DEFINABLE C^rG TRIVIALITY OF G INVARIANT PROPER DEFINABLE C^r MAPS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C^r group and $1 \leq r < \infty$. We prove that every G invariant proper definable C^r onto submersion from an affine definable C^rG manifold to \mathbb{R} is definably C^rG trivial.

1. INTRODUCTION

M. Coste and M. Shiota [1] proved that a proper Nash onto submersion from an affine Nash manifold to \mathbb{R} is Nash trivial. This Nash category is a special case of the definable C^r category and it coincides with the definable C^{∞} category based on $\mathcal{R} = (\mathbb{R}, +, \cdot, >)$ [16]. General reference on o-minimal structures are [2], [5], see also [15]. Further properties and constructions of them are studied in [3], [4], [6], [12] and there are uncountably many o-minimal expansions of \mathcal{R} [13]. Equivariant definable category is studied in [7], [9], [10], [11].

Let G be a definable C^r group, X a definable C^rG manifold and $1 \leq r < \infty$. Suppose that f is a G invariant definable C^r function from X to \mathbb{R} . We say that f is definably C^rG trivial if there exist a definable C^rG manifold F and a definable C^rG map $h: X \to F$ such that $H = (f, h): X \to \mathbb{R} \times F$ is a definable C^rG diffeomorphism. If f is definably C^rG trivial, then for any $y \in \mathbb{R}$, $f^{-1}(y)$ is definably C^rG diffeomorphic to F and there exists a definable C^rG diffeomorphism $\phi: X \to \mathbb{R} \times f^{-1}(y)$ such that $f = p \circ \phi$, where $p: \mathbb{R} \times f^{-1}(y) \to \mathbb{R}$ denotes the projection.

A map $\psi: M \to N$ between topological spaces is *proper* if for any compact set $C \subset N$, $\psi^{-1}(C)$ is compact.

We consider an equivariant definable C^r version of [1] and an equivariant version of [1].

Theorem 1.1. Let G be a compact definable C^r group and X an affine definable C^rG manifold and $1 \leq r < \infty$. Then every G invariant proper definable C^r onto submersion $f: X \to \mathbb{R}$ is definably C^rG trivial.

Let $X = \{y = 0\} \cup \{xy = 1\} \subset \mathbb{R}^2$, $Y = \{y = 0\} \subset \mathbb{R}^2$ and $f : X \to Y$, f(x, y) = x. Then f is a polynomial onto submersion and it is not definably trivial. Thus proper condition is necessary.

The projection onto S^n of the tangent bundle of the standard *n*-dimensional sphere S^n with the standard O(n+1) action for $n \ge 8$ is not piecewise definably C^rG trivial. Thus G invariant condition is necessary.

²⁰⁰⁰ Mathematics Subject Classification 14P10, 14P20, 57R22, 58A05, 03C64 Keywords and Phrases. o-minimal, definable C^r manifolds, proper definable C^r functions, definable C^rG trivial, Nash G trivial.

Corollary 1.2. Let G be a finite group and X an affine Nash G manifold. Then every G invariant proper Nash onto submersion from X to \mathbb{R} is Nash G trivial.

2. Proof of results

The following is a result on piecewise definable C^rG triviality of G invariant submersive surjective definable C^r maps [9].

Theorem 2.1 (1.1 [9]). (Piecewise definable C^rG triviality). Let X be an affine definable C^rG manifold, Y a definable C^r manifold and $1 \leq r < \infty$. Suppose that $f: X \to Y$ is a G invariant submersive surjective definable C^r map. Then there exist a finite decomposition $\{T_i\}_{i=1}^k$ of Y into definable C^r submanifolds and definable C^rG diffeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(y_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \leq i \leq k)$, where p_i denotes the projection $T_i \times f^{-1}(y_i) \to T_i$ and $y_i \in T_i$.

The following is existence of a definable $C^r G$ tubular neighborhood of a definable $C^r G$ submanifold of a representation of G when $1 \leq r < \infty$.

Proposition 2.2 ([8]). If $1 \leq r < \infty$, then every definable C^rG submanifold X of a representation Ω of G has a definable C^rG tubular neighborhood (U,θ) of X in Ω , namely U is a G invariant definable open neighborhood of X in Ω and $\theta: U \to X$ is a definable C^rG map with $\theta|_X = id_X$.

Note that if $r = \infty$ or ω , then Proposition 2.2 is already known in [11].

Proof of Theorem 1.1. Applying Theorem 2.1, we have a partition $-\infty = a_0 < a_1 < a_2 < \cdots < a_j < a_{j+1} = \infty$ of \mathbb{R} and definable $C^r G$ diffeomorphisms $\phi_i : f^{-1}((a_i, a_{i+1})) \rightarrow (a_i, a_{i+1}) \times f^{-1}(y_i)$ with $f|f^{-1}((a_i, a_{i+1})) = p_i \circ \phi_i$, $(0 \le i \le j)$, where p_i denotes the projection $(a_i, a_{i+1}) \times f^{-1}(y_i) \rightarrow (a_i, a_{i+1})$ and $y_i \in (a_i, a_{i+1})$.

Now we prove that for each a_i with $1 \leq i \leq j$, there exist an open interval I_i containing a_i and a definable C^rG map $\pi_i : f^{-1}(I_i) \to f^{-1}(a_i)$ such that $F_i = (f, \pi_i) : f^{-1}(I_i) \to I_i \times f^{-1}(a_i)$ is a definable C^rG diffeomorphism. By Proposition 2.2, we have a definable C^rG tubular neighborhood (U_i, π_i) of $f^{-1}(a_i)$ in X. Since f is proper, there exists an open interval I_i containing a_i such that $f^{-1}(I_i) \subset U_i$. Note that if f is not proper, then such an open interval does not always exist. Hence shrinking I_i , if necessary, $F_i = (f, \pi_i) : f^{-1}(I_i) \to I_i \times f^{-1}(a_i)$ is the required definable C^rG diffeomorphism.

