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2-ELEMENTS OUTSIDE OF THE DRESS SUBGROUP OF TYPE 2

TOSHIO SUMI (KYUSHU UNIVERSITY)

1. Introduction

Let $G$ be a finite group. We denote by $\mathrm{n}(\mathrm{G})$ the set of prime divisors of the order

of $G$ . For a prime $p$ , we denote by the symbol $O^{p}(G)$ , called the Dress subgroup of
$G$ of type $p$ , the smallest normal subgroup of $G$ such that $\pi(G/O^{p}(G))\subseteq\{p\}$ . We

denote by 7(G) the set of subgroups $P$ of $G$ of prime power order, possibly 1 and

by $\mathrm{P}(\mathrm{G})$ the set of subgroups $H$ of $G$ containing the Dress subgroup $OP(G)$ of type

$p$ for some prime $p$ .
We say that a $G$-module $V$ is $\mathrm{n}(\mathrm{G})$ free if $\dim V^{O^{p}(G)}=0$ holds for any prime

$p$ . Here a $G$-module means a $\mathrm{R}[G]$-module which is finite dimensional over R. We

denote by $D(G)$ the set of all pairs $(P, H)$ of subgroups of $G$ such that $P<H\leq G$

and $P$ is of prime power order. A $G$-module $V$ is called a gap $G$-module if $V$ is
$l(G)$-free and the number

$p$ . Here a $G$-module means a $\mathrm{R}[G]$-module which is finite dimensional over R. We

denote by $D(G)$ the set of all pairs $(P,H)$ of subgroups of $G$ such that $P<H\leq G$

and $P$ is of prime power order. A $G$-module $V$ is called a gap $G$-modnle if $V$ is
$\mathrm{n}(\mathrm{G})$-free and the number

$\dim V^{P}-$ $2$ $\dim V^{H}$

is positive for any pair $(P, H)\in$ D(G). A finite group $G$ is called a gap group if
there exists a gap $G$-module and is called a nongap group otherwise.

A finite group $G$ is an Oliver group, if $G$ has no isthmus series of subgroups of
the form

$P\triangleleft H\triangleleft G$

where $|\pi(P)|\leq 1$ , $|\pi(G/H)|\leq 1$ and $H/P$ is cyclic. A finite group $G$ has a fixed point
free smooth action on a disk if and only if $G$ is an Oliver group ([5]). Furthermore,

Oliver has completely decided which a smooth compact manifold is the fixed point
set of a smooth action on a disk ([6]). On the other hand, Laitinen and Morimoto
([2]) has shown that a finite group $G$ has a smooth one fixed point action of a sphere
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if and only if $G$ is an Oliver group. We do not know which a smooth manifold of

positive dimension is the fixed point set of a smooth action on a sphere. For an
Oliver group $G$ which is a gap group, one can apply equivariant surgery to convert

an appropriate smooth action of $G$ on a disk $D$ into a smooth action of $G$ on a
sphere $S$ with $S^{G}=M=D^{G}$ , where $\dim M>0$ (cf. [3, Corollary 0.3]). Thus it is
important to ask whether a given group $G$ is a gap group.

2. Centralizers of 2-elements outside of the Dress subgroup of type 2

Let $G$ be a finite group. An element $X$ of $G$ is a 2-element if the order of $X$ is a
power of 2 or equals to 1. Let $K$ be a normal subgroup of $G$ with $K\geq O^{2}(G)$ .

For an element $X$ of $G$ , we denote by $\psi(x)$ the set of odd primes $q$ such that there

exists a subgroup $N$ of $G$ satisfying $X$ $\in N$ and $\alpha(N)\neq N.$ We define a subset
$E_{2}(G, K)$ of $G\backslash K$ as the set of involutions (elements of order 2) $X$ such that either
$|\psi(x)|>1$ or $|\mathrm{z}\mathrm{r}(C_{G}(\mathrm{r}))1$ $=|\mathrm{z}\mathrm{t}(O^{2}(C_{G}(\mathrm{r})))|=2$ holds, and define $E_{4}(G,X)$ as the

subset of 2-elements $X$ of $G\backslash K$ of order $\geq 4$ with $|\psi(x)|>0.$ Set $E(G, K)=$

