ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

註間電波工業高等専門学校 奥山 真吾（Shingo Okuyama）
Takuma National College of Technology岡山大学理学部 島川 和久（Kazuhisa Shimakawa）
Department of Mathematics，Okayama University

1．Introduction

In［3］we attached to any pair of a euclidean space V and a partial abelian monoid M a space $C(V, M)$ whose points are pairs（ c, a ），where c is a finite subset of V and a is a map $c \rightarrow M$ ，but（ c, a ）is identified with（ c^{\prime}, a^{\prime} ）if $c \subset c^{\prime}, a^{\prime} \mid c=a$ ， and $a^{\prime}(v)=0$ for $v \notin c$ ．If V is an orthogonal G－module and M admits a G－action compatible with partial sum operations，where G is a finite group，then $C(V, X)$ is a G－space with respect to the G－action $g(c, a)=\left(g c, g a g^{-1}\right), g \in G$ ．

Let $I(\mathbb{R})$ be the partial abelian monoid consisting of bounded 1－dimensional submanifolds in the real line（see［1］and $\S 3$ ），and let

$$
I(V, M)=C(V, I(\mathbb{R}) \wedge M)
$$

for any partial abelian monoid with G－action M ．The points of $I(V, M)$ can be represented by the pairs (P, a) ，where P is a finite union of parallel intervals，

$$
\coprod_{v \in c}\{v\} \times P(v) \subset V \times \mathbb{R} \quad(c \subset V, P(v) \in I(\mathbb{R}))
$$

and a is a map $c \rightarrow M$ ．
The purpose of this note is to show the following：
If V is sufficiently large then there is a G－equivariant group completion map $C(V, M) \rightarrow I(V, M)$ ，and the correspondence $X \mapsto\left\{\pi_{n} I(V, X \wedge M) ; n \geq 0\right\}$ defines a G－equivariant generalized homology theory．

2．Partial Abelian Monoids

Definition 1．A pointed G－space M is called a partial abelian monoid with G－ action，or G－partial monoid for short，if there are G－invariant subspaces M_{n} of $M^{n}(n \geq 0)$ and G－equivariant maps，called partial sum operations，

$$
M_{n} \rightarrow M, \quad\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1}+\cdots+a_{n}
$$

satisfying the conditions below．
（1）$M_{0}=\{0\}$ ．
（2）$M_{1} \rightarrow M$ is the identity of M ．
(3) Let J_{1}, \cdots, J_{r} be pairwise disjoint subsets of $\{1, \ldots, n\}$ such that $\{1, \ldots, n\}=$ $J_{1} \cup \cdots \cup J_{r}$ holds. Let $\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$ and suppose

$$
\sum_{j \in J_{k}} a_{j}=a_{\lambda_{k}(1)}+\cdots+a_{\lambda_{k}\left(j_{k}\right)}
$$

exists for each k, where $J_{k}=\left\{\lambda_{k}(1), \ldots, \lambda_{k}\left(j_{k}\right)\right\}, \lambda_{k}(1)<\cdots<\lambda_{k}\left(j_{k}\right)$. Then $\left(a_{1}, \ldots, a_{n}\right) \in M_{n}$ if and only if $\left(\sum_{j \in J_{1}} a_{j}, \ldots, \sum_{j \in J_{r}} a_{j}\right) \in M_{r}$ and we have

$$
\sum_{1 \leq j \leq n} a_{j}=\sum_{j \in J_{1}} a_{j}+\cdots+\sum_{j \in J_{r}} a_{j}
$$

whenever either the right or the left hand side sum exists.
Among the examples we have

- Let A be a topological abelian monoid with G-action. Then any G invariant subset M of A with $0 \in M$ can be regarded as an G-partial monoid by taking $M_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in M^{n} \mid a_{1}+\cdots+a_{n} \in M\right\}$.
- Any pointed space X is a G-partial monoid with respect to the trivial partial sum operations, i.e. folding maps $X_{n}=X \vee \cdots \vee X \rightarrow X$. In fact this is a special case of the previous example, as X is a subset of the infinite symmetric product $\mathrm{SP}^{\infty} X$.
- Let V be an infinite dimensional real inner product space on which G acts through linear isometries. Then the Grassmannian $\operatorname{Gr}(V)$ of finitedimensional subspaces of V is a G-partial monoid with respect to the inner direct sum operations

$$
\operatorname{Gr}(V)_{n}=\left\{\left(W_{1}, \ldots, W_{n}\right) \mid W_{i} \perp W_{j}, i \neq j\right\} \xrightarrow{\oplus} \operatorname{Gr}(V)
$$

