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Transformations of Gauss hypergeometric functions

Raimundas Vid\={u}nas*
Faculty of Mathematics, Kyushu University\dagger

Abstract

The paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back trans-
formations between hypergeometric differential equations. This classification recovers the classical trans-
formations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss
hypergeometric function.

1 Introduction
An algebraic transformation of Gauss hypergeometric functions is an identity of the form

$2\mathrm{F}1$ $(_{\tilde{c}}^{\tilde{A},\tilde{B}}|x)=\theta(x)2\mathrm{F}_{1}$ $(_{C}^{A,B}|\varphi(x))$ . (1)

Here $\varphi(x)$ is a rational function of $x$ , and $\theta(x)$ is a radical function, i.e., product of some powers of
rational functions. Examples of algebraic transformations are (see [GOu81], [Erd53, Section 2.11]):

$2 \mathrm{F}1(\frac{a+b\dagger 1a,b}{2}|x)$ $=$ $2 \mathrm{F}_{1}(\frac{a+b+1\frac{a}{2}\prime\frac{b}{2}}{2}|4x(1-x))$ . (2)

$2\mathrm{F}1$ $(^{a_{4a}\frac{2a+1}{\underline{\underline}6+52}}’|x)$ $=$ $(1+3x)^{-a} \mathrm{z}^{\mathrm{F}_{1}}(\frac{a}{3},\frac{a+1}{6+53}\frac{4a}{}|\frac{27x(1-x)^{2}}{(1+3x)^{3}})$ : (3)

$2 \mathrm{F}1(\frac{4a}{3},\frac{4a+1}{653}\frac{4a+}{}|x)$ $=$ $(1+8x)^{-a}2 \mathrm{F}1(\frac{a}{3},\frac{a+1}{6+53}\frac{4a}{}|\frac{64x(1-x)^{3}}{(1+8x)^{3}})$ . (4)

$2 \mathrm{F}_{1}(a,\frac{a+1}{3+23}\frac{2a}{}|x)$ $=$ $(1+ \omega^{2}x)^{-a}2\mathrm{F}_{1}(\frac{a}{3},\frac{a+1}{3+23}\frac{2a}{}|\frac{3(2\omega+1)x(x-1)}{(x+\omega)^{3}})$ (5)

In the last formula, $\omega$ is a primitive cubic root of unity. These identities are well-known classical trans-
formations of hypergeometric functions. They hold in some neighborhood of $x=0$ in the complex plane,
and can be continued analytically. For example, formula (2) holds for ${\rm Re}(x)<1/2$ .

Algebraic transformations of Gauss hypergeometric functions are usually induced by pull-back trans-
formations of their hypergeometric differential equations. The general relation between these two kinds of
transformations is given in Lemma 2.1 here below. By that Lemma, if a pull-back transformation converts
a hypergeometric equation to a hypergeometric equation as well, then there are identities of the form (1)
between hypergeometric solutions of the two hypergeometric equations, unless the transformed equation
has a trivial monodromy group. Conversely, an algebraic transformation (1) is induced by a pull-back
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transformation of the corresponding hypergeometric equations, unless the hypergeometric function on
the left-hand side of (1) satisfies a simple first order differential equation.

In this paper we classify pull-back transformations between hypergeometric differential equations. At
the same time we essentially classify algebraic transformations (1) of Gauss hypergeometric functions.

A general pull-back transformation converts the hypergeometric equation to a Fucshian differential
equation. There are simple rules to determine possible regular points and local exponent differences at
the singular points for the transformed equation, see Lemma 2.2 here below. To classify transforma-
tions between hypergeometric equations, we have to look at the cases when the pull-backed Fuchsian
equation has at most 3 singular points. This restriction allows us to investigate all possible pull-back
transformations between hypergeometric equations.