By the above argument, we have a finite family of $\{J_i\}_{i=1}^l$ of open intervals and definable $C^r G$ diffeomorphisms $h_i : f^{-1}(J_i) \to J_i \times f^{-1}(y_i)$, $(1 \leq i \leq l)$, such that $y_i \in J_i$, $\cup_{i=1}^l J_i = \mathbb{R}$ and the composition of h_i with the projection $J_i \times f^{-1}(y_i)$ onto J_i is $f|f^{-1}(J_i)$. Now we glue these trivializations to get a global one. We can suppose that $i \geq 2$, $U_{i-1} \cap J_i = (a, b)$ and $k_{i-1} : f^{-1}(U_{i-1}) \to U_{i-1} \times f^{-1}(y_1)$ is a definable $C^r G$ diffeomorphism with $f|f^{-1}(U_{i-1}) = proj_{i-1} \circ k_{i-1}$, where $U_{i-1} = \bigcup_{s=1}^{i-1} J_s$ and $proj_{i-1}$ denotes the projection $U_{i-1} \times f^{-1}(y_1) \to U_{i-1}$. Take $z \in (a, b) = U_{i-1} \cap J_i$. Then since $f^{-1}(y_1) \cong f^{-1}(z) \cong f^{-1}(y_i)$, $f^{-1}(y_1)$ is definably $C^r G$ diffeomorphic to $f^{-1}(y_i)$. Hence we may assume that h_i is a definable $C^r G$ diffeomorphism from $f^{-1}(J_i)$ to $J_i \times f^{-1}(y_1)$. Then we have a definable $C^r G$ diffeomorphism from $f^{-1}(J_i)$ to $J_i \times f^{-1}(y_1)$.

$$k_{i-1} \circ h_i^{-1} : (a,b) \times f^{-1}(y_1) \to (a,b) \times f^{-1}(y_1), (t,x) \mapsto (t,q(t,x)).$$

Take a C^r Nash function $u: \mathbb{R} \to \mathbb{R}$ such that $u = \frac{a+b}{2}$ on $(-\infty, \frac{3}{4}a + \frac{1}{4}b]$ and u = id on $[\frac{1}{4}a + \frac{3}{4}b, \infty)$. Let

$$H:(a,b) imes f^{-1}(y_1) o f^{-1}((a,b)), H(t,x)=k_{i-1}^{-1}(t,q(u(t),x)).$$

Then *H* is a definable $C^{r}G$ diffeomorphism such that $H = h_{i}^{-1}$ if $\frac{1}{4}a + \frac{3}{4}b \leq t \leq b$ and $H = k_{i-1}^{-1} \circ (id \times \psi)$ if $a \leq t \leq \frac{3}{4}a + \frac{1}{4}b$, where $\psi : f^{-1}(y_{1}) \to f^{-1}(y_{1}), \psi(x) = q(\frac{a+b}{2}, x)$. Thus we can define

$$k_{i}: f^{-1}(U_{i}) \to U_{i} \times f^{-1}(y_{1}),$$

$$k_{i}(x) = \begin{cases} (id \times \psi)^{-1} \circ k_{i-1}(x), & f(x) \leq \frac{3}{4}a + \frac{1}{4}b \\ H^{-1}(x), & \frac{3}{4}a + \frac{1}{4}b \leq f(x) \leq b \\ h_{i}(x), & f(x) > b \end{cases}$$

Then k_i is a definable $C^r G$ diffeomorphism. Therefore k_l is the required definable $C^r G$ diffeomorphism.

By [14] and 4.3 [9], we have the following proposition.

Proposition 2.3. Let G be a finite group, f a C^r Nash G map between affine Nash G manifolds and $1 \leq r < \infty$. Then f is approximated by a Nash G map.

Proof of Corollary 1.2. By Theorem 1.1, we have a C^r Nash G diffeomorphism $F = (f, \phi) : X \to \mathbb{R} \times f^{-1}(y)$ such that $f = p \circ F$, where $p : \mathbb{R} \times f^{-1}(y) \to \mathbb{R}$ denotes the projection. By Proposition 2.3, we have a Nash G map $\psi : X \to f^{-1}(y)$ as an approximation of ϕ . If this approximation is sufficiently close, then $H = (f, \psi) : X \to \mathbb{R} \times f^{-1}(y)$ is the required Nash G diffeomorphism. \Box

References

- M. Coste and M. Shiota, Nash triviality in families of Nash manifolds, Invent. Math. 108 (1992), 349-368.
- [2] L. van den Dries, Tame topology and o-minimal structure, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries, A. Macintyre, and D. Marker, Logarithmic-exponential power series, J. London. Math. Soc., II. Ser. 56, No.3 (1997), 417-434.
- [4] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.
- [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377-4421.
- [7] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Edu. Wakayama Univ. 54. (2004), 1-15.
- [8] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, to appear.
- [9] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [10] T. Kawakami, Every definable C^r manifold is affine, to appear.
- [11] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183-201.
- [12] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
- J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), no. 4, 751-777.

- [14] M. Shiota, Approximation theorems for Nash mappings and Nash manifolds, Trans. Amer. Math. Soc. 293 (1986), 319-337.
- [15] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics vol. 150, Birkhäuser, Boston, 1997.
- [16] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp