-partial monoid with respect to the trivial
partial sum operations, i.e. folding maps X, = XVvV---vVX — X. In
fact this is a special case of the previous example, as X is a subset of the
infinite symmetric product SP*X.

e Let V' be an infinite dimensional real inner product space on which G
acts through linear isometries. Then the Grassmannian Gr(V') of finite-
dimensional subspaces of V' is a G-partial monoid with respect to the inner
direct sum operations :

Gr(V)a = {(Wh,..., W) | Ws LW, i # 5} B ar(v)

Definition 2. For given G-partial monoids M and N, the smash product M A
N is a G-partial monoid whose partial sums are generated by the distributivity
relations:

aAd+---+aAd=(c1+ - +c)Ad, (c1,...,ck) € Mg
cAdi+--+cAdi=cA(d+ - +dp), (di,...,di)) € Ny

Example 3. If X is a pointed space then for any G-partial monoid M we have
(X/\M)n=X/\Mm n>0

3. THE SPACE OF PARALLEL STRINGS WITH LABELS

If J is a bounded interval in the real line R then its endpoint, say a, is called
a closed endpoint if a € J, and an open endpoint otherwise. Thus J is a closed
(resp. open) interval if its two endpoints are closed (resp. open), and is a half open
interval if J has a closed endpoint and an open endpoint.

Following [1], we denote by I(R) the space of all bounded 1-dimensional sub-
manifolds of the real line R, including the empty set. An element of I(R) can be
written as a union, say P = J; U --- U J,, of finite number of pairwise disjoint
bounded intervals. Here we may suppose J; < J;41 holds for 1 < i < r, that is to
say, * € J; and y € Jiy, yields z < y. But the union J; U J;4; in this expression
can be replaced by a single interval J if J; U J;;; = J is a connected interval, and
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J; can be removed if J; is a half open interval of length 0. The latter means that
half open intervals are collapsible to the empty set.

Let I(R), be the subset of I(R) consisting of those elements J; U---U J; such
that every J; is an closed interval. Then I(R) is a partial abelian monoid with
respect to the superimposition,

I(R)n'—*I(R) (Pl,...,Pn)»—-»Plu---UP,,,
where I(R), consists of those (Py,..., P,) € I(R)" such that P,NP; = 0, i # j,
and I(R),. is a partial submonoid of I(R).

Definition 4. For an orthogonal G-module V' and a G-partial monoid M, we put
I(V,M)=C(V,IR)AM), I.(V,M)=C(V,I(R)+AM)
We call I(V, M) the space of parallel strings in V' with labels in M.

To relate I(V, M) with C(V, M), we introduce the map b: I(R); — C(R) which
takes J; U--- U J, to the finite set {bJ1,...,bJ,} consisting of the barycenters of
J;. One easily observes that the natural map

I.(V,M) — C(V,C(R) A M)
induced by b: I(R), — C(R), is a homotopy equivalence.

We also have

Lemma 5. If V is sufficiently large then the inclusion

C(V,C(R)AM) = C(V xR, M)
is a G-homotopy equivalence.
Proof. Let i: R — V€ be an linear embedding, and define a homotopy h: I xR —
V by h(t,z) = (1 — t)i(z). If we write hy(z) = h(t,z) then hy = i and h; is the
constant map with value 0. Let [ be a G-linear isometry V' x V' — V. Then there

is a homotopy
H: I, AC(VxR,M)—-C(V xR,M)
such that H; = H(t,—) is induced by the composite

VxR oy RxRE222Ly x vV xRS

One easily observes that
(1) H restricts to a map I+ A C(V,C(R) A M) — C(V,C(R) A M),
(2) ImHy c C(V,C(R) A M), and
(3) H, is induced by the linear isometry l’ x1: VxR -V xR, where l'is
the composite V=V x {0} CV xV Lv.
Since the space of linear isometries of V is contractible, {’ is equivariantly isotopic

to the identity through G-linear isometries. Thus we have Hy =~ H; >~ 1, hence H,
induces a homotopy inverse to the inclusion C(V,C(R)AM) — C(V x ]R M). O

Corollary 6. If V is sufficiently large then there is a map of Hopf G-spaces
M I.(V,M) — C(V, M), which is natural in M and is a G-homotopy equivalence.

Ix1

— V xR,
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Proof. Choose a G-linear isometry I: V x R 2 V, and define A as the composite
IV, M) 2 C(V,C(R)AM) S C(V xR, M) & C(V, M)
a

4. MAIN RESULTS

To state the main results we introduce the G-category Top(G) consisting of all
pointed G-spaces and pointed maps, with G acting on morphisms by conjugation.
As we showed in [2], any G-equivariant continuous functor T of Top(G) into itself
is accompanied with pairings

XATY - T(XAY), TXAY ->T(XAY)
natural in both X and Y. One easily observes from this that T preserves G-
homotopies, and there is a suspension natural transformation T'(X) — Q¥ T (¥ X)
defined for any finite dimensional orthogonal G-module W.

Suppose V is linearly and equivariantly isometric to the direct product of count-
ably many copies of the regular representation of G over the real number fields.
Such a G-module V is said to be sufficiently large. Then we have

Theorem 7. In the diagram of Hopf G-spaces
O(V, M) & L.(V, M) & I(V, M),

where p is induced by the inclusion I(R),. C I(R), we have
(1) X is a G-homotopy equivalence.
(2) p is a G-equivariant group completion, that is to say, p®: L .(V,M)? —
I(V,M)# is a group completion for every subgroup H of G.
Theorem 8. The correspondence X — I(V,XAM) is a G -equivariant continuous
functor of Top(G) into itself and we have
(1) For any orthogonal G-module W the suspension map I(V,X A M) —
QY I(V,EW X A M) is a weak G-homotopy equivalence.
(2) There is an RO(G)-graded G-homology theory h¢(—) such that

hS(X) = md(V, X A M)®
holds for any X and n > 0.