Ultimately, the list of pull-back transformations of hypergeometric differential equations (and of their
hypergeometric solutions) is the following.. Classical algebraic transformations of hypergeometric functions due to Gauss, Euler, Kummer, Pfaff

and Goursat. These include fractional-linear transformations, quadratic transformations, and Gour-
sat’s transformations of degree 3, 4 and 6.. Transformations of hypergeometric equations with an abelian monodromy group. This is a degenerate
case; the hypergeometric equations have 2 (rather than 3) actual singularities.. Transformations of hypergeometric equations with a dihedral monodromy group.. Transformations of algebraic Gauss hypergeometric functions.. Transformations of hypergeometric functions that are expressible as (incomplete) elliptic integrals.. Transformations of hypergeometric equations with the local exponent differences being $1/k_{1},1/k_{2}$ ,
$1/\mathrm{f}\mathrm{o}$ , where $k_{1}$ , $k_{2}$ , $k_{3}$ are positive integers such that $1/k_{1}$ +1/&2 +1/&3 $<1$ . We refer to the
corresponding hypergeometric functions as hyperbolic hypergeometric functions.

The classification scheme is presented in Section 3. We follow the Riemann-Papperitz approach [AAR99,
Sections 2.3 and 3.9]. In Section 4 we outline most interesting types of algebraic transformations.

2 Preliminaries
The hypergeometric differential equation is [AAR99, Formula (2.3.5)]:

$z$ (1-z) $\frac{d^{2}y(z)}{dz^{2}}+(C-(A+B+1)z)$ $\frac{dy(z)}{dz}-ABy(z)=0.$ (6)

This is a Fuchsian equation with 3 regular singular points z—0, 1 and $\infty$ . The local exponent differences
at these points are (up to a sign) 1-C C-A-B and $A-B$ respectively. A basis of solutions for (6) is

$2\mathrm{F}1$ ( $|z$). $z^{1-C}2\mathrm{F}_{1}$ $(^{1+A-C,1+B-C}2-C|z)$ (7)

A pull-back transformation of the hypergeometric equation has the form

$z\mapsto\varphi(x)$ , $y(z)\mapsto \mathrm{Y}(x)=\theta(x)y(\varphi(x))$ , (8)

where $\varphi(x)$ and $\theta(x)$ have the same meaning as in formula (1). Geometrically, by such a transformation
we pull-back the hypergeometric equation on the projective line $\mathrm{P}_{z}^{1}$ to a differential equation on the
projective line $\mathrm{P}_{x}^{1}$ , with respect to the finite covering $\varphi$ : $\mathrm{P}_{x}^{1}arrow \mathrm{P}_{z}^{1}$ determined by the rational function
$\varphi(x)$ . We use the notations $\mathrm{P}_{x}^{1}$ , $\mathrm{P}_{\mathrm{z}}^{1}$ throughout the paper.

Pull-back transformations (8) between hypergeometric equations and algebraic transformations (1) of
Gauss hypergeometric functions are related as follows.
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Lemma 2.1 1. Suppose that pull-back transfo rmation (8) of hypergeometric equation (6) is a hyper-
geornetrec equation as well (with the new indeterminate $x$), and that the transfo rmed equation has
non-trivial monodromy. Then, possibly after fractional-linear transformations on $\mathrm{P}_{x}^{1}$ and $\mathrm{P}_{z}^{1}$ , there is
an identity of the for$m(1)$ between hypergeometric solutions of tuto hypergeometric equation$s$:

2. Suppose that hypergeometric identity (1) holds in some region of the complex plane. Let $\mathrm{Y}(x)$ denote
the le$fl$-hand side of the identity. If $\mathrm{Y}’(x)/\mathrm{Y}(x)$ is not a rational function of $x$ , then the transformation
(8) converts the hypergeometric equation (6) into the hypergeometric equation for $\mathrm{Y}(x)$ .

Proof. In the setting of the first statement, the transformed equation has either a logarithmic point
or a singular point with non-integer local exponent difference. Such a point $P\in \mathrm{P}_{x}^{1}$ must lie above a
point $Q\in\{0,1, \infty\}\subset I\mathrm{P}_{z}^{1}$ . By suitable fractional-linear transformations on $\mathrm{P}_{x}^{1}$ and $\mathrm{P}_{z}^{1}$ one can keep the
hypergeometric form of differential equations, and achieve that $P$ is the point $x=0$ and that $Q$ is the
point $z=0.$ Then identification of two hypergeometric solutions with the local exponent 0 and the value
1 at (respectively) $x=0$ and $z=0$ gives a two term identity as in formula (1).

