2－ELEMENTS OUTSIDE OF THE DRESS SUBGROUP OF TYPE 2

TOSHIO SUMI（KYUSHU UNIVERSITY）

1．Introduction

Let G be a finite group．We denote by $\pi(G)$ the set of prime divisors of the order of G ．For a prime p ，we denote by the symbol $O^{p}(G)$ ，called the Dress subgroup of G of type p ，the smallest normal subgroup of G such that $\pi\left(G / O^{p}(G)\right) \subseteq\{p\}$ ．We denote by $\mathcal{P}(G)$ the set of subgroups P of G of prime power order，possibly 1 and by $\mathcal{L}(G)$ the set of subgroups H of G containing the Dress subgroup $O^{P}(G)$ of type p for some prime p ．

We say that a G－module V is $\mathcal{L}(G)$－free if $\operatorname{dim} V^{O^{P}(G)}=0$ holds for any prime p ．Here a G－module means a $\mathbb{R}[G]$－module which is finite dimensional over \mathbb{R} ．We denote by $\mathcal{D}(G)$ the set of all pairs (P, H) of subgroups of G such that $P<H \leq G$ and P is of prime power order．A G－module V is called a gap G－module if V is $\mathcal{L}(G)$－free and the number

$$
\operatorname{dim} V^{P}-2 \operatorname{dim} V^{H}
$$

is positive for any pair $(P, H) \in \mathcal{D}(G)$ ．A finite group G is called a gap group if there exists a gap G－module and is called a nongap，group otherwise．

A finite group G is an Oliver group，if G has no isthmus series of subgroups of the form

$$
P \triangleleft H \triangleleft G
$$

where $|\pi(P)| \leq 1,|\pi(G / H)| \leq 1$ and H / P is cyclic．A finite group G has a fixed point free smooth action on a disk if and only if G is an Oliver group（［5］）．Furthermore， Oliver has completely decided which a smooth compact manifold is the fixed point set of a smooth action on a disk（［6］）．On the other hand，Laitinen and Morimoto （［2］）has shown that a finite group G has a smooth one fixed point action of a sphere

[^0]if and only if G is an Oliver group. We do not know which a smooth manifold of positive dimension is the fixed point set of a smooth action on a sphere. For an Oliver group G which is a gap group, one can apply equivariant surgery to convert an appropriate smooth action of G on a disk D into a smooth action of G on a sphere S with $S^{G}=M=D^{G}$, where $\operatorname{dim} M>0$ (cf. [3, Corollary 0.3$]$). Thus it is important to ask whether a given group G is a gap group.

2. Centralizers of 2-elements outside of the Dress subgroup of type 2

Let G be a finite group. An element x of G is a 2-element if the order of x is a power of 2 or equals to 1 . Let K be a normal subgroup of G with $K \geq O^{2}(G)$.

For an element x of G, we denote by $\psi(x)$ the set of odd primes q such that there exists a subgroup N of G satisfying $x \in N$ and $O^{q}(N) \neq N$. We define a subset $E_{2}(G, K)$ of $G \backslash K$ as the set of involutions (elements of order 2) x such that either $|\psi(x)|>1$ or $\left|\pi\left(C_{G}(x)\right)\right|=\left|\pi\left(O^{2}\left(C_{G}(x)\right)\right)\right|=2$ holds, and define $E_{4}(G, K)$ as the subset of 2-elements x of $G \backslash K$ of order ≥ 4 with $|\psi(x)|>0$. Set $E(G, K)=$ $E_{2}(G, K) \cup E_{4}(G, K)$ (cf. [8]). Note that $E_{2}(G, K)=\varnothing$ if $K \neq O^{2}(G)$. We define sets $E_{2}^{g}(G, K), E_{4}^{g}(G, K)$ and $E^{8}(G, K)$ as follows. The set $E_{4}^{8}(G, K)$ consists of 2elements x of $G \backslash K$ of order >2 such that $C_{G}(x)$ is not a 2-group. The set $E_{2}^{8}(G, K)$ consists of involutions x of $G \backslash K$ such that $\left|\pi\left(O^{2}\left(C_{G}(x)\right)\right)\right| \geq 2$ holds. Set $E^{g}(G, K)=$ $E_{2}^{g}(G, K) \cup E_{4}^{g}(G, K)$. Note that the sets $E_{2}^{g}(G, K), E_{4}^{g}(G, K)$ and $E^{g}(G, K)$ are subsets of $E_{2}(G, K), E_{4}(G, K)$ and $E(G, K)$ respectively.

We set

$$
\begin{gathered}
\mathcal{D}^{2}(G)=\left\{(P, H) \in \mathcal{D}(G) \mid[H: P]=\left[O^{2}(G) H: O^{2}(G) P\right]=2\right. \text { and } \\
\left.O^{q}(G) P=G \text { for all odd primes } q\right\} .
\end{gathered}
$$

(cf. [4]) and set

$$
\mathcal{D}^{2}(G, K)=\left\{(P, H) \in \mathcal{D}^{2}(G) \mid H \nsubseteq K\right\} .
$$

According to Laitinen and Morimoto [2], we denote by $V(G)$ the G-module

$$
(\mathbb{R}[G]-\mathbb{R})-\bigoplus_{p \in \pi(G)}\left(\mathbb{R}\left[G / O^{p}(G)\right]-\mathbb{R}\right)
$$

If G is a group of prime power order, then $V(G)=\{0\}$ holds. Laitinen and Morimoto [2, Theorems 2.3 and B] have shown that $V(G)$ is an $\mathcal{L}(G)$-free G-module such that

$$
\operatorname{dim} V(G)^{P}-2 \operatorname{dim} V(G)^{H}
$$

is nonnegative for any pair $(P, H) \in \mathcal{D}(G)$ and is zero only if either $(P, H) \in$ $\mathcal{D}^{2}(G, \varnothing)$ or $P \in \mathcal{L}(G)$. Note that $P \notin \mathcal{L}(G)$ for $(P, H) \in \mathcal{D}(G)$ if $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint.

Theorem 1. Let G be a finite group such that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. Let K be a subgroup of G with index 2 . Then the following claims are equivalent.
(1) $E^{8}(G, K)$ is empty.
(2) $E(G, K)$ is empty.
(3) There exist pairs $\left(P_{j}, H_{j}\right) \in \mathcal{D}^{2}(G, K)$ such that

$$
\sum_{j}\left(\operatorname{dim} V^{P_{j}}-2 \operatorname{dim} V^{H_{j}}\right)=0
$$

for any $\mathcal{L}(G)$-free G-module V.
Corollary 2. If $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint, then either sets $E\left(G, O^{2}(G)\right)$ and $E^{8}\left(G, O^{2}(G)\right)$ are both empty or both nonempty.

3. Nongap groups

Let G be a finite group such that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. The group G is a gap group if and only if any subgroup K of G with $K>O^{2}(G)$ is a gap group. Therefore it is easy to see the following result by Theorem 1.

Theorem 3. Let G be a finite group and let K be a gap subgroup of G with index 2. Then the following claims are equivalent.
(1) $E^{g}(G, K)$ is empty.
(2) $E(G, K)$ is empty.
(3) G is a nongap group.

Now, assume that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$. Recall that if $\mathcal{P}(G) \cap \mathcal{L}(G) \neq \varnothing$, then G is a nongap group.

Proposition 4. Let G be a finite group such that $O^{2}(G) \neq G$ and $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$, and let K. be a subgroup of G such that $[G, K]=2$. Suppose that $E^{g}(G, K)=\varnothing$. Let G_{2} be a Sylow 2 -subgroup of G. Then it holds the followings.
(1) If two elements x and y of G_{2} outside of K are conjugate in G, then they are conjugate in G_{2}.
(2) $\sum_{(x) G} \frac{2}{\left|C_{G_{2}}(x)\right|}=1$, where $(x)_{G}$ runs over conjugacy classes in G represented by elements of G_{2} outside of K.
(3) $\sum_{(C) G} \frac{|C|}{\left|N_{G_{2}}(C)\right|}=1$, where $(C)_{G}$ runs over conjugacy classes in G represented by cyclic groups C of G_{2} with $C K=G$.

Proof. For an element x of $G \backslash K$, we denote by x_{2} the involution of the cyclic subgroup generated by x. As $E_{2}^{g}(G)$ is empty, x_{2} is an element outside of K. Recall that if two elements x and y of $G \backslash K$ are conjugate in G, namely $x=g^{-1} y g$, for some $g \in G$, then $x_{2}=g^{-1} y_{2} g$ and thus $g \in C_{G}\left(x_{2}\right)$. Since $E_{2}^{g}(G, K)$ is empty and

$$
\sum_{(x)_{G} \subseteq G \backslash K} \frac{|G|}{\left|C_{G}(x)\right|}=|G|-|K|=\frac{|G|}{2}
$$

we have

Set $L(y)=O^{2}\left(C_{G}(y)\right)\langle y\rangle \cong O^{2}\left(C_{G}(y)\right) \times\langle y\rangle$. Let $\mathcal{B}(y)$ (resp. $\left.C(y)\right)$ be the set of conjugacy classes in $C_{G}(y)$ which are represented by elements of $L(y) \backslash O^{2}\left(C_{G}(y)\right)$ (resp. $O^{2}\left(C_{G}(y)\right)$). Note that if two elements x and x^{\prime} of G outside of K with $x_{2}=x_{2}^{\prime}$
are conjugate in G, then they are conjugate in $C_{G}\left(x_{2}\right)$. Therefore we obtain that

Let \mathcal{A} be the set of conjugacy classes $(x)_{G_{2}}$ in G_{2} represented by elements of G_{2} \ ($G_{2} \cap K$). As $E_{4}^{g}(G, K)$ is empty, we have $C_{G}(x)$ for $x \in G \backslash K$ with $|x|=2^{*}>2$ is a 2-group. Furthermore by using the assumption that $E_{2}^{8}(G, K)$ is empty again, the last number at (5) equals to
where $C_{G}(x)_{2}$ (resp. $\left.C_{G}(y)_{2}\right)$ is a Sylow 2-subgroup of $C_{G}(x)$ (resp. $C_{G}(y)$). Therefore any inequality or equality in (6) must be equality and thus if $x, y \in G_{2}$ are conjugate in G, then they are conjugate in G_{2}.

Theorem 7. Let G be a nongap group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$ and that $\left[G: O^{2}(G)\right]=2$. Let G_{2} be a Sylow 2-subgroup of G. Suppose the order of G is divisible by 4. Then it holds the followings.
(1) If x and y are involutions of $G_{2} \backslash K$, then $x y \in\left[G_{2}, G_{2}\right]$.
(2) There exists an element x of $G_{2} \backslash K$ such that $|x|>2$.
(3) The group generated by all involutions of G_{2} outside of K is a proper subgroup of G_{2}.

Theorem 8. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$ and that $G /[G, G]$ is not a 2-group. If G is a nongap group, then $O^{2}(G)$ is of odd order.

Proof. If G is perfect, then G is a gap group. Suppose that $G /[G, G]$ is of even order. Let K be a subgroup of G such that $K>O^{2}(G),\left[K: O^{2}(G)\right]=2$ and $O^{2}\left(K / O^{2}(K)\right)$ is isomorphic to $O^{2}\left(G / O^{2}(G)\right)$. If G is a nongap group, then K is
also a nongap group. There exist no 2-elements, not involutions, of K outside of $O^{2}(K)$. If there might exist such an element x, then x lies in $E\left(K, O^{2}(K)\right)$ which implies that K is a gap group by Theorem 1. Therefore, the group generated by all involutions of K_{2} outside of K is just K_{2}, where K_{2} is a Sylow 2-subgroup of K. By Theorem 7 (3), the order of K is not divisible by 4 . Since $\left[K: O^{2}(K)\right]=2$, the order of $O^{2}(K)=O^{2}(G)$ is odd.

Corollary 9. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$ and that $G /[G, G]$ is not a 2 -group. If G is a nongap group, then G is solvable.

Proof. By Theorem 8, the Dress group $O^{2}(G)$ of type 2 is of odd order. Recall that $G / O^{2}(G)$ is a 2-group. By Burnside's theorem, $O^{2}(G)$ and $G / O^{2}(G)$ are both solvable. Thus G is solvable.

Note that a finite group G such that $\mathcal{P}(G) \cap \mathcal{L}(G) \neq \varnothing$ is solvable.

4. Direct product

Lemma 10. Let G be a finite group such that $O^{2}(G) \neq G$ and $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$, and let K be a subgroup of G such that $[G, K]=2$. If all elements of H outside of K are 2-elements, then

$$
\sum_{(C)_{G}}\left|N_{G}(C) / C\right|^{-1}\left|(H \backslash G)^{C}\right|=1
$$

where $(C)_{G}$ runs over conjugacy classes in G represented by cyclic groups C of G with $C K=G$.

We define $E^{d}(G, K)$ as the set of 2-elements x of G outside of K such that $C_{G}(x)$ is not a 2 -group, Note that $E^{g}(G, K)$ is a subset of $E^{d}(G, K)$. There exist finite groups G so that $\left[G: O^{2}(G)\right]=2$ and $E^{d}\left(G, O^{2}(G)\right)$ is empty. A solvable group SmallGroup $(1920,239651)$ and a nonsolvable group SmallGroup $(1344,11427)$ both satisfy such conditions. (cf. [1])

Proposition 11. Let G be a finite group such that $O^{2}(G) \neq G$ and $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$, and let K be a subgroup of G such that $[G, K]=2$. Suppose that $E^{d}(G, K)=\varnothing$. Let G_{2} be a Sylow 2-subgroup of G and let C be a cyclic subgroup of G with $C K=G$. Then it holds the followings.
(1) If a subgroup of G_{2} intersects with any conjugacy class $(x)_{G}$ represented by elements of G_{2} outside of K, then it is just G_{2}.
(2) $\left|\left(G_{2} \backslash G\right)^{C} / N_{G}(C)\right|=1$ holds. In particular, $\left(G_{2} \backslash G\right)^{C}=G_{2} \backslash G_{2} N_{G}(C)$, if $C<G_{2}$.

Proof. Let C be a cyclic subgroup of G with $C K=G$. By assumption, $(H \backslash G)^{C}$ is nonempty. By Proposition 4 (3), we obtain that

$$
\sum_{(C)_{G}}\left|N_{G}(C) / C\right|^{-1}\left|(H \backslash G)^{C}\right| \geq \sum_{(C)_{G}} \frac{|C|}{\left|N_{G_{2}}(C)\right|}=1
$$

where $(C)_{G}$ runs over conjugacy classes in G represented by cyclic groups C of G_{2} with $C K=G$. Furthermore as C is a 2 -group, we obtain that

$$
\sum_{(C) c}\left|N_{G}(C) / C\right|^{-1}\left|(H \backslash G)^{C}\right|=\sum_{(C)_{C}} \frac{|C|}{\left|N_{G_{2}}(C)\right|}=1
$$

by Lemma 10 and thus

$$
\left|(H \backslash G)^{C}\right|=1
$$

Take an element $a \in G$ such that $a C a^{-1} \leq H$. Then we have

$$
(H \backslash G)^{C} \supseteq H \backslash N_{G}(H) a .
$$

Supposing that $H \neq G_{2}$, it holds $N_{G}(H) \neq H$, which implies $\left|(H \backslash G)^{C}\right| \geq 2$.