5. BRIEF OUTLINE OF THE PROOFS

Outline of the Proof of Theorem 7. We need to show that
(5.1) pf: L.V, M)? — I(V, M)¥ is a group completion
holds for every subgroup H of G.

Observe that V' is an H-universe for any subgroup H of G. Hence (5.1) for
general H follows from the special case H = G. that p?: I (V, M) — I(V, M)?
is a group completion follows from the case H = G. But the usual argument using

the notion of orbit type family enables us to reduce the proof of this problem to the
case where G is trivial. Thus we may assume G = 1 and V = R*®. Recall from
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(3] that there is a weak equivalence of Hopf spaces ®: D(M) — C(R*, M), where
D(M) is the realization of the diagonal

[k] — SkNeQ(M) = N Q(Ske M)
associated with the bisimplicial set of the total singular complex of the nerve of
a permutative category Q(M), whose space of objects is [],,, MP, and whose
morphisms from (a;) € M? to (b;) € M? are maps of finite sets 8: {1,...,p} —
{1,...,q} such that b; = 35, g-1(;a: holds for 1 < j <gq.
Since @ is natural in M, Theorem 7 follows from

Proposition 9. The natural map D(I.(R) AM) — D(I(R) A M), induced by the
inclusion I.(R) C I(R), is a group completion.

The rest of this section is devoted to the proof of this proposition.

Given a map of topological monoids f: D — D' let B(D,D’) denote the re-
alization of the category B(D, D’) whose space of objects is D' and whose space
of morphisms is the product D x D', where (d,d’) € D x D' is regarded as a
morphism from d’ to f(d) - d’. Then there is a sequence of maps

D' = B(0,D') = B(D,D') - B(D,0) = BD

induced by the maps 0 — D and D’ — 0 respectively. Observe that BD is the
standard classifying space of the monoid D and B(D, D) is contractible when f

is the identity.
Let D = D(I.(R) A M), D' = D(I(R) A M), and let i: D — D’ be the map
induced by the inclusion I, (R) — I(R). Then we have a commutative diagram

D — B(D,D) — BD
o 1 e |
D' —— B(D,D'y —— BD

in which the upper and the lower sequences are associated with the identity and
the inclusion i: D — D', respectively.

Lemma 10. The natural map D — QBD is a group completion.

This follows from the fact that D is a homotopy commutative, hence admissible,
monoid.

Lemma 11. The lower sequence in the diagram (5.2) is a homotopy fibration
sequence with contractible total space B(D, D’).

Proposition 9 can be deduced from these lemmas, because D — D’ is equivalent
to the group completion map D — QBD under the equivalence D' ~ QBD.

Outline of the Proof of Theorem 8. We need the following

Proposition 12. Let T be a G-equivariant continuous functor of the category
of pointed G-spaces and pointed maps to itself. Suppose T satisfies the following
conditions. '
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Cl: T =«
C2: |T(X.)| ~c T(|| X.|]) for any simplicial objects X,
C3: T(XVY) e TX x TY
C4: T(G/Hi N X) ~g Map(G/H,TX) for any subgroup H.
Suppose further that TX is grouplike for any X and any subgroup H of G.
Then we have
(a) TX ~g QYT (ZVW X) for any real G-module W,
(b) X — {m,TXC} defines an RO(G)-gradable equivariant homology theory
on the category of pointed G-spaces.

Proof. As TXH is grouplike for any H the natural map TX — QT(ZX) is a weak
G-equivalence. Hence by the argument similar to the proof of [3, Theorem 2.12]

TA = TX — T(X UCA)

is a G-fibration sequence up to weak G-equivalence for any pair of pointed G-
spaces (X, A). It also follows by the property of G-equivariant continuous functor
that T preserves G-homotopies. Thus (a) implies (b).
To prove (a) we need only show that the correspondence S — T'(S A X), where
S is any pointed finite G-set, defines a special I'g-space in the sense of [2], that
is, the natural map
T(S A X) — Map,y(S,TX)
is a G-equivalence. But this follows from the conditions C3 and C4. O

Let TX = I(V, X A M). We shall show that T satisfies the conditions C1, C2,
C3 and C4. This of course implies Theorem 8.
Clearly the condition C1 holds, and C2 is a routine exercise. That C3 holds is
proved as follows.
To verify C4 we shall show that T(G/H+ A X) — Map(G/H,TX) has a G-
homotopy inverse p defined as follows:
(1) Choose a G-embedding G/H — V and a linear G-isometry V x V — V.
(2) For given f: G/H — TX write f(gH) = (c(gH),a(gH)), where c(gH) C
V,a(gH): c(gH) = X A M A I(R).
(3) Define ¢ to be the image of | J{gH} x c(gH) under the embedding

LG/HXV VXV -V |,
(4) Define a: ¢ » G/H, AX ANI(R) A M by
a(«(gH,€)) = gH A a(gH)(§), & € c(gH)

(5) p: Map(G/H,TX) — T(G/H+ A X) is given by p(f) = (,a).
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