For the other statement, we have 2 second-0rder differential equations for the left-hand side of (1): the
hypergeometric equation for $\mathrm{Y}(x)$ , and pull-back transformation (8) of the hypergeometric equation (6).
If these two equations are not $\mathbb{C}(x)$-proportional, then we can combine them to a first-0rder differential
equation $\mathrm{Y}’(x)=r(x)\mathrm{Y}(x)$ with $r(x)\in \mathbb{C}(x)j$ this contradicts the condition on $\mathrm{Y}’(x)/\mathrm{Y}(x)$ . $\mathrm{I}$

Since any Fuchsian equation with 3 singular points can be converted to a hypergeometric equation by
a fractional-linear transformation [AAR99, Section 2.3], we essentially look for the pull-back transforma-
tions of hypergeometric equations into Fucshian equations with (at most) 3 singular points. Here is how
the singular points and local exponents alter under pull-back transformation (8).

Lemma 2.2 Let $\varphi$ : $\mathrm{P}_{x}^{1}arrow \mathrm{P}_{z}^{1}$ be a finite covering. Let $H_{1}$ denote a Fuchsian equation on $\mathrm{P}_{z}^{1}$ , and let $H_{2}$

denote the pull-back transfor mation of $H_{1}$ under (8). Let P $\in \mathrm{P}_{x}^{1}$ , Q $\in \mathrm{P}_{z}^{1}$ be points such that $\varphi(P)=Q.$

1. If the point $Q$ is a regular point for $H_{1}$ , then the point $P$ is a regular point for $H_{2}$ only if the covering
A is unramified at $P$ .

Z. If the point $Q$ is a singular point for $H_{1}$ , then the point $P$ is a regular point for $H_{2}$ only if the local
exponent difference at $Q$ is equal to $1/k$ , uthere $k$ is the branching index of/’ at $P$ .

3. Let $d$ denote the degree of $\mathrm{P}$ , and $let—$ denote a set of three points on $\mathrm{P}_{z}^{1}$ . If all branching points of
? lie above —, then there are exactly $d+2$ distinct points on $\mathrm{P}_{x}^{1}$ $above—$ . Otherwise there are more
than $d+2$ distinct points above —.

Proof. Recall that the local exponent difference for regular points is necessarily 1. Let $p$, $q$ denote the
local exponents for $H_{1}$ at the point $Q$ . Let $k$ denote the branching index of $\varphi$ at $P$ , and let $m$ denote
the order of $\theta(x)$ at $P$ . Then the local exponents for $H_{2}$ at $P$ are equal to $kp+m$ and $kq+m,$ so the
local exponent difference gets multiplied by $k$ . If the point $Q$ is regular, the point $P$ can be regular only
if $k=1.$ If $Q$ is singular, then $P$ is regular only if $|p-q|=1/k$ . The first two statements follow.

The third part is a purely algebro geometric statement. By Hurwitz formula [Har77, Corollary 2.4],
the total branching degree is 2 $(d-1)$ . Therefore, there are at least $3d-2(d-1)=d+2$ distinct points
above —; this is the exact number of points if ? branches $\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e}---$ only. $\iota$

3 The classification scheme
We classify all tw0-term identities (1) of Gauss hypergeometric functions (and pull-back transformations
between hypergeometric equations) in the following five principal steps:

1. Let $H_{1}$ denote hypergeometric equation (6), and let $H_{2}$ denote the pull-backed differential equation
under (8). Let $S$ denote the number of singular points of $H_{2}$ , $\mathrm{l}\mathrm{e}\mathrm{t}---\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ the subset $\{0, 1, \infty\}$ of $\mathrm{P}_{z}^{1}$ ,
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and let $d$ denote the degree of the covering $\varphi$ : $\mathrm{P}_{x}^{1}arrow \mathrm{P}_{z}^{1}$ in (8). We consequently assume that exactly
$N\in\{0,1,2,3\}$ of the three local exponent differences for $H_{1}$ $\mathrm{a}\mathrm{t}---\mathrm{a}\mathrm{r}\mathrm{e}$ restricted.

2. In each assumed case, use Lemma 2.2 and determine all possible combinations of the degree $d$ and
local exponent differences for $H_{1}$ . The restricted local exponent differences have the form $1/k$ , where
$k$ is a positive integer. Let $k_{1}$ , $\ldots$ , $k_{N}$ denote the denominators of the restricted differences. Then

$S \geq d+2-\sum_{j=1}^{N}\lfloor \mathrm{r}\rfloor$ (9)

Since we wish $S\leq 3,$ we get a restrictive inequality in integers. To skip specializations of the cases
with smaller $N$ , we may assume that $d \geq\max\{k_{j}\}_{j=1}^{N}$ . A preliminary list of possibilities can be
obtained by dropping the rounding down in (9) and using the weaker but more convenient inequality

$\frac{1}{d}+\sum_{j=1}^{N}\frac{1}{k_{j}}\geq 1.$ (10)

3. For each combination of $d$ and local exponent differences for Hi, determine possible branching patterns
for $\varphi$ such that the transformed equation $H_{2}$ would have at most three singular points. In most cases
we cannot allow branching points outside —, and we have to take the maximal number $\lfloor d/k_{j}\rfloor$ of
regular points above the point with the local exponent difference $1/k_{j}$ .

4. For each possible branching pattern, determine all rational functions $\varphi(x)$ which determine a covering
with that branching pattern. For $d\leq 6$ this can be done with a computer by a naive method
of undetermined coefficients. In [Vid04], a more appropriate algorithm is introduced which uses
differentiation of $\varphi(x)$ . This problem may have no solutions, or there may be several solutions (even
up to ra tional-linear transformations). To deal with infinite families of branching types, we can give
a general, algorithmic or explicit characterization of the corresponding coverings.

5. Once we know a covering $\varphi(x)$ , it is straightforward to compose it with relevant fractional-l neal

transformations and derive identities (1). According to the proof of the first part of Lemma 2.1, we
consider all singular points on $\mathrm{P}_{z}^{1}$ above $\{0, 1, \infty\}\subset \mathrm{P}_{z}^{1}$ and move them to $x=0.$ If the transformed
equation has less than 3 actual singular points, one can consider any point above $\{0, 1, \infty\}\subset$ ?$z1$ in
this manner. There are two identities (possibly the same up to transforming free parameters) for
each possibility to settle the point $x=0$ above $z=0,$ since both solutions in (7) can be identified
with corresponding solutions of the transformed equation. The factor $6\{\mathrm{x}$) in (8) should shift local
exponents at potentially regular points to the characteristic values 0 and 1. It is easy to determine
this factor for each identity (1). Riemann’s $P$-notation is very convenient for these purposes [AAR99,
Section 3.9]. Parameters of hypergeometric functions are determined by local exponent differences.

Now we sketch appliance of the above procedure. We may assume $k_{1}\leq k_{2}\leq k_{3}\leq d.$ We disregard the
case $k_{1}=1;$ so we ignore here transformations of degenerate hypergeometric equations, with two actual
singularities. (Note that logarithmic local solutions cannot be transformed to hypergeometric series.)
Most interesting cases of algebraic transformations are illustrated in Section 4.

When $N=0,$ i.e., when no local exponent differences are restricted, then $d=1$ by formula (10). We
get Pfaff’s and Euler’s fractional-linear transformations [AAR99, Theorem 2.2.5].

When $N=1,$ the only non-degenerate case is $k_{1}=2$ , $d=2.$ There we have classical quadratic
transformations [Erd53, Sections 2.1.5, 2.11], [AAR99, Section 3.9].

When $N=2,$ the most interesting possibilities are presented in Table 1. One non-degenerate case is
missing: $k_{1}=2$ , $k_{2}=2$ , $d$ any. Then the monodromy group of $H_{1}$ is dihedral; local exponent differences
for $H_{1}$ are $($ 1/2, 1/2, $p)$ , and for $H_{2}$ they are $($ 1/2, 1/2, $dp)$ for any $d$, or (1, $(1/2, dp/2)$ for even $d$. Apart
from this dihedral case, the first four columns of Table 1 form a snapshot after Step 3 in our scheme. The
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–

$(1/k_{1},1/k_{2}, p)$ above $d$ the re lar $\mathrm{s}$

. gul points composit.on
$($ 1/2, 1/3, $p)$ $\overline{(}1\overline{/}2$ , $p$ , $2p$) 3 $2+1=3=2+1$ indecomposable
$($ 1/2, 1/3, $p)$ $(1/3, p, 3p)$ 4 $2+2=3+1=3+1^{\cdot}$ndecomposable
$($ 1/2, 1/3, $p)$ $(/3, 2p, 2p)$ 4 $2+2$ $=3+1=2+2$ no covering
$($ 1/2, 1/3, $p)$ $(p, p, 4p)$ 6 $2+2+2$ $=3+$ $=4+1+1$ 2 $\mathrm{x}3$

