An exact sequence of Grothendieck-Witt rings (Grothendieck-Witt 環の完全系列)

Anthony Bak (バック アンソニー)

Department of Mathematics, University of Bielefeld

(ビーレフェルト大学数学科)

(岡山大学環境理工学部)

Masaharu Morimoto (森本 雅治)

Faculty of Environmental Science and Technology, Okayama University

1. Introduction

Throughout this paper let G denote a finite group, Θ a finite G-set, and R a commutative ring with multiplicative unit.

C. B. Thomas [13] defined the Hermitian representation ring $G_1(R,G)$ and showed that the Wall group $L_n(\mathbb{Z}[G], w)$ is a module over $G_1(\mathbb{Z}, G)$, providing the orientation homomorphism w is trivial. A. Dress defined the Grothendieck-Witt rings $GW_0(R,G)$ and GW(G,R) in [7, p. 742] and [8, p. 294], respectively (cf. [12, p. 2356]) as quotient rings of $G_1(R,G)$. By [8, Theorem 5], we can see that the canonical epimorphism $GW(G,\mathbb{Z}) \to GW_0(\mathbb{Z},G)$ is actually an isomorphism. For the induction theory of equivariant surgery obstruction groups, the authors have defined in [2, Section 2] the (generalized) Grothendieck-Witt ring $GW_0(R,G,\Theta)$. Details of the induction theory of equivariant surgery obstruction groups are described in [12] and [10]. Applications to equivariant surgery are given in [11, Section 6] and [4]. Let \mathfrak{S}_2 denote the group of order 2 with generator τ . Give the cartesian product $\Theta \times \Theta$ the diagonal G-action and the \mathfrak{S}_2 -action:

²⁰⁰⁰ Mathematical Classification. Primary 19G12, 19G24, 19J25; Secondary 57R67.

Keywords and phrases. Grothendieck-Witt ring, Hermitian module, Quillen submodule, exact sequence.

 $(\tau,(x,y)) \mapsto (y,x)$ for $x, y \in \Theta$. Let $\operatorname{Map}_{G \times \mathfrak{S}_2}(\Theta \times \Theta, R)$ denote the ring of all $G \times \mathfrak{S}_2$ maps from $\Theta \times \Theta$ to R, where R has the trivial $G \times \mathfrak{S}_2$ -action. The goal of this article is to prove the following theorem.

Theorem 1. Let R be a principal ideal domain. Then the sequence of canonical homomorphisms

$$0 \longrightarrow \mathrm{GW}_0(R,G) \longrightarrow \mathrm{GW}_0(R,G,\Theta) \longrightarrow \mathrm{Map}_{G\times\mathfrak{S}_2}(\Theta\times\Theta,R) \longrightarrow 0$$
 is split exact.

We remark that $\mathrm{GW}_0(R,G)$ and $\mathrm{GW}_0(R,G,\Theta)$ are rings with multiplicative unit and the canonical homomorphism $\mathrm{GW}_0(R,G) \to \mathrm{GW}_0(R,G,\Theta)$ preserves multiplication, but not the multiplicative unit. The R-rank of $\mathrm{Map}_{G\times \mathfrak{S}_2}(\Theta\times \Theta,R)$ was computed by Mitsuaki Kubo in his Master thesis for $G=A_5$ and by XianMeng Ju [9] for $G=\mathrm{SL}(2,5)$.

The definitions of the Grothendieck-Witt rings above are recalled in Section 2 for the reader's convenience. Theorem 1 is proved in Section 3.

Acknowlegements

The first author gratefully acknowledges the support of INTAS 00-0566. The second author would like to acknowledge the support of the Grant-in-Aid for Scientific Research (Kakenhi) No. 15540076.

2. DEFINITION OF THE GROTHENDIECK-WITT RINGS

In this section we recall the definitions of the Grothendieck-Witt rings used in the current paper and the canonical homomorphisms

$$\mathrm{GW}_0(R,G) \longrightarrow \mathrm{GW}_0(R,G,\Theta) \longrightarrow \mathrm{Map}_{G \times \mathfrak{S}_2}(\Theta \times \Theta,R).$$

The reader can refer to Section 4 of [12] for details.

A Hermitian R[G]-module is a pair (M, B) consisting of a finitely generated R-projective R[G]-module M and a symmetric G-invariant R-bilinear map $B: M \times M \to R$. The map B is called nonsingular if the associated map $M \to \operatorname{Hom}_R(M, R)$; $x \mapsto B(x, -)$, is a

bijection. A Θ -positioned Hermitian R[G]-module is a triple (M, B, α) consisting of a Hermitian module (M, B) and a G-map $\alpha : \Theta \to M$. If B is nonsingular then (M, B) and (M, B, α) are also called nonsingular. The G-map α is called trivial (resp. totally isotropic) if $\alpha(t) = 0$ for all $t \in \Theta$ (resp. $B(\alpha(t), \alpha(t')) = 0$ for all $t, t' \in \Theta$). Let $\mathcal{H}(R, G, \Theta)$ denote the category of all nonsingular Θ -positioned Hermitian R[G]-modules (M, B, α) , where the morphisms $(M, B, \alpha) \to (M', B', \alpha')$ are isomorphisms $f : M \to M'$ such that B'(f(x), f(y)) = B(x, y) for all $x, y \in M$ and the diagram

commutes. Let $\mathcal{H}(R,G,\Theta)^{\text{triv}}$ (resp. $\mathcal{H}(R,G,\Theta)^{\text{t-iso}}$) denote the full subcategory of $\mathcal{H}(R,G,\Theta)$ consisting of all $(M,B,\alpha)\in\mathcal{H}(R,G,\Theta)$ such that α is trivial (resp. totally isotropic).