Definition 2. For given G-partial monoids M and N, the smash product $M \wedge$ N is a G-partial monoid whose partial sums are generated by the distributivity relations:

$$
\begin{aligned}
c_{1} \wedge d+\cdots+c_{k} \wedge d & =\left(c_{1}+\cdots+c_{k}\right) \wedge d, & & \left(c_{1}, \ldots, c_{k}\right) \in M_{k} \\
c \wedge d_{1}+\cdots+c \wedge d_{l} & =c \wedge\left(d_{1}+\cdots+d_{l}\right), & & \left(d_{1}, \ldots, d_{l}\right) \in N_{l}
\end{aligned}
$$

Example 3. If X is a pointed space then for any G-partial monoid M we have

$$
(X \wedge M)_{n}=X \wedge M_{n}, \quad n \geq 0
$$

3. The Space of Parallel Strings with Labels

If J is a bounded interval in the real line \mathbb{R} then its endpoint, say a, is called a closed endpoint if $a \in J$, and an open endpoint otherwise. Thus J is a closed (resp. open) interval if its two endpoints are closed (resp. open), and is a half open interval if J has a closed endpoint and an open endpoint.

Following [1], we denote by $I(\mathbb{R})$ the space of all bounded 1-dimensional submanifolds of the real line \mathbb{R}, including the empty set. An element of $I(\mathbb{R})$ can be written as a union, say $P=J_{1} \cup \cdots \cup J_{r}$, of finite number of pairwise disjoint bounded intervals. Here we may suppose $J_{i}<J_{i+1}$ holds for $1 \leq i<r$, that is to say, $x \in J_{i}$ and $y \in J_{i+1}$ yields $x<y$. But the union $J_{i} \cup J_{i+1}$ in this expression can be replaced by a single interval J if $J_{i} \cup J_{i+1}=J$ is a connected interval, and
J_{i} can be removed if J_{i} is a half open interval of length 0 . The latter means that half open intervals are collapsible to the empty set.

Let $I(\mathbb{R})_{+}$be the subset of $I(\mathbb{R})$ consisting of those elements $J_{1} \cup \cdots \cup J_{r}$ such that every J_{i} is an closed interval. Then $I(\mathbb{R})$ is a partial abelian monoid with respect to the superimposition,

$$
I(\mathbb{R})_{n} \rightarrow I(\mathbb{R}) \quad\left(P_{1}, \ldots, P_{n}\right) \mapsto P_{1} \cup \cdots \cup P_{n}
$$

where $I(\mathbb{R})_{n}$ consists of those $\left(P_{1}, \ldots, P_{n}\right) \in I(\mathbb{R})^{n}$ such that $P_{i} \cap P_{j}=\emptyset, i \neq j$, and $I(\mathbb{R})_{+}$is a partial submonoid of $I(\mathbb{R})$.
Definition 4. For an orthogonal G-module V and a G-partial monoid M, we put

$$
I(V, M)=C(V, I(\mathbb{R}) \wedge M), \quad I_{+}(V, M)=C\left(V, I(\mathbb{R})_{+} \wedge M\right)
$$

We call $I(V, M)$ the space of parallel strings in V with labels in M.
To relate $I(V, M)$ with $C(V, M)$, we introduce the $\operatorname{map} b: I(\mathbb{R})_{+} \rightarrow C(\mathbb{R})$ which takes $J_{1} \cup \cdots \cup J_{r}$ to the finite set $\left\{b J_{1}, \ldots, b J_{r}\right\}$ consisting of the barycenters of J_{i}. One easily observes that the natural map

$$
I_{+}(V, M) \rightarrow C(V, C(\mathbb{R}) \wedge M)
$$

induced by $b: I(\mathbb{R})_{+} \rightarrow C(\mathbb{R})$, is a homotopy equivalence.
We also have
Lemma 5. If V is sufficiently large then the inclusion