$($ 1/2, 1/3, $p)$ $(2p, 2p, 2p)$ 6 $2+2+2=3+3=2+2+2$ 2 $\mathrm{x}$ $3$ or $3\cross 2$

$(1/2,1/3, p)$ , $2p$, $3p)$ 6 $2+2+2=3+3=3+2+1$ no covering
$($ 1/2, 1/3, $p)$ , $p$ , $2p$) 4 $2+2=4=2+1$ $+1$ 2 $\mathrm{x}$ $2$

$($ 1/3, 1/3, $p)$ $(p, p, p)$ 3 $3=3=1+1+1$ indecomposable

Table 1: Transformations of hypergeometric functions with 1 free parameter

notation for branching pattern gives $d+2$ branching indices for the points above —; branching indices
at points in the same fiber are separated by the $+$ signs, different fibers are respectively separated by
the $=$ signs. Step 4 of our scheme gives at most one covering (up to ffactional-linear transformations)
for each branching pattern. Possible compositions of small degree coverings are easy to list and identify.
Ultimately, Table 1 yields precisely the classical transformations of degree 3, 4, 6 due to Goursat [GOu81].
Formulas $(3)-(5)$ are examples of classical transformations for the three indecomposable coverings.

When $N=3,$ we have the following three very distinct cases:. $1/k_{1}+$ $1/k2+1/k_{3}>1.$ The monodromy groups of $H_{1}$ and $H_{2}$ are finite, the hypergeometric functions
are algebraic. The degree $d$ is unbounded. The most important transformations are implied by
Klein’s theorem [Kle78]: any hypergeometric equation with a finite dihedral, tetrahedral, octahedral
or icosahedral monodromy group is a pull-back transformation of a standard hypergeometric equation
with that monodromy group. The local exponent differences for standard equations are, respectively:
(1/2, 1/2, 1/3, (1/2, 1/3, 1/3), (1/2, 1/3, 1/4) or (1/2, 1/3, 1/5).. $1/k_{1}+1/k_{2}+$ l/k3 $=1.$ Non-trivial hypergeometric solutions of $H_{1}$ are elliptic integrals. The degree
$d$ is unbounded, different transformations with the same branching pattern are possible. The most
interesting transformations pull-back the equation $H_{1}$ into itself, so that $H_{2}=H_{1}$ .. $1/k_{1}+1/k_{2}+1/k_{3}<1.$ Here we have transformations of hyperbolic hypergeometric functions. The
list of these transformations is finite [Vid04], the maximal degree of their coverings is 24.

4 Explicit transformations
Special cases of non-classical transformations of Gauss hypergeometric functions are extensively con-
sidered in [Vid04] and upcoming papers of the author, including transformations of the very explicit
degenerate hypergeometric functions. Here we illustrate most interesting non-classical transformations.

Algebraic Gauss hypergeometric functions is a classical subject. A convenient way to represent
algebraic hypergeometric functions is to transform them to radical functions, for example:

$2\mathrm{F}1$ $(^{1/4-1/12}2/3| \frac{x(x+4)^{3}}{4(2x-1)^{3}})=\frac{1}{(1-2x)^{1/4}}$ , $2 \mathrm{F}1(^{1/6,-1/6}1/4|\frac{27x(x+1)^{4}}{2(x^{2}+4x+1)^{3}})=\frac{(1+2x)^{1/4}}{\sqrt{1+4x+x^{2}}}$ ,

$2 \mathrm{F}_{1}(^{7/20,-1/20}4/5|\frac{64x(x^{2}-x-1)^{5}}{(x^{2}-1)(x^{2}+4x-1)^{5}})=\frac{(1+x)^{7/20}}{(1-x)^{1/20}(1-4x-x^{2})^{1/4}}$ .

Once a few such evaluations for each Schwartz type are known, any algebraic Gauss hypergeometric
function can be evaluated in this way using contiguous relations. These explicit evaluations can be used
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to compute pull-back transformations of standard hypergeometric equations to any other hypergeometric
equation with finite dihedral, tetrahedral, octahedral or icosahedral monodromy group, as implied by
Klein’s theorem [Kle78]. For example, Klein’s morphism for a tetrahedral hypergeometric equation with
the local exponent differences (4/3, 4/3, 2/3) is given by

$\varphi_{14}(x)=-\frac{108x^{4}(x-1)^{4}(27x^{2}-27x+7)^{3}}{(189x^{4}-378x^{3}+301x^{2}-112x+16)^{3}}$ .