The orthogonal sum

$$(M,B,\alpha)\oplus (M',B',\alpha'),\ (=(M'',B'',\alpha'')$$
 say)

of (M, B, α) , $(M', B', \alpha') \in \mathcal{H}(R, G, \Theta)$ is defined by $M'' = M \oplus M'$, B''((x, x'), (y, y')) = B(x, y) + B'(x', y') for $x, y \in M$ and $x', y' \in M'$, and $\alpha''(t) = (\alpha(t), \alpha'(t))$ for $t \in \Theta$. The tensor product

$$(M,B,\alpha)\otimes (M',B',\alpha'), \ \ (=(M'',B'',\alpha'') \text{ say})$$

is defined by $M'' = M \otimes M'$, $B''(x \otimes x', y \otimes y') = B(x, y)B'(x', y')$ for $x, y \in M$ and $x', y' \in M'$, and $\alpha''(t) = \alpha(t) \otimes \alpha'(t)$ for $t \in \Theta$. $\mathcal{H}(R, G, \Theta)^{\text{triv}}$ and $\mathcal{H}(R, G, \Theta)^{\text{t-iso}}$ are closed under orthogonal sum as well as tensor product. Let $\text{KH}_0(R, G, \Theta)$ (resp. $\text{KH}_0(R, G, \Theta)^{\text{t-iso}}$) denote the Grothendieck group of the category $\mathcal{H}(R, G, \Theta)$ (resp. $\mathcal{H}(R, G, \Theta)^{\text{t-iso}}$) with respect to orthogonal sum.

Let $(M, B, \alpha) \in \mathcal{H}(R, G, \Theta)$. An R[G]-submodule U of M is called a Quillen submodule of (M, B, α) if U is an R-direct summand of M such that B(U, U) = 0 and $\alpha(\Theta) \subseteq U$. In this case, $((M, B, \alpha), U)$ is called a Quillen pair. For any $(M, B, \alpha) \in \mathcal{H}(R, G, \Theta)$,

$$\Delta M = \{(x,x) \in M \oplus M \mid x \in M\}$$

is a Quillen submodule of

$$(M, B, \alpha) \oplus (M, -B, \alpha).$$

If $((M,B,\alpha),U)$ is a Quillen pair, we obtain $(U^{\perp}/U,B^{\perp},\alpha_0)\in\mathcal{H}(R,G,\Theta)$ where $U^{\perp}=\{y\in M\mid B(x,y)=0\ \forall x\in U\}$ $B^{\perp}(x+U,y+U)=B(x,y)\ \text{ for }x,y\in U^{\perp}$ $\alpha_0(t)=0+U\in U^{\perp}/U\ \text{ for }t\in\Theta.$

Define the Grothendieck-Witt group (which will be also referred to as the Grothendieck-Witt ring)

$$\mathrm{GW}_0(R,G,\Theta)$$
 (resp. $\mathrm{GW}_0(R,G,\Theta)^{\mathrm{triv}}$, $\mathrm{GW}_0(R,G,\Theta)^{\mathrm{t-iso}}$)

by

$$\begin{aligned} \mathrm{GW}_0(R,G,\Theta) &= \mathrm{KH}_0(R,G,\Theta) / \langle (M,B,\alpha) - (U^\perp/U,B^\perp,\alpha_0) \rangle \\ (resp. \ \mathrm{GW}_0(R,G,\Theta)^{\mathrm{triv}} &= \mathrm{KH}_0(R,G,\Theta)^{\mathrm{triv}} / \langle (M,B,\alpha) - (U^\perp/U,B^\perp,\alpha_0) \rangle, \\ \mathrm{GW}_0(R,G,\Theta)^{\mathrm{t-iso}} &= \mathrm{KH}_0(R,G,\Theta)^{\mathrm{t-iso}} / \langle (M,B,\alpha) - (U^\perp/U,B^\perp,\alpha_0) \rangle, \end{aligned}$$

where $((M, B, \alpha), U)$ runs over all Quillen pairs in $\mathcal{H}(R, G, \Theta)$ (resp. $\mathcal{H}(R, G, \Theta)^{\text{triv}}$, $\mathcal{H}(R, G, \Theta)^{\text{t-iso}}$). Note that

$$[M, -B, \alpha] = -[M, B, \alpha]$$

in $GW_0(R, G, \Theta)$. $GW_0(R, G, \Theta)$, $GW_0(R, G, \Theta)^{\text{triv}}$ and $GW_0(R, G, \Theta)^{\text{t-iso}}$ are commutative rings and the first two have multiplicative units. The Grothendieck-Witt ring $GW_0(R, G)$ of A. Dress is obtained as $GW_0(R, G, \emptyset)$. By definition, there are canonical homomorphisms

$$\mathrm{GW}_0(R,G) \longrightarrow \mathrm{GW}_0(R,G,\Theta)^{\mathrm{triv}} \longrightarrow \mathrm{GW}_0(R,G,\Theta)^{\mathrm{t-iso}} \longrightarrow \mathrm{GW}_0(R,G,\Theta)$$

and the first homomorphism is an isomorphism. In addition, we have a canonical retrac-

$$\mathrm{GW}_0(R,G,\Theta) \to \mathrm{GW}_0(R,G); \ [M,B,\alpha] \mapsto [M,B].$$

We define the homomorphism

$$\kappa: \mathrm{GW}_0(R,G,\Theta) \to \mathrm{Map}_{G \times \mathfrak{S}_2}(\Theta \times \Theta,R)$$

by

$$\kappa([M, B, \alpha])(t, t') = B(\alpha(t), \alpha(t'))$$
 for $t, t' \in \Theta$.

3. Proof of Theorem 1

We have already proved the exactness of the sequence

$$0 \longrightarrow \mathrm{GW}_0(R,G) \longrightarrow \mathrm{GW}_0(R,G,\Theta) \xrightarrow{\kappa} \mathrm{Map}_{G \times \mathfrak{S}_2}(\Theta \times \Theta,R)$$

in Proposition 2.1 of [2]. Thus, in order to prove Theorem 1, it suffices to show the homomorphism κ splits.

Let $f:\Theta\times\Theta\to R$ be a $G\times \mathfrak{S}_2$ -map. We assign a Θ -positioned Hermitian R[G]-module (M,B,α) to f as follows. Let Θ' be a copy of the G-set Θ . For each element $x\in\Theta$, let x' stand for the copy in Θ' of x. Let M be the free R-module with basis Θ II Θ' , namely $M=R[\Theta]\oplus R[\Theta']$. Let $B:M\times M\to R$ be the R-bilinear map satisfying $B(x,y)=f(x,y),\,B(x,y')=\delta_{x,y},\,B(x',y)=\delta_{x,y}$ and B(x',y')=0 for all $x,y\in\Theta$, where

$$\delta_{x,y} = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$$

Since f is G-equivariant and symmetric, B is G-invariant and symmetric. Clearly, B is nonsingular. Define $\alpha:\Theta\to M$ by $\alpha(x)=(x,0)\in R[\Theta]\oplus R[\Theta']$ for $x\in\Theta$. Obviously, α is a G-map. The assignment $f\mapsto [M,B,\alpha]$ defines a homomorphism

$$\sigma: \mathrm{Map}_{G \times \mathfrak{S}_2}(\Theta \times \Theta, R) \to \mathrm{GW}_0(R, G, \Theta).$$

Since

$$\kappa([M, B, \alpha])(x, y) = B(\alpha(x), \alpha(y)) = B((x, 0), (y, 0)) = f(x, y),$$

the homomorphism σ is a splitting of κ .

REFERENCES

- [1] A. Bak, K-Theory of Forms, Annals of Mathematics Studies 98, Princeton Univ. Press, Princeton, 1981.
- [2] A. Bak and M. Morimoto, K-theoretic groups with positioning map and equivariant surgery, Proc. Japan Acad. 70 Ser. A (1994), 6-11.

- [3] A. Bak and M. Morimoto, Equivariant surgery with middle dimensional singular sets. I, Forum Math. 8 (1996), 267-302.
- [4] A. Bak and M. Morimoto, The dimension of spheres with smooth one fixed point actions, to appear in Forum Math.
- [5] A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213-217.
- [6] A. Dress, Contributions to the theory of induced representations, in: Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic, Proc. Conf., Battelle Memorial Inst., Seattle, 1972, Lecture Notes in Mathematics 342, pp. 183-240, Springer Verlag, Berlin-Heidlberg-New York, 1973.
- [7] A. Dress, Induction and structure theorems for Grothendieck and Witt rings of orthogonal representations of finite groups, Bull. Amer. Math. Soc. 79 (1973), 741-745.
- [8] A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. 102 (1975), 291-325.
- [9] X.M. Ju, Computation of the ring consisting of $G \times \mathfrak{S}_2$ -equivariant maps $\Theta \times \Theta \to R$, preprint, Okayama Univ., 2004.
- [10] X.M. Ju, K. Matsuzaki and M. Morimoto, Mackey and Frobenius structures on odd dimensional surgery obstruction groups, K-Theory 29 (2003), 285-312.
- [11] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
- [12] M. Morimoto, Induction theorems of surgery obstruction groups, Trans. Amer. Math. Soc. 355 (2003), 2341-2384.
- [13] C. B. Thomas, Frobenius reciprocity of Hermitian forms, J. Algebra 18 (1971), 237-244.