$E_{2}(G,K)\cup E_{4}(G,K)$ (cf. [8]). Note that $E_{2}(G, K)$ $=\emptyset$ if $K1$ $O^{2}(G)$ . We define

sets $E_{2}^{g}(G,K)$ , $E_{4}^{g}(G,K)$ and E2(G, $K$) as follows. The set $E_{4}^{g}(G,K)$ consists of 2-
element$\mathrm{s}x$ of $G\backslash K$ of order $>2$ such that $C_{G}(x)$ is not a 2-group. The set $E_{2}^{g}(G,K)$

consists of involutions $X$ of $G\backslash K$ such that $|\pi(O^{2}(C_{G}(x)))|\geq 2$ holds. Set $E^{g}(G,K)=$

$E_{2}^{g}(G, K)\mathrm{U}E_{4}^{\mathit{9}}(G,K)$ . Note that the sets $E_{2}^{g}(G,K)$ , $E_{4}^{g}(G,K)$ and E2(G, $K$) are subsets

of E2(G, $K$), E2(G, $K$) and $E(G,K)$ respectively.
We set

$D^{2}(G)=\{(P,H)\in$ V(G) $|[H:P]=[O^{2}(G)H:O^{2}(G)P]=2$ and

$O^{q}(G)P=G$ for all odd primes $q\}$ .

(cf. [4]) and set

$D^{2}(G, K)=\{$ (P, $E$) $\in D^{2}(G)|H\not\leq K\}$ .

According to Laitinen and Morimoto [2], we denote by $V(G)$ the G-module

$(\mathrm{R}[G]-\mathrm{R})$ $-$
$p\in\pi(G)\oplus(\mathrm{R}[G/O^{p}(G)]-\mathbb{R})$ .
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If $G$ is a group of prime power order, then $V(G)=\{0\}$ holds. Laitinen and Morimoto
[2, Theorems 2.3 and $\mathrm{B}$ ] have shown that $V(G)$ is an $\mathcal{L}(G)$-free $G$-module such that

$\dim V$(G)$P$

$-$ $2$ $\dim V(G)^{H}$

is nonnegative for any pair $(P,H)\in D(G)$ and is zero only if either $(P, H)\in$

$D^{2}(G, \emptyset)$ or $P\in \mathcal{L}(G)$ . Note that $P\not\in$ X(G) for $(P,H)\in D(G)$ if $P(G)$ and $\mathrm{V}(G)$

are disjoint.

Theorem 1. Let G be afinite group such that $\mathrm{P}(\mathrm{G})$ and $\mathcal{L}(G)$ are disjoint. Let K be
a subgvoup ofG with index 2. Then the following claims are equivalent.

(1) $E^{\mathit{9}}(G,K)$ is empty.

(2) $\mathrm{E}(\mathrm{G}, K)$ is empty.

(3) There exist pairs $(P_{j}, H_{j})\in D^{2}(G, K)$ such that

$\sum_{j}(\dim V^{P_{j}}-2\dim V^{H_{j}})=0$

for any $\mathcal{L}(G)$-free $G$-module $V$.

Corollary 2. If $\mathrm{P}(\mathrm{G})$ and $\mathcal{L}(G)$ are disjoint, then either sets $E(G, O^{2}(G))$ and
$E^{\mathit{8}}$ (G, $O^{2}(G)$) are both empty or both nonempty.

3. Nongap groups

Let $G$ be a finite group such that 7(G) and $\mathrm{X}(G)$ are disjoint. The group $G$ is
a gap group if and only if any subgroup $K$ of $G$ with $K>O^{2}(G)$ is a gap group.
Therefore it is easy to see the following result by Theorem 1.

Theorem 3. Let $G$ be afinite group and let $K$ be a gap subgroup of $G$ with index 2.
Then the following claims are equivalent.

(1) $E^{g}(G,K)$ is empty.

(2) $\mathrm{E}(\mathrm{G}, K)$ is empry.
(3) $G$ is a nongap group.

Now, assume that $P(G)\cap$ V(G) $=\emptyset$ . Recall that if $\mathrm{P}(\mathrm{G})$ $\cap$ $\mathrm{V}(G)$ $\neq\emptyset$ , then $G$ is
a nongap group.
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Proposition 4. Let $G$ be afinite group such that $O^{2}(G)\neq G$ and 7 $(G)\cap$ $\mathrm{Z}(G)$ $=\emptyset$ .
and let K. be a subgroup of $G$ such that $[G,K]=2.$ Suppose that E8(G, $=\emptyset$ . Let
$G_{2}$ be a Sylow 2-subgroup ofG. Then it holds the fallowings.

(1) Iftwo elements $X$ and $y$ of $G_{2}$ outside of$K$ are conjugate in $G$, then they are
conjugate in $G_{2}$ .

(2) $\sum_{(x)_{G}}\frac{2}{|C_{G}\underline,(x)|}=1,$ where $(x)_{G}$ runs over conjugacy classes in $G$ represented

by elements of $G_{2}$ outside of $K$.

(3) $\sum_{(C)_{G}}\frac{|C|}{|N_{G\mathrm{z}}(C)|}=1,$ where $(C)_{G}$ runs over conjugacy classes in $G$ represented

by cyclic groups $C$ of $G_{2}$ with $CK=G.$

Proof. For an element $X$ of $G\backslash K,$ we denote by $x_{2}$ the involution of the cyclic
subgroup generated by $X$ . As $E_{2}^{g}(G)$ is empty, $x_{2}$ is an element outside of $K$. Recall
that if two elements $X$ and $y$ of $G\backslash K$ are conjugate in $G$ , namely $X=g^{-1}yg$ , for
some $g\in G,$ then $x_{2}=g^{-1}$ ) $2\mathit{8}$ and thus $g\in C_{G}(x_{2})$ . Since $E_{2}^{g}(G,K)$ is empty and

$\sum_{(x)_{G}\sigma G\backslash K}\frac{|G|}{|C_{G}(x)|}=|G|-|K|$
$= \frac{|G|}{2}$ ,

we have

$1= \sum_{(x)c\sigma G\backslash K}\frac{2}{|C_{G}(x)|}=[1\sim)\mathrm{c}\sum_{1\mathrm{d}\cdot 2}\Phi\backslash \mathrm{J}\mathrm{C}$ $+ \sum_{\mathrm{M}*2}.+)(x\mathrm{b}\sigma G\backslash K(\mathrm{r})X\backslash K\frac{2}{|C_{G}(x)|}|\mathrm{z}|\frac{\sum_{\sigma}}{-}2^{\cdot}>2$

$= \sum_{W?}ly)\sigma \mathrm{G}G\backslash K[\frac{2}{|C_{G}(\mathrm{y})|}+,\sum_{x_{\wedge}\cdot y\mathrm{M}\prime 2}$

.
$\frac{2}{|C_{G}(x)|})(x\mathrm{k}\sigma GK+\sum_{\mathrm{L}1\Rightarrow->2},.\frac{2}{|C_{G}(x)|}(x\mathrm{k}\mathrm{G}GK$

$= \sum_{-2}\mathrm{t}\nu \mathrm{k}\sigma c\backslash K\mathrm{b}\mathrm{t}-(\frac{2}{|C_{G}(y)|}+,.\sum_{\mathrm{r}_{-}\overline{-}y.|\mathrm{r}*2}$

.
$\frac{2}{|C_{C_{G}(y)}(x)|}](x\mathrm{k}\mathrm{f}\mathrm{f}\mathrm{i}K+\sum_{|\mathrm{r}\cdot \mathrm{z}\cdot>2}\frac{2}{|C_{G}(x)|}(s1a\sigma\sigma\backslash K$

$= \sum_{(y)\sigma\sigma G\backslash K}(xl\sigma G\backslash K$ $\frac{2}{|C_{C_{G}(y)}(x)|}+(x$
$1x|_{\sim}.,.>2 \sum_{\mathrm{k}\sigma G\backslash K},$

$\mathrm{r}$ .
$\mu_{2}$ $\mathrm{q}\cdot y,\beta\downarrow\cdot \mathrm{o}\mathrm{f}\mathrm{f}\mathrm{i}$

Set $L(\mathrm{y})=O^{2}(C_{G}(y))\langle y\rangle\cong O^{2}(C_{G}(y))\mathrm{x}\langle y\rangle$ . Let $\mathrm{f}\mathrm{l}(\mathrm{y})$ (resp. $C(y)$) be the set of
conjugacy classes in $C_{G}$(y) which are represented by elements of $L(y)\backslash O^{2}(C_{G}(y))$

(resp. $O^{2}(C_{G}(y))$). Note that if two elements $X$ and $d$ of $G$ outside of $K$ with $x_{2}=4$
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are conjugate in $G$ , then they are conjugate in $C_{G}(x_{2})$ . Therefore we obtain that

$1= \sum_{1y1\cdot\grave{2}}\sum_{(0\mathrm{k}\Phi Kx)_{C_{G}(\iota)}\epsilon}fl(y)$

$\frac{2}{|C_{C_{(}y)}(x)|}+\sum_{(r1\sigma\sigma G\backslash K}.7$

(5) $= \sum_{|y|\underline{-}\grave{2}}\sum_{((y\mathrm{k}\sigma GKx)_{C_{G}(y},\mathrm{e}\emptyset(y)}\frac{2}{|C_{C_{G}(y)}(x^{2})|}+\sum_{|s|-2\geq 2}.\frac{2}{|C_{G}(x)|}(s\mathrm{b}_{-}\mathrm{G}G\backslash K$

$= \sum_{1\nu \mathfrak{l}\approx 2}\sum_{((\nu)\sigma\sigma G\backslash K\mathrm{Z})_{\mathrm{C}eU)}\in C(\nu)}\frac{2}{|C_{C_{G}(\mathrm{y})}(z)|}+\sum_{\mathrm{M}\approx 2>2}.\frac{2}{|C_{G}(x)|}\{\kappa \mathrm{k}\sigma G\backslash K^{\cdot}$

Let 7 be the set of conjugacy classes $(x)_{G_{2}}$ in $G_{2}$ represented by elements of $G_{2}\backslash$

$(G_{2}\cap X)$ . As $E_{4}^{g}(G, K)$ is empty, we have $Cc(x)$ for $X\in G\backslash K$ with $|x|=2^{*}>2$ is

a 2-group. Furthermore by using the assumption that $E_{2}^{g}(G, K)$ is empty again, the

last number at (5) equals to

$\{y\mathrm{k}\sigma G\backslash K\sum_{\lfloor\eta\underline{-}2}\frac{2|O^{2}(C_{G}(y))|}{|C_{G}(y)|}+\sum_{|\mathrm{r}\overline{-}2^{*}>2}\frac{2}{|C_{G}(x)|}(_{1}\mathrm{k}\sigma G\backslash K$

(6)

$=.) \sigma \mathrm{G}G\backslash K\sum_{\mathrm{M}\overline{-}2}\frac{2}{|C_{G}(y)_{2}|}+(x\mathrm{L}2K(\mathrm{y}\frac{2}{|C_{G}(x)_{2}|}\leq$! $\frac{2}{|C_{G_{2}}(\mathrm{y})|}=1,$

where $C_{G}(x)_{2}$ (resp. $C_{G}(y)_{2}$) is a Sylow 2-subgroup of $Cc(x)$ (resp. $C_{G}(y)$). There

fore any inequality or equality in (6) must be equality and thus if $x,y\in G_{2}$ are
conjugate in $G$ , then they are conjugate in $G_{2}$ . $\square$l

Theorem 7. Let $G$ be a nongap group satisfying that $P(G)\cap$ $\mathrm{P}(\mathrm{G})$ $=\emptyset$ and that
$[G : O^{2}(G)]=2.$ Let $G_{2}$ be a Sylow 2-subgroup ofG. Suppose the order of $G$ is

divisible by 4. Then it holds the fallowings.

(1) If$X$ and $y$ are involutions of $G_{2}\backslash K,$ then x) $\in$ [G2, $G_{2}$ ].

(2) There exists an element $X$ of $G_{2}\backslash K$ such that $|\mathrm{x}1$ $>2.$

(3) The group generated by all involutions of $G_{2}$ outside of$K$ is a proper sub-
group of $G_{2}$ .

Theorem 8. Let $G$ be a finite group satisfying that $P(G)\cap$ P(G) $=\emptyset$ and that
$G/[G,G]$ is not a 2-group. If $G$ is a nongap group, then $O^{2}(G)$ is ofodd order.

Proof. If $G$ is perfect, then $G$ is a gap group. Suppose that $G/[G, G]$ is of even
order. Let $K$ be a subgroup of $G$ such that $K>O^{2}(G)$ , $[K : O^{2}(G)]=2$ and
$O^{2}(K/O^{2}(K))$ is isomorphic to $O^{2}(G/O^{2}(G))$ . If $G$ is a nongap group, then $K$ is
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also a nongap group. There exist no 2-elements, not involutions, of $K$ outside of
$O^{2}(K)$ . If there might exist such an element $X$, then $X$ lies in $E(K, O^{2}(K))$ which

implies that $K$ is a gap group by Theorem 1. Therefore, the group generated by all
involutions of $K_{2}$ outside of $K$ is just $K_{2}$ , where $K_{2}$ is a Sylow 2-subgroup of $K$. By
Theorem 7 (3), the order of $K$ is not divisible by 4. Since $[K : O^{2}(K)]=2,$ the order
of $O^{2}(K)=O^{2}(G)$ is odd $\mathrm{o}$

Corollary 9. Let $G$ be a finite group satisfying that $P(G)\cap \mathcal{L}(G)=\emptyset$ and that
$G/[G,G]$ is not a 2-group. If $G$ is a nongap group, then $G$ is solvable.

Proof. By Theorem 8, the Dress group $O^{2}(G)$ of type 2 is of odd order. Recall
that $G/O^{2}(G)$ is a 2-group. By Burnside’s theorem, $O^{2}(G)$ and $G/O^{2}(G)$ are both
solvable. Thus $G$ is solvable. $\square$

Note that a finite group $G$ such that $\mathrm{P}(\mathrm{G})\cap \mathrm{P}(\mathrm{G})\neq\emptyset$ is solvable.

4. Direct product

Lemma 10. Let $G$ be a finite group such that $O^{2}(G)\neq G$ and $\mathrm{P}(\mathrm{G})\cap \mathrm{P}(\mathrm{G})=\emptyset$ ,

and let $K$ be a subgroup of $G$ such that $[G,K]=2.$ Ifall elements of $H$ outside of
$K$ are 2-elements then

$\sum_{(C)_{G}}|N_{G}(C)/C|^{-1}|\mathrm{C}?\mathrm{A}G)c|=1$

where $(\mathrm{C})\mathrm{c}$ runs over conjugacy classes in $G$ represented by cyclic groups $C$ of $G$

with $CK=G.$

We define $E^{d}(G, K)$ as the set of 2-elements $X$ of $G$ outside of $K$ such that $C_{G}$ (x)

is not a 2-group, Note that $Eg(G9K)$ is a subset of $E^{d}(G,K)$ . There exist finite
groups $G$ so that $[G : O^{2}(G)]=2$ and $E^{d}(G, O^{2}(G))$ is empty. A solvable group
SmallGroup$(1920, 239651)$ and a nonsolvable group SmallGroup(l 344, 11427)

both satisfy such conditions, (cf. [1])

Proposition 11. Let $G$ be afinite group such that $O^{2}(G)\neq G$ and $P(G)\cap \mathcal{L}(G)$ $=\emptyset$,

and let $K$ be a subgroup of$G$ such that $[G,K]=2.$ Suppose that $E^{d}(G, K)=\emptyset$ . Let
$G_{2}$ be a Sylow 2-subgroup of $G$ and let $C$ be a cyclic subgroup of $G$ with $CK=G.$

Then it holds the followings.
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(1) Ifa subgroup of $G_{2}$ intersects with any conjugacy class $(x)_{G}$ represented by

elements of $G_{2}$ outside of $K$, then it is just $G_{2}$ .
(2) $|$ $(G_{2}\backslash G)c//\mathrm{V}_{G}(C)$ $|=1$ holds. In particular, $(G_{2}\backslash G)^{C}=G_{2}\backslash G_{2}N_{G}(C)$ , if

$C<G_{2}$ .

Proof. Let $C$ be a cyclic subgroup of $G$ with $CK=G.$ By assumption, $(H\backslash G)^{C}$ is

nonempty. By Proposition 4 (3), we obtain that

$\sum_{(C)_{G}}|N_{G}(C)/C|^{-1}|(H\backslash G)^{C}|\geq\sum_{(C)_{G}}\frac{|C|}{|N_{G_{2}}(C)|}=1,$

where $(C)_{G}$ runs over conjugacy classes in $G$ represented by cyclic groups $C$ of $G_{2}$

with $CK=G.$ Furthermore as $C$ is a 2-group, we obtain that

$\sum_{(C)\mathrm{c}}|N_{G}(C)/C|^{-1}|(H\backslash G)^{C}|=\sum_{(C)_{G}}\frac{|C|}{|N_{G_{2}}(C)|}=1$

by Lemma 10 and thus

$|(H)G)c|=1.$

Take an element $a\in G$ such that $aCa^{-1}\leq H.$ Then we have

$(H\backslash G)^{C}\supseteq$ H\NG(H)a.

Supposing that $H\neq G_{2}$ , it holds $N_{G}(H)\neq H,$ which implies $|(\mathrm{x})G)^{C}|\geq 2.$ $\square$

Theorem 12. Let G be a finite group satisfying that $\mathrm{P}(\mathrm{G})$ and $\mathcal{L}(G)$ are disjoint,

$|0$ $(G)|$ is even and $G/O^{2}(G)$ is cyclic. Let $K$ be a subgroup of$G$ with index 2. Then

thefollowing claims are equivalent.

(1) $E^{d}(G,K)$ is nonempty.

(2) $G\mathrm{x}G$ is a gap group.
(3)

$G^{k}=G\mathrm{x}_{\tilde{ktin\iota es}}\ldots \mathrm{x}G$
is a gap groupfor $k$ $\geq 2.$

Note that $G^{k}$ is a nongap group for any $k\geq 1$ if $P(G)$ and $\mathrm{C}(G)$ are not disjoint,

since 7’(G”) and $\mathcal{L}(G^{k})$ are not disjoint. The assumption that $|O^{2}(G)|$ is even is need.

Remark 13. Let $p$ , $q$ and $r$ be odd primes with $p\neq q.$ Let $G=D_{2pq}\mathrm{x}C_{r}$ be the

direct product group of a dihedral group $D_{2pq}$ of order $2pq$ and a cyclic group $C_{r}$ of

order $r$. Then it holds that $E^{d}(G, O^{2}(G))$ is nonempty, $O^{2}(G)$ is of order odd and $G^{k}$

is a nongap group for any $k\geq 1.$
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Corollary 14. Let $G$ be a finite group satisfying that $P(G)\cap \mathcal{L}(G)=\emptyset$, $|$ O2(G) $|$ is
even and $[G : O^{2}(G)]=2.$ Let $k>1$ be an integer Then we have the following
claims:

(1) $G$ and $G^{k}$ are gap groups $\Leftrightarrow E^{g}(G, O^{2}(G))\neq\emptyset$.
(2) $G^{k}$ is a gap group and $G$ is a nongap group $\approx$ E8(G, $O^{2}(G)$) $=\emptyset$ and

$E^{d}(G, O^{2}(G))\neq 21$ .
(3) $G^{k}$ (and $G$) are nongap groups $=$ $E^{d}(G, O^{2}(G))=\emptyset$.

5. Wreath product

Let $K$ and $L$ be finite groups. We denote by $K \int L$ the semidirect product group
$K^{|L|}$ \sim $L$ such that $L$ acts on $H^{l\rfloor}$ by pemutation:

$1arrow H^{L|}arrow K\mathrm{j}L$ $arrow Larrow 1$

Proposition 15. Let $G$ be afinite group satisfying that $\mathcal{P}(G)\cap\angle(G)=\emptyset$ and that
$G/O^{2}(G)$ is cyclic. Let $K$ be a subgroup of $G$ with index 2. If$G \int C_{n}$ is a gap group

for a 2-power integer $n$, then $E^{d}(G, K)$ is nonempty, where $C_{n}$ is a cyclic group of
order $n$.

Let $G=$ SmallGroup$(1344, 11427)$ . It is a nonsolvable group satisfying that
$[G : O^{2}(G)]=2$ and $E^{d}(G, O^{2}(G))=\emptyset$ . By Corollary 9, $G \int C_{n}$ is a gap group for
any integer $n>1,$ not a 2-p0wer.

Theorem 16. Let $G$ be a finite group satisfying that $P(G)$ and $\Sigma(G)$ are disjoint.

For any subgroup $K$, $O^{2}(G)\triangleleft K\leq G,$ possessing a cyclic quotient $K/O^{2}(G)$, the set

$E(K,K_{0})$ is nonempty, ifand only if $G$ is a gap group, where $K_{0}$ is a subgroup of $K$

with index 2.

Corollary 17. Let $G$ be a finite group satisfying that $P(G)$ and $\mathcal{L}(G)$ are disjoint
and $[G : O^{2}(G)]=2.$ The set $E(G, O^{2}(G))$ is nonempty if and only if $G$ is a gap
group.

Before closing this section, we show the following theorem:
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Theorem 18. Let G be a finite group satisfying that $G/O^{2}(G)$ is cyclic, 7 $(G)\cap$

$\mathrm{P}(\mathrm{G})=$ ci, $E^{d}(G,K)\neq\emptyset$ and that $O^{2}(G)$ is of even order, where $K$ is a subgroup of
$G$ with index 2. For any nontrivial finite group L. the wreath product group $G \int L$

is a gap group.

First we show the assertion in the case where $L=C_{2}$ :

Lemma 19. Let G and K befinite groups as in Theorem 18. For a cyclic subgroup

C $=C_{2}$ oforder 2, the wreath product group G $\int C$ is a gap group.

Proof. Le$\mathrm{t}n:G\int Carrow(G\int C)/O^{2}(G\int C)\underline{\simeq}(G/O^{2}(G))\int C$ be an epimorphism.
If $\pi^{-1}(\pi(\langle x\rangle))$ is a gap group for any nontrivial 2-element $X$ of $(G/O^{2}(G)) \int C$ , then
$G \int C$ is a gap group. Note that $O^{2}(G \int C)=O^{2}(G)^{2}=O^{2}(G)\mathrm{x}O^{2}(G)$ . Let $f$ be

a generator of $C$ . Let $h$ be a 2-element of $G$ outside of $K$ such that $C_{G}(h)$ is not a
2-group. Recall that $G\mathrm{x}G$ is a gap group by Theorem 12. It suffices to show that

$N:=\langle O^{2}(G)^{2}$ , $(h_{1},h_{2})f\rangle$

is a gap group for any elements $h_{1}$ and $h_{2}$ of $\langle$h$\rangle$ . Note that

$((h_{1},h_{2})fi)^{2}=(h_{1}h_{2},h_{2}h_{1})$.
We obtain that

$C_{G_{2}}$ ((hit $\mathrm{h}2$ )$\mathrm{f}$) $=\langle(h_{1},h_{2})f$, $(a, h_{1}^{-1}ah_{1})$ $|a\in C_{O^{2}(G)}.(h_{1}h_{2})\rangle$ .

As $[G : O^{2}(G)]=2,$ the group C02(C)(/i) is not a 2-group. Thus $C_{G_{2}}((\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{h}2)\mathrm{f})$ is not

a 2-group by $C_{O^{2}(G)}(h_{1}h_{2})\geq$ C02(C)(/i). Let

$N_{0}:=\langle O^{2}(G)^{2}$ , $(h_{1}h_{2}, h_{2}h_{1})\rangle$

be a subgroup of $N$ with index 2. We show that $E^{S}(N,N_{0})$ is nonempty. If $(h_{1},h_{2})f$

is not an involution, then $(h_{1},h_{2})f$ lies in $E_{4}^{g}(N,N_{0})$ . Suppose that $(h_{1},h_{2})f$ is an in-

volution. Then it follows $h_{1}=h_{2}$ which is an involution. In this case, $C_{G_{2}}((h_{1}, h_{2})f)$

is isomorphic to $O^{2}(G)$ and thus $(h_{1}, h_{2})f$ lies in $E_{2}^{B}$(N, $N_{0}$). Therefore $E^{g}(N,N_{0})$ is

nonempty. Since $N_{0}$ is a subgroup of $G\mathrm{x}G$ with 2-power index, $/7_{0}$ is a gap group.
Then $N$ is a gap group by combining Theorems 1 and 16. 0

Proof of Theorem 18. Let $\pi:G\int Larrow L$ be an epimorphism. If $\pi^{-1}(\pi(\langle x\rangle))$ is a
gap group for any 2-element $X$ of $G \int L$ outside of $O^{2}(G \int L)$ , then $G \int L$ is a gap
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group. As $G^{|L|}$ is a gap group by Theorem 12, it suffices to show that $\pi^{-1}(C)$ is a
gap group for any nontrivial cyclic group $C$. Let $C=C_{n}$ be a cyclic subgroup of $L$

of order $n>1.$ Note that $|O^{2}(G \int C)|$ is even and $\mathcal{P}(G\int C)\cap$ $\mathrm{C}(G \int C)$ $=$ cb since
there is a subgroup of $G \int C$ isomorphic to $G$. Thus if $n$ is not a 2-power integer,
then $G \int C$ is a gap group by Corollary 9.

Assume that $n$ is a 2-power integer, say $2^{k}$ . We show that $G \int C$ is a gap group by

induction on $k$ . In the case where $n$ $=2,$ the assertion follows from Lemma 19. Let
$m=2^{k-1}\geq 2$ and let $C_{m}$ be a cyclic subgroup of $C$ with index 2.

Suppose that $G \int C_{m}$ is a gap group for any $G$ as in Theorem 18. Note that
$\rho^{-1}(C_{m})=G^{2}\mathrm{j}$ $C_{m}$ , where $\rho:G\int Carrow C$ is an epimorphism. $\rho^{-1}(C_{m})$ is isomor-
phic to a subgroup of the gap group $(G \int C_{m})^{2}$ with 2-power index and thus is a gap
group.

Let $h$ be a 2-element of $G$ outside of $K$ such that $C_{G}(h)$ is not a 2-group. Let $h_{j}$

be an element of (h) for each $j=1,$ $\ldots$ , $n$ and let $f$ be a generator of $C$ . Consider
the subgroup

$N:=\langle O^{2}(G)^{\hslash}$ , $(h_{1}, \ldots,h_{n})f\rangle$ .

Let $N_{0}$ be a subgroup of $N$ with index 2. As $N_{0}$ is a subgroup of $\rho^{-1}(C_{m})$ with 2-
power index, it is a gap group. Thus it suffices to show that $E^{\mathit{5}}(N,N_{0})$ is nonempty.

We show that $(h_{1}, \ldots,h_{n})f$ lies in $E^{g}(N,N_{0})$ . We have

$C_{O^{2}(G)^{n}}((h_{1,\ldots\prime}h_{n})f)$

$=\langle$ $(a,h_{1}^{-1}ah_{1}, (h_{1}h_{2})^{-1}a(h_{\mathrm{t}}h_{2}), ..., (h_{1}\ldots h_{n-1})^{-1}a(h_{1}\ldots h_{n-1}))$

$|a\in C_{O^{2}(G)}(h_{1}h_{2}$ . . . $h_{n})\rangle$ .

The group $C_{O^{2}(G)}(h_{1}h_{2}$ . . . $h_{n})$ contains the group C02(C)(/i) and thus it is not a 2-
group. As the element $(h_{1}, \ldots,h_{n})f$ is not an involution, it lies in E8(N, NO) and

then $N$ is a gap group.
The group $G \int C$ is a gap group, since any subgroup $N$, $O^{2}(G)^{n}\triangleleft N$ $\leq G\int C$,

possessing a cyclic quotient $N/O^{2}(G)^{n}$ is a gap group. $\mathrm{o}$

The group $C_{O^{2}(G)}(h_{1}h_{2}\ldots h_{n})$ contains the group C02(C)(/i) and thus it is not a2-
group. As the element $(h_{1}, \ldots,h_{n})f$ is not an involution, it lies in E8(N, NO) and

then $N$ is agap group.
The group $G \int C$ is agap group, since any subgroup $N$, $O^{2}(G)^{n} \triangleleft N\leq G\int C$ ,

possessing a cyclic quotient $N/O^{2}(G)^{n}$ is agap group. $\mathrm{o}$
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