Transformations between hypergeometric equations with different finite monodro my groups are usually
compositions of known transformations. One exception is the following transformation between standard
tetrahedral and icosahedral equations:

$2\mathrm{F}_{1}$ ( $|$
$x)=(1+ \frac{7-33\sqrt{-15}}{128}x)^{1/12}2\mathrm{F}_{1}$ $(_{2/3}^{11/60,-1/60}|\varphi(x))’$. (11)

where
$\varphi_{5}(x)=\frac{50(5+3\sqrt{-15})x(1024x-781-171\sqrt{-15})^{3}}{(128x+7+33\sqrt{-15})^{5}}$ .

Hypergeometric incomplete elliptic integrals are solutions of hypergeometric equations with the
local exponent differences (1/2, 1/4, 1/4, 1/2, 1/4, 1/6) or (11) 1/4, 1/3). For example, let $H_{4}$ denote
hypergeometric equation (6) with $A=0,$ $B=1/4$, $C=3/4$. It has a solution

$2z^{1f4}2 \mathrm{F}1(^{1/2,1/4}5/4|z)=\frac{1}{2}\int_{0}^{z}t^{-3/4}(1-t)^{-1/2}dt=\int_{1/\sqrt{z}}^{\infty}\frac{dx}{\sqrt{x^{3}-x}}$ . (12)

For the last integral we substituted $t\mapsto tx^{-2}$ . We recognize an integral of a holomorphic differential form
on the genus 1 curve $y^{2}=x^{3}-x.$ Let $E_{1}$ denote the corresponding elliptic curve in the standard Weier-
strass form [S1186]. If $(\psi_{x},\psi_{y})$ is an endomorphism of $E_{1}$ , then the substitution $x\vdasharrow$ $,(x, $\sqrt{x^{3}-x}$) in
(12) gives an integral of a holomorphic differential form again. Since the linear space of holomorphic differ-
entials on $E_{1}$ is one-dimensional, the transformed differential form must be proportional to $dx/\sqrt{x^{3}-x}$.
The upper integration bound does not change. Then transformation of the lower integration bound gives
the transformation $z\vdash\rangle$ $\psi_{x}(1/\mathrm{v}z\eta-2$ of the hypergeometric function into itself, up to a radical factor. It
turns out that $\#_{x}(1/\sqrt{z})^{-2}$ is a rational function and that it gives a pull-back transformation of $H_{4}$ into
itself. Conversely, any pull-back transformation of $H_{4}$ into itself is induced by an endomorphism of $E_{1}$ .
Examples of consequent algebraic transformations are:

$2\mathrm{F}_{1}(1/2,1/45/4|z)$ $=$ $\frac{\sqrt{1-z}}{1+z}2\mathrm{F}_{1}(1/2,1/45/4|\frac{16z(z-1)^{2}}{(z+1)^{4}})$

$2\mathrm{F}_{1}(1/2,1/45/4|z)$ $=$ $\frac{1-z/(1+2i)}{1-(1+2i)z}2\mathrm{F}_{1}(1/2,1/45/4|\frac{z(z-1-2i)^{4}}{((1+2i)z-1)^{4}})$

The ring of endomorphisms of $E_{1}$ is isomorphic to the ring $\mathrm{Z}[\mathrm{t}]$ of Gaussian integers [Si186], The pull-back
transformations of $H_{4}$ into itself form a group isomorphic to $\mathbb{Z}[i]^{*}/$ ( $\pm 1$ , -Li). The degree of such a trans-
formation is equal to the norm of the corresponding Gaussian integer. Computation of endomorphisms
of $E_{1}$ is equivalent to the group law computations on $E_{1}$ by the that -and-tangent method.

Similarly, pull-back transformations of hypergeometric equations with the local exponent differ-
ences 1/2, 1/4, 1/6) or 1/4, 1/4, 1/3) into themselves correspond to endomorphisms of the elliptic curve
$y^{2}=x^{3}-$ 1. The group of these transformations is isomorphic to $\mathbb{Z}[\omega]^{*}/(\pm 1, \pm\omega, 1 \mathrm{c}\mathrm{v}^{2})$ , where $\omega$ is a
primitive cubic root of unity as in (5). Additionally, hypergeometric equations with the exponent dif-
ferences 1/2, 1/4, 1/6) can be transformed to equations with the exponent differences (1/3, 1/4, 1/3) or
(2/3, 1/4, 1/6) by composing the mentioned transformations with quadratic ones.
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Transformations of hyperbolic hypergeometric functions are thoroughly studied in [Vid04].
Some of those transformations are anticipated in [HOd18], [Beu02]. The transformation list is the follow-
ing. Hypergeometric equations with the local exponent differences (1/2, 1/3, 1/7) can be transformed:
to equations with the exponent differences (1/3, 1/3, 1/7) by the degree 8 transformation

$\varphi_{8}(x)=\frac{x(x-1)(27x^{2}-(723+1392\omega)x-496+696\omega)^{3}}{64((6\omega+3)x-8-3\omega)^{7}}$ ;

to equations with the exponent differences (1/2, 1/7, 1/7) by the degree 9 transformation

$\varphi_{9}(x)=\frac{27x(x-1)(49x-31-13\xi)^{7}}{49(7203x^{3}+(9947\xi-5831)x^{2}-(9947\xi+2009)x+275-87\xi)^{3}}$ where $\xi^{2}+\xi+2=0j$

to equations with the exponent differences (1/3, 1/7, 2/7) by the degree 10 transformation

$\varphi_{10}(x)=-\frac{x^{2}(x-1)(49x-81)^{7}}{4(16807x^{3}-9261x^{2}-13851x+6561)^{3}}$;

and to equations with the differences (1/7, 1/7, 2/7) and (1/7, 1/7, 1/7) by composite transformations
of degree 18 and 24 respectively. Hypergeometric equation with the exponent differences (1/2, 1/3, 1/8)
can be transformed to equations with the differences (1/3, 1/3, 1/8) by the degree 10 transformation

$\overline{\varphi}_{10}(x)=\frac{4x(x-1)(8\beta x+7-4\beta)^{8}}{(2048\beta x^{3}-3072\beta x^{2}-3264x^{2}+912\beta x+3264x+56\beta-17)^{3}}$ where $\beta^{2}+2=0;$

and to equations with the exponent differences (1/4, 1/8, 1/8) by a composite degree 12 transformation.
There is also a composite degree 12 transformation between hypergeometric equations with the local
exponent differences (1/2, 1/3, 1/9) and (1/9, 1/9, 1/9); and the indecomposable degree 6 transformation

$\varphi_{6}(x)=\frac{4ix(x-1)(4x-2-11i)^{4}}{(8x-4+3i)^{5}}$

between hypergeometric equations with the local exponent differences (1/2, 1/4, 1/5) and (1/4, 1/4, 1/5).

to equations with the exponent differences (1/2, 1/7, 1/7) by the degree 9transformation

where $\xi^{2}+\xi+2=0j$

to equations with the exponent differences (1/3, 1/7, 2/7) by the degree 10 transformation

$\varphi_{10}(x)=-\frac{x^{2}(x-1)(49x-81)^{7}}{4(16807x^{3}-9261x^{2}-13851x+6561)^{3}}$;

and to equations with the differences (1/7, 1/7, 2/7) and (1/7, 1/7, 1/7) by composite transformations
of degree 18 and 24 respectively. Hypergeometric equation with the exponent differences (1/2, 1/3, 1/8)
can be transformed to equations with the differences (1/3, 1/3, 1/8) by the degree 10 transformation

where $\beta^{2}12=0;$

and to equations with the exponent differences (1/4, 1/8, 1/8) by acomposite degree 12 transfomation.
There is also a composite degree 12 transformation between hypergeometric equations with the local
exponent differences (1/2, 1/3, 1/9) and (1/9, 1/9, 1/9); and the indecomposable degree 6transformation

$\varphi_{6}(x)=\frac{4ix(x-1)(4x-2-11i)^{4}}{(8x-4+3i)^{5}}$

between hypergeometric equations with the local exponent differences (1/2, 1/4, 1/5) and (1/4, 1/4, 1/5).
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