$$
C(V, C(\mathbb{R}) \wedge M) \rightarrow C(V \times \mathbb{R}, M)
$$

is a G-homotopy equivalence.
Proof. Let $i: \mathbb{R} \rightarrow V^{G}$ be an linear embedding, and define a homotopy $h: I \times \mathbb{R} \rightarrow$ V by $h(t, x)=(1-t) i(x)$. If we write $h_{t}(x)=h(t, x)$ then $h_{0}=i$ and h_{1} is the constant map with value 0 . Let l be a G-linear isometry $V \times V \rightarrow V$. Then there is a homotopy

$$
H: I_{+} \wedge C(V \times \mathbb{R}, M) \rightarrow C(V \times \mathbb{R}, M)
$$

such that $H_{t}=H(t,-)$ is induced by the composite

$$
V \times \mathbb{R} \xrightarrow{1 \times \text { diag. }} V \times \mathbb{R} \times \mathbb{R} \xrightarrow{1 \times h_{t} \times 1} V \times V \times \mathbb{R} \xrightarrow{l \times 1} V \times \mathbb{R},
$$

One easily observes that
(1) H restricts to a map $I_{+} \wedge C(V, C(\mathbb{R}) \wedge M) \rightarrow C(V, C(\mathbb{R}) \wedge M)$,
(2) $\operatorname{Im} H_{0} \subset C(V, C(\mathbb{R}) \wedge M)$, and
(3) H_{1} is induced by the linear isometry $l^{\prime} \times 1: V \times \mathbb{R} \rightarrow V \times \mathbb{R}$, where l^{\prime} is the composite $V=V \times\{0\} \subset V \times V \xrightarrow{l} V$.
Since the space of linear isometries of V is contractible, l^{\prime} is equivariantly isotopic to the identity through G-linear isometries. Thus we have $H_{0} \simeq H_{1} \simeq 1$, hence H_{0} induces a homotopy inverse to the inclusion $C(V, C(\mathbb{R}) \wedge M) \rightarrow C(V \times \mathbb{R}, M)$.

Corollary 6. If V is sufficiently large then there is a map of Hopf G-spaces $\lambda: I_{+}(V, M) \rightarrow C(V, M)$, which is natural in M and is a G-homotopy equivalence.

ON THE SPACE OF STRINGS WITH PARTIALLY SUMMABLE LABELS

Proof. Choose a G-linear isometry $l: V \times \mathbb{R} \cong V$, and define λ as the composite

$$
I_{+}(V, M) \xrightarrow{b_{*}} C(V, C(\mathbb{R}) \wedge M) \xrightarrow{\complement} C(V \times \mathbb{R}, M) \xrightarrow{l_{0}} C(V, M)
$$

4. Main Results

To state the main results we introduce the G-category $\operatorname{Top}(G)$ consisting of all pointed G-spaces and pointed maps, with G acting on morphisms by conjugation. As we showed in [2], any G-equivariant continuous functor T of $\operatorname{Top}(G)$ into itself is accompanied with pairings

$$
X \wedge T Y \rightarrow T(X \wedge Y), \quad T X \wedge Y \rightarrow T(X \wedge Y)
$$

natural in both X and Y. One easily observes from this that T preserves G homotopies, and there is a suspension natural transformation $T(X) \rightarrow \Omega^{W} T\left(\Sigma^{W} X\right)$ defined for any finite dimensional orthogonal G-module W.

Suppose V is linearly and equivariantly isometric to the direct product of countably many copies of the regular representation of G over the real number fields. Such a G-module V is said to be sufficiently large. Then we have

Theorem 7. In the diagram of Hopf G-spaces

$$
C(V, M) \stackrel{\lambda}{\hookrightarrow} I_{+}(V, M) \xrightarrow{\rho} I(V, M),
$$

where ρ is induced by the inclusion $I(\mathbb{R})_{+} \subset I(\mathbb{R})$, we have
(1) λ is a G-homotopy equivalence.
(2) ρ is a G-equivariant group completion, that is to say, $\rho^{H}: I_{+}(V, M)^{H} \rightarrow$ $I(V, M)^{H}$ is a group completion for every subgroup H of G.

Theorem 8. The correspondence $X \rightarrow I(V, X \wedge M)$ is a G-equivariant continuous functor of $\operatorname{Top}(G)$ into itself and we have
(1) For any orthogonal G-module W the suspension map $I(V, X \wedge M) \rightarrow$ $\Omega^{W} I\left(V, \Sigma^{W} X \wedge M\right)$ is a weak G-homotopy equivalence.
(2) There is an $R O(G)$-graded G-homology theory $h_{\cdot}^{G}(-)$ such that

$$
h_{n}^{G}(X)=\pi_{n} I(V, X \wedge M)^{G}
$$

holds for any X and $n \geq 0$.

5. Brief Outline of the Proofs

Outline of the Proof of Theorem 7. We need to show that

$$
\begin{equation*}
\rho^{H}: I_{+}(V, M)^{H} \rightarrow I(V, M)^{H} \text { is a group completion } \tag{5.1}
\end{equation*}
$$

holds for every subgroup H of G.
Observe that V is an H-universe for any subgroup H of G. Hence (5.1) for general H follows from the special case $H=G$. that $\rho^{H}: I_{+}(V, M)^{H} \rightarrow I(V, M)^{H}$ is a group completion follows from the case $H=G$. But the usual argument using the notion of orbit type family enables us to reduce the proof of this problem to the case where G is trivial. Thus we may assume $G=1$ and $V=\mathbb{R}^{\infty}$. Recall from

ON THE SPACE OF STRINGS WITH PARTIALLY

SUMMABLE LABELS
[3] that there is a weak equivalence of Hopf spaces $\Phi: D(M) \rightarrow C\left(\mathbb{R}^{\infty}, M\right)$, where $D(M)$ is the realization of the diagonal

$$
[k] \mapsto S_{k} N_{k} \mathcal{Q}(M)=N_{k} \mathcal{Q}\left(S_{k} M\right)
$$

associated with the bisimplicial set of the total singular complex of the nerve of a permutative category $\mathcal{Q}(M)$, whose space of objects is $\coprod_{p \geq 0} M^{p}$, and whose morphisms from $\left(a_{i}\right) \in M^{p}$ to $\left(b_{j}\right) \in M^{q}$ are maps of finite sets $\theta:\{1, \ldots, p\} \rightarrow$ $\{1, \ldots, q\}$ such that $b_{j}=\sum_{i \in \theta^{-1}(j)} a_{i}$ holds for $1 \leq j \leq q$.
Since Φ is natural in M, Theorem 7 follows from
Proposition 9. The natural map $D\left(I_{+}(\mathbb{R}) \wedge M\right) \rightarrow D(I(\mathbb{R}) \wedge M)$, induced by the inclusion $I_{+}(\mathbb{R}) \subset I(\mathbb{R})$, is a group completion.

The rest of this section is devoted to the proof of this proposition.
Given a map of topological monoids $f: D \rightarrow D^{\prime}$ let $B\left(D, D^{\prime}\right)$ denote the realization of the category $\mathcal{B}\left(D, D^{\prime}\right)$ whose space of objects is D^{\prime} and whose space of morphisms is the product $D \times D^{\prime}$, where (d, d^{\prime}) $\in D \times D^{\prime}$ is regarded as a morphism from d^{\prime} to $f(d) \cdot d^{\prime}$. Then there is a sequence of maps

$$
D^{\prime}=B\left(0, D^{\prime}\right) \rightarrow B\left(D, D^{\prime}\right) \rightarrow B(D, 0)=B D
$$

induced by the maps $0 \rightarrow D$ and $D^{\prime} \rightarrow 0$ respectively. Observe that $B D$ is the standard classifying space of the monoid D and $B(D, D)$ is contractible when f is the identity.

Let $D=D\left(I_{+}(\mathbb{R}) \wedge M\right), D^{\prime}=D(I(\mathbb{R}) \wedge M)$, and let $i: D \rightarrow D^{\prime}$ be the map induced by the inclusion $I_{+}(\mathbb{R}) \rightarrow I(\mathbb{R})$. Then we have a commutative diagram

in which the upper and the lower sequences are associated with the identity and the inclusion $i: D \rightarrow D^{\prime}$, respectively.

Lemma 10. The natural map $D \rightarrow \Omega B D$ is a group completion.
This follows from the fact that D is a homotopy commutative, hence admissible, monoid.

Lemma 11. The lower sequence in the diagram (5.2) is a homotopy fibration sequence with contractible total space $B\left(D, D^{\prime}\right)$.

Proposition 9 can be deduced from these lemmas, because $D \rightarrow D^{\prime}$ is equivalent to the group completion map $D \rightarrow \Omega B D$ under the equivalence $D^{\prime} \simeq \Omega B D$.

Outline of the Proof of Theorem 8. We need the following
Proposition 12. Let T be a G-equivariant continuous functor of the category of pointed G-spaces and pointed maps to itself. Suppose T satisfies the following conditions.

C1: $T *=*$
C2: $\left\|T\left(X_{\bullet}\right)\right\| \simeq_{G} T\left(\left\|X_{\bullet}\right\|\right)$ for any simplicial objects X_{\bullet}
C3: $T(X \vee Y) \simeq_{G} T X \times T Y$
C4: $T\left(G / H_{+} \wedge X\right) \simeq_{G} \operatorname{Map}(G / H, T X)$ for any subgroup H.
Suppose further that $T X^{H}$ is grouplike for any X and any subgroup H of G. Then we have
(a) $T X \simeq_{G} \Omega^{W} T\left(\Sigma^{W} X\right)$ for any real G-module W,
(b) $X \mapsto\left\{\pi_{n} T X^{G}\right\}$ defines an $R O(G)$-gradable equivariant homology theory on the category of pointed G-spaces.
Proof. As $T X^{H}$ is grouplike for any H the natural map $T X \rightarrow \Omega T(\Sigma X)$ is a weak G-equivalence. Hence by the argument similar to the proof of [3, Theorem 2.12]

$$
T A \rightarrow T X \rightarrow T(X \cup C A)
$$

is a G-fibration sequence up to weak G-equivalence for any pair of pointed G spaces (X, A). It also follows by the property of G-equivariant continuous functor that T preserves G-homotopies. Thus (a) implies (b).

To prove (a) we need only show that the correspondence $S \mapsto T(S \wedge X)$, where S is any pointed finite G-set, defines a special Γ_{G}-space in the sense of [2], that is, the natural map

$$
T(S \wedge X) \rightarrow \operatorname{Map}_{0}(S, T X)
$$

is a G-equivalence. But this follows from the conditions C 3 and C 4 .
Let $T X=I(V, X \wedge M)$. We shall show that T satisfies the conditions $\mathrm{C} 1, \mathrm{C} 2$, C3 and C4. This of course implies Theorem 8.

Clearly the condition C1 holds, and C2 is a routine exercise. That C3 holds is proved as follows.

To verify C 4 we shall show that $T\left(G / H_{+} \wedge X\right) \rightarrow \operatorname{Map}(G / H, T X)$ has a G homotopy inverse ρ defined as follows:
(1) Choose a G-embedding $G / H \rightarrow V$ and a linear G-isometry $V \times V \rightarrow V$.
(2) For given $f: G / H \rightarrow T X$ write $f(g H)=(c(g H), a(g H))$, where $c(g H) \subset$ $V, a(g H): c(g H) \rightarrow X \wedge M \wedge I(\mathbb{R})$.
(3) Define \tilde{c} to be the image of $\bigcup\{g H\} \times c(g H)$ under the embedding

$$
\iota: G / H \times V \subset V \times V \rightarrow V
$$

(4) Define $\tilde{a}: \tilde{c} \rightarrow G / H_{+} \wedge X \wedge I(\mathbb{R}) \wedge M$ by

$$
\tilde{a}(\iota(g H, \xi))=g H \wedge a(g H)(\xi), \quad \xi \in c(g H)
$$

(5) $\rho: \operatorname{Map}(G / H, T X) \rightarrow T\left(G / H_{+} \wedge X\right)$ is given by $\rho(f)=(\tilde{c}, \tilde{a})$.

References

1. S. Okuyama, The space of intervals in a euclidean space, preprint.
2. K. Shimakawa, Infinite loop G-spaces associated to monoidal G-graded categories, Publ. Res. Inst. Math. Sci. 25 (1989), 239-262.
3. \qquad , Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001), 43-72.