Theorem 12. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint, $\left|O^{2}(G)\right|$ is even and $G / O^{2}(G)$ is cyclic. Let K be a subgroup of G with index 2 . Then the following claims are equivalent.
(1) $E^{d}(G, K)$ is nonempty.
(2) $G \times G$ is a gap group.
(3) $G^{k}=\underbrace{G \times \cdots \times G}_{k \text { times }}$ is a gap group for $k \geq 2$.

Note that G^{k} is a nongap group for any $k \geq 1$ if $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are not disjoint, since $\mathcal{P}\left(G^{k}\right)$ and $\mathcal{L}\left(G^{k}\right)$ are not disjoint. The assumption that $\left|O^{2}(G)\right|$ is even is need.

Remark 13. Let p, q and r be odd primes with $p \neq q$. Let $G=D_{2 p q} \times C_{r}$ be the direct product group of a dihedral group $D_{2 p q}$ of order $2 p q$ and a cyclic group C_{r} of order r. Then it holds that $E^{d}\left(G, O^{2}(G)\right)$ is nonempty, $O^{2}(G)$ is of order odd and G^{k} is a nongap group for any $k \geq 1$.

Corollary 14. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing,\left|O^{2}(G)\right|$ is even and $\left[G: O^{2}(G)\right]=2$. Let $k>1$ be an integer. Then we have the following claims:
(1) G and G^{k} are gap groups $\Longleftrightarrow E^{g}\left(G, O^{2}(G)\right) \neq \varnothing$.
(2) G^{k} is a gap group and G is a nongap group $\Longleftrightarrow E^{8}\left(G, O^{2}(G)\right)=\varnothing$ and $E^{d}\left(G, O^{2}(G)\right) \neq \varnothing$.
(3) G^{k} (and G) are nongap groups $\Longleftrightarrow E^{d}\left(G, O^{2}(G)\right)=\varnothing$.

5. Wreath product

Let K and L be finite groups. We denote by $K \int L$ the semidirect product group $K^{14} \rtimes L$ such that L acts on K^{14} by permutation:

$$
1 \rightarrow K^{|L|} \rightarrow K \int L \rightarrow L \rightarrow 1
$$

Proposition 15. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$ and that $G / O^{2}(G)$ is cyclic. Let K be a subgroup of G with index 2 . If $G \int C_{n}$ is a gap group for a 2-power integer n, then $E^{d}(G, K)$ is nonempty, where C_{n} is a cyclic group of order n.

Let $G=$ Small $\operatorname{Group}(1344,11427)$. It is a nonsolvable group satisfying that $\left[G: O^{2}(G)\right]=2$ and $E^{d}\left(G, O^{2}(G)\right)=\varnothing$. By Corollary $9, G \int C_{n}$ is a gap group for any integer $n>1$, not a 2 -power.

Theorem 16. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. For any subgroup $K, O^{2}(G) \triangleleft K \leq G$, possessing a cyclic quotient $K / O^{2}(G)$, the set $E\left(K, K_{0}\right)$ is nonempty, if and only if G is a gap group, where K_{0} is a subgroup of K with index 2.

Corollary 17. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint and $\left[G: O^{2}(G)\right]=2$. The set $E\left(G, O^{2}(G)\right)$ is nonempty if and only if G is a gap group.

Before closing this section, we show the following theorem:

Theorem 18. Let G be a finite group satisfying that $G / O^{2}(G)$ is cyclic, $\mathcal{P}(G) \cap$ $\mathcal{L}(G)=\varnothing, E^{d}(G, K) \neq \varnothing$ and that $O^{2}(G)$ is of even order, where K is a subgroup of G with index 2 . For any nontrivial finite group L, the wreath product group $G \int L$ is a gap group.

First we show the assertion in the case where $L=C_{2}$:
Lemma 19. Let G and K be finite groups as in Theorem 18. For a cyclic subgroup $C=C_{2}$ of order 2 , the wreath product group $G \int C$ is a gap group.

Proof. Let $\pi: G \int C \rightarrow\left(G \int C\right) / O^{2}\left(G \int C\right) \cong\left(G / O^{2}(G)\right) \int C$ be an epimorphism. If $\pi^{-1}(\pi(\langle x\rangle))$ is a gap group for any nontrivial 2-element x of $\left(G / O^{2}(G)\right) \int C$, then $G \int C$ is a gap group. Note that $O^{2}\left(G \int C\right)=O^{2}(G)^{2}=O^{2}(G) \times O^{2}(G)$. Let f be a generator of C. Let h be a 2 -element of G outside of K such that $C_{G}(h)$ is not a 2 -group. Recall that $G \times G$ is a gap group by Theorem 12. It suffices to show that

$$
N:=\left\langle O^{2}(G)^{2},\left(h_{1}, h_{2}\right) f\right\rangle
$$

is a gap group for any elements h_{1} and h_{2} of $\langle h\rangle$. Note that

$$
\left(\left(h_{1}, h_{2}\right) f\right)^{2}=\left(h_{1} h_{2}, h_{2} h_{1}\right) .
$$

We obtain that

$$
C_{G_{2}}\left(\left(h_{1}, h_{2}\right) f\right)=\left\langle\left(h_{1}, h_{2}\right) f,\left(a, h_{1}^{-1} a h_{1}\right) \mid a \in C_{O^{2}(G)}\left(h_{1} h_{2}\right)\right\rangle .
$$

As $\left[G: O^{2}(G)\right]=2$, the group $C_{O^{2}(G)}(h)$ is not a 2-group. Thus $C_{G_{2}}\left(\left(h_{1}, h_{2}\right) f\right)$ is not a 2-group by $C_{O^{2}(G)}\left(h_{1} h_{2}\right) \geq C_{O^{2}(G)}(h)$. Let

$$
N_{0}:=\left\langle O^{2}(G)^{2},\left(h_{1} h_{2}, h_{2} h_{1}\right)\right\rangle
$$

be a subgroup of N with index 2. We show that $E^{g}\left(N, N_{0}\right)$ is nonempty. If $\left(h_{1}, h_{2}\right) f$ is not an involution, then $\left(h_{1}, h_{2}\right) f$ lies in $E_{4}^{g}\left(N, N_{0}\right)$. Suppose that $\left(h_{1}, h_{2}\right) f$ is an involution. Then it follows $h_{1}=h_{2}$ which is an involution. In this case, $C_{G_{2}}\left(\left(h_{1}, h_{2}\right) f\right)$ is isomorphic to $O^{2}(G)$ and thus $\left(h_{1}, h_{2}\right) f$ lies in $E_{2}^{g}\left(N, N_{0}\right)$. Therefore $E^{g}\left(N, N_{0}\right)$ is nonempty. Since N_{0} is a subgroup of $G \times G$ with 2-power index, N_{0} is a gap group. Then N is a gap group by combining Theorems 1 and 16 .

Proof of Theorem 18. Let $\pi: G \int L \rightarrow L$ be an epimorphism. If $\pi^{-1}(\pi(\langle x\rangle))$ is a gap group for any 2-element x of $G \int L$ outside of $O^{2}\left(G \int L\right)$, then $G \int L$ is a gap
group. As $G^{|L|}$ is a gap group by Theorem 12, it suffices to show that $\pi^{-1}(C)$ is a gap group for any nontrivial cyclic group C. Let $C=C_{n}$ be a cyclic subgroup of L of order $n>1$. Note that $\left|O^{2}\left(G \int C\right)\right|$ is even and $\mathcal{P}\left(G \int C\right) \cap \mathcal{L}\left(G \int C\right)=\varnothing$ since there is a subgroup of $G \int C$ isomorphic to G. Thus if n is not a 2-power integer, then $G \int C$ is a gap group by Corollary 9 .

Assume that n is a 2 -power integer, say 2^{k}. We show that $G \int C$ is a gap group by induction on k. In the case where $n=2$, the assertion follows from Lemma 19. Let $m=2^{k-1} \geq 2$ and let C_{m} be a cyclic subgroup of C with index 2 .

Suppose that $G \int C_{m}$ is a gap group for any G as in Theorem 18. Note that $\rho^{-1}\left(C_{m}\right)=G^{2} \int C_{m}$, where $\rho: G \int C \rightarrow C$ is an epimorphism. $\rho^{-1}\left(C_{m}\right)$ is isomorphic to a subgroup of the gap group $\left(G \int C_{m}\right)^{2}$ with 2-power index and thus is a gap group.

Let h be a 2 -element of G outside of K such that $C_{G}(h)$ is not a 2 -group. Let h_{j} be an element of $\langle h\rangle$ for each $j=1, \ldots, n$ and let f be a generator of C. Consider the subgroup

$$
N:=\left\langle O^{2}(G)^{n},\left(h_{1}, \ldots, h_{n}\right) f\right\rangle
$$

Let N_{0} be a subgroup of N with index 2. As N_{0} is a subgroup of $\rho^{-1}\left(C_{m}\right)$ with 2power index, it is a gap group. Thus it suffices to show that $E^{g}\left(N, N_{0}\right)$ is nonempty. We show that $\left(h_{1}, \ldots, h_{n}\right) f$ lies in $E^{8}\left(N, N_{0}\right)$. We have

$$
\begin{aligned}
& C_{O^{2}(G)^{n}}\left(\left(h_{1}, \ldots, h_{n}\right) f\right) \\
& \quad=\left\langle\left(a, h_{1}^{-1} a h_{1},\left(h_{1} h_{2}\right)^{-1} a\left(h_{1} h_{2}\right), \ldots,\left(h_{1} \ldots h_{n-1}\right)^{-1} a\left(h_{1} \ldots h_{n-1}\right)\right)\right. \\
& \\
& \quad\left|a \in C_{O^{2}(G)}\left(h_{1} h_{2} \ldots h_{n}\right)\right\rangle .
\end{aligned}
$$

The group $C_{O^{2}(G)}\left(h_{1} h_{2} \ldots h_{n}\right)$ contains the group $C_{O^{2}(G)}(h)$ and thus it is not a $2-$ group. As the element $\left(h_{1}, \ldots, h_{n}\right) f$ is not an involution, it lies in $E^{g}\left(N, N_{0}\right)$ and then N is a gap group.

The group $G \int C$ is a gap group, since any subgroup $N, O^{2}(G)^{n} \triangleleft N \leq G \int C$, possessing a cyclic quotient $N / O^{2}(G)^{n}$ is a gap group.

References

[^1][2] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
[3] M. Morimoto, Deleting-inserting theorems of fixed point manifolds, K-theory 15 (1998), 1332.
\qquad T. Sumi and M. Yanagihara, Finite groups possessing gap modules, Contemp. Math. 258 (2000), 329-342.
[5] R. Oliver, Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177.
[6] , Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583-615.
[7] T. Sumi, Gap modules for direct product groups, Jour. Math. Soc. Japan 53 (2001), 975-990.
[8] \qquad , Gap modules for semidirect product groups, Kyushu Jour. Math. 58 (2004), 33-58.

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan

E-mail address: sumi@design.kyushu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification．57S17， 20 C 15.
 Key words and phrases．gap group，gap module，representation．
 This research was partially supported by Grand－in－Aid for Scientific Research（C）（2） （No．14540084）of the Japan Society for the Promotion of Science．

[^1]: [1] GAP - Groups, Algorithms and Programming, http://www.gap-system.org/

