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1. INTRODUCTION

Throughout this paper let G denote a finite group, © a finite G-set, and R a commu-
tative ring with multiplicative unit.

C. B. Thomas [13] defined the Hermitian representation ring G;(R,G) and showed
that the Wall group L,(Z[G],w) is a module over G;(Z,G), providing the orientation
homomorphism w is trivial. A. Dress defined the Grothendieck-Witt rings GWo(R, G)
and GW(G, R) in [7, p. 742] and (8, p. 294], respeétively (cf. [12, p. 2356]) as quo-
tient rings of G1(R,G). By [8, Theorem 5], we can see that the canonical epimorphism
GW(G,Z) — GWy(Z,G) is actually an isomorphism. For the induction theory of equi-
variant surgery obstruction groups, the authors have defined in [2, Section 2] the (general-
ized) Grothendieck-Witt ring GWo(R, G, ©). Details of the induction theory of equivari-
ant surgery obstruction groups are described in [12] and [10]. Applications to equivariant
surgery are given in [11, Section 6] and [4]. Let &; denote the group of order 2 with

generator 7. Give the cartesian product © x © the diagonal G-action and the &,-action:
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(7,(z,y)) = (y,z) for z, y € ©. Let Mapg,e,(© x ©, R) denote the ring of all G x G,-
maps from © x © to R, where R has the trivial G x G2-action. The goal of this article is

to prove the following theorem.

Theorem 1. Let R be a principal ideal domain. Then the sequence of canonical homo-

morphisms
0 — GW,(R,G) —> GWy(R, G,0) — Mapg,e,(©@ X O,R) —0

is split ezact.

We remark that GWo(R,G) and GWy(R, G, ©) are rings with multiplicative unit and
the canonical homomorphism GWy(R, G) — GW,(R, G, ©) preserves multiplication, but
not the multiplicative unit. The R-rank of Mapg,,(© x ©, R) was computed by Mitsuaki
Kubo in his Master thesis for G = A; and by XianMeng Ju [9] for G = SL(2, 5).

The definitions of the Grothendieck-Witt rings above are recalled in Section 2 for the

reader’s convenience. Theorem 1 is proved in Section 3.
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2. DEFINITION OF THE GROTHENDIECK-WITT RINGS

In this section we recall the definitions of the Grothendieck-Witt rings used in the

current paper and the canonical homomorphisms
GWy(R,G) — GWy(R, G, 0) — Mapg,¢, (@ x O, R).

The reader can refer to Section 4 of [12] for details.
A Hermitian R[G]-moduleis a pair (M, B) consisting of a finitely generated R-projective
R[G]-module M and a symmetric G-invariant R-bilinear map B : M x M — R. The map

B is called nonsingular if the associated map M — Hompg(M,R); z — B(z,—), is a



bijection. A ©-positioned Hermifian R[G]-module is a triple (M, B, «) consisting of a
Hermitian module (M, B) and a G-map « : © — M. If B is nonsingular then (M, B)
and (M, B,a) are also called nonsingular. The G-map a is called trivial (resp. totally
isotropic) if a(t) = 0 for all t € © (resp. B(a(t),a(t')) = 0 for all t, t' € ©). Let
H(R, G, ©) denote the category of all nonsingular ©-positioned Hermitian R[G)-modules
(M, B, a), where the morphisms (M, B,a) — (M’, B',d) are isomorphisms f : M — M’
such that B'(f(z), f(y)) = B(z,y) for all z, y € M and the diagram

@ —M

k« lf

M
commutes. Let H(R,G,0)"" (resp. H(R,G,0)""*°) denote the full subcategory of
H(R, G, ©) consisting of all (M, B,a) € H(R,G,©) such that a is trivial (resp. totally
isotropic).

Thé orthogonal sum

(M,B,a)® (M',B',d), (=(M",B",d") say)

of (M, B,a), (M',B',c') € H(R,G, ©) is defined by M" = M & M, B"((z,z'),(y,¥)) =
B(z,y)+ B'(z',y) for z, y € M and ', y € M’, and o'(t) = (a(t),o/(t)) for t € ©. The
tensor product
(M,B,a)® (M',B',d), (=(M",B" d") say)

is defined by M" = M@M’', B"(z®z',y®y’') = B(z,y)B'(¢',y) forz,y € M and z’, y' €
M’, and o”(t) = a(t) @ &/(t) for t € ©. H(R,G,0)"" and H(R,G,©)""* are closed un-
der orthogonal sum as well as tensor product. Let KHo(R, G, ©) (resp. KHo(R, G, Q)tiv,
KHo(R,G,©)""*°) denote the Grothendieck group of the category H(R,G,©) (resp.
H(R, G, ©)"", H(R, G, ©)'"*°) with respect to orthogonal sum.

Let (M, B,a) € H(R,G, ). An R[G]-submodule U of M is called a Quillen submodule
of (M, B,a) if U is an R-direct summand of M such that B(U,U) =0 and «(©) CU. In
this case, (M, B,a),U) is called a Quillen pair. For any (M, B,a) € H(R, G, ©),

AM = {(z,z) EM®M |z € M}
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is a Quillen submodule of
(M,B,a)® (M,—B, a).

If ((M,B,a), U) is a Quillen pair, we obtain (U /U, B, o) € H(R, G, ©) where
Ut={ye M| B(z,y) =0Vz € U}

B*(z + U,y +U) = B(z,y) forz,y e U+

ao(t)=0+U e ULJU fort e ®©.
Define the Grothendieck-Witt group (which will be also referred to as the Grothendieck-

Witt ring)

GWo(R,G,0) (resp. GWo(R,G,0)"", GW,(R, G, 0)t7i*)

GWy(R,G,0) = KHo(R, G,0)/((M, B,a) — (U*+/U, B*, o))
(resp. GWo(R, G, 0)" = KHo(R, G, 0)"/((M, B, a) — (U*/U, B, o)),

GWo(R,G,0)""* = KHy(R, G, 0)""*®/((M, B,a) — (U*/U, B*,a)))
where ((M, B,a),U) runs over all Quillen pairs in H(R,G,®) (resp. H(R,G,O)",
H(R,G,0)"*°). Note that

[M,-B,a] = —[M, B,q]

in GWy(R, G,0). GWy(R,G,0), GWy(R, G,0)"™ and GW,(R, G, 0)t"° are commu-
tative rings and the first two have multiplicative units. The Grothendieck-Witt ring
GW,(R, G) of A. Dress is obtained as GW,(R, G, 0). By definition, there are canonical

homomorphisms
GWo(R,G) — GW,(R, G, 0)"Y — GW,(R, G, 0)t —» GW,(R, G, 0)

and the first homomorphism is an isomorphism. In addition, we have a canonical retrac-
tion
GWu(R,G,0) —» GWy(R,G); [M, B, a) — [M, B.

We define the homomorphism

& : GWo(R, G,0) — Mapg,g,(© x O, R)
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&([M, B, a])(t,t') = B(a(t),a(t)) fort, t' €O.

3. PrRoOF OF THEOREM 1

We have already proved the exactness of the sequence
0 — GWy(R,G) — GWy(R, G, ©) —> Mapg,e,(© x O, R)

in Proposition 2.1 of [2]. Thus, in order to prove Theorem 1, it suffices to show the
homomorphism « splits.

Let f: ©x 0O — Rbe a G x &,-map. We assign a O-positioned Hermitian R[G]-module
(M, B, <) to f as follows. Let © be a copy of the G-set ©. For each element z € O,
let 2’ stand for the copy in ©’ of z. Let M be the free R-module with basis © I @',
namely M = R[O] ® R[©']. Let B : M x M — R be the R-bilinear ma;p satisfying
B(z,y) = f(z,y), B(z,y') = b2y, B(z',y) = b2y and B(z',y’) = 0 for all z, y € O, where

5 — 1 ifz=y
Ml ifz#y.

Since f is G-equivariant and symmetric, B is G-invariant and symmetric. Clearly, B is
nonsingular. Define o : © — M by a(z) = (z,0) € R[O] ® R[O’] for z € ©. Obviously, a

is a G-map. The assignment f — [M, B, a] defines a homomorphism
o : Mapg,e,(@ X ©,R) — GWO(R,G,(-)).
Since
x([M, B, a])(z,y) = B(a(z), a(y)) = B((<,0),(3,0)) = f(z,y),

the homomorphism o is a splitting of «.
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