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Abstract

In this paper, the Choquet integral is considered as one of the representations of piecewise
linear functions, $\mathrm{m}\mathrm{d}$ the mutual transformation with Chua’s canonical form, which is another
representation of piecewise linear functions, is given. Moreover, the transformation method into
state-variable representation, which is also a representation of piecewise linear functions, from
Choquet integral is given. Finally, the relationship with an existing generalization of Chua’s
canonical form is also investigated.

1 Introduction

Recently, a lot of studies have been made on the application of Choquet integral to model non-
dynamical multi-input/one-output systems such as multi-attribute evaluation classifification and
information fusion $[6, 16]$ . If the number of inputs is $n$ , then the number of the parameters of
Choquet integral model is $2^{n}-1$ while that of the linear model is $n$ . This brings a great power of
description to a Choquet integral model, however, it also brings a problem of complex structure.
Therefore, in order to overcome this problem, several studies have been made on the multi-level
Choquet integral $[4, 10]$ , which in general can reduce the number of the parameters hence the
complexity. So far, Murofushi and Narukawa [12] have shown that every piecewise linear function
is representable as a multi-level non-monotonic Choquet integral with constant terms. On the
other hand, there are other well-known representations of piecewise linear functions such as
Chua’s canonical form [2], state-variable representation [8] and $\max-\min$ representation $[5, 13]$ ,
and so far various researches on piecewise linear functions have been done, from practical and
theoretical points of view $[7, 8]$ . Until now, however, there have been no unifified researches. The
objectives of this research are: (i) to built a unifified theory about piecewise linear functions, (ii)
to establish the effiffifficient analysis $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\cdot \mathrm{q}\mathrm{u}\mathrm{e}$ for piecewise linear models, with the consideration
that the multi-level Choquet integral is one of the representations of piecewise linear functions.

This paper gives the mutual transformation between the Choquet integral and Chua’s canon-
ical form, and the transformation from Choquet integral to state-variable representation. More-
over, the relationship of the Choquet integral to a generalization of Chua’s canonical form [9] is
also considered.

Throughout this paper, $n$ is assumed to be a positive integer, and $X=\{1,2, \ldots,n\}$ . $2^{X}$

denotes the power set of $X$ . The cardinality of a set $B$ is denoted by $|B|$ . Moreover, $\mathrm{R}$ denotes
the set of real numbers, $\max$ and $\min$ operators are denoted $\mathrm{b}\mathrm{y}\vee \mathrm{a}\mathrm{n}\mathrm{d}\wedge$ , respectively, and for
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$x\in \mathbb{R}$ we write $x^{+}=x\vee 0$ and $x^{-}=(-x)^{+}$ . Unless otherwise noted, all vectors are column
vectors, and the inner product of two vectors $x$ , $y\in \mathbb{R}^{n}$ is denoted by $\langle$ $x$ , $y)$ . The transposition
of a matrix (or a vector) $A$ is denoted by $A^{T}$ .

2 $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\dot{\mathrm{l}}\mathrm{e}\mathrm{s}$

In this section, existing results relevant to the Choquet integral and a piecewise linear function
are introduced. Moreover Chua’s canonical form is also introduced.

2.1 Fuzzy measure and Choquet integral

This subsection describes existing results in fuzzy measure theory. The following is the defifinition
of fuzzy measure in this paper.

Definition 2.1. $[11, 4]$ A set function $\mu$ : $2^{X}arrow \mathbb{R}$ is called a fuzzy measure if
(1) $\mu(\emptyset)=0.$

$\mu$ is called a monotone fuzzy measure if it fulfifills (1) and the following:
(2) $\mu(A)\leqq\mu(B)$ whenever $A\subset B.$

Remark 1. Usually, a set function fulfilling (1) is called a non-monotonic fuzzy measure, and $\mathrm{a}$

set function fulfilling (1) and(2)is called afuzzy measure $[11, 4]$ . We, however, adopt the above
nonstandard terminology so that we deal mainly with set functions fulfifilling (1) in this paper.

Definition 2.2. [4] The Choquet integml of a function $f$ : $Xarrow \mathbb{R}$ with respect to a fuzzy
measure $\mu$ is defifined by

$( \mathrm{C})\int_{X}f(j)d\mu(j)=\sum_{k=1}^{n}f(j_{k})[\mu(A_{k})-\mu(A_{k+1})]$ (2.1)

where $\{j_{1},j_{2}, \ldots,j_{n}\}$ $=X$ , $f(j_{1})\leqq f(j_{2})\leqq\cdots\leqq f(j_{n})$ , $A_{k}=\{j_{k},j_{k+1}, \ldots,j_{n}\}$ for $k=$

$1,2$ , $\ldots$ , $n$ and $A_{n+1}=\emptyset$ .

Definition 2.3. [4] Let $\mu$ be a fuzzy measure. The M\"obius inverse of $\mu$ is the set function
$\mu^{\mathrm{m}}$ : $2^{X}arrow \mathbb{R}$ defifined as

$\mu^{\mathrm{m}}(A)=\sum_{B\subset A}(-1)^{|A\backslash B|}\mu(B)$
, $\forall A\subset X.$

Defifinition 2.4. [4] For a positive integer $k$ , a fuzzy measure $\mu$ is called $k$-additive if $\mu^{\mathrm{m}}(A)=0$

whenever $|A|>k,$ and there exists at least one subset $A\subset X$ such that $|A|=k$ and $\mu^{\mathrm{m}}(A)f$ $0$ .
In this case, we say that the order of additivity of $\mu$ is $k$ .

Proposition 2.1. [4] Let $\mu$ be a fuzzy measure on $X$ , then the following holds.

$\mu(A)=\sum_{B\subset A}\mu^{\mathrm{m}}(B)$
, $IA$ $\subset X.$

Proposition2.2. [4] The Choquet integral of a function $f$ : $Xarrow$ $\mathrm{R}$ with respect to a fuzzy
where $\mu$ is given by

(C)
$\int_{X}f(j)d\mu(j)=\sum_{A\neq\emptyset}\Lambda f(j)\mu^{\mathrm{m}}(A)A\subset Xj\in A^{\cdot}$
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2.2 Piecewise linear functions

In this subsection, the fundamental defifinitions relevant to a piecewise linear function are $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{e}\succ$

duced.

Defifinition 2.5. [17] $\mathrm{A}$ fifinite collection $\{(\alpha_{i},\beta_{i})\}_{i=1}^{l}$ of pairs of a vector $\alpha_{i}\in \mathbb{R}^{n}\backslash \{0\}$ and $\mathrm{a}$

scalar $\beta_{i}\in \mathbb{R}$ is called a linear partition of $\mathbb{R}^{n}$ if it fulfifills the following condition:

$(1\mathrm{p})$ if $i\neq j,$ there is no $\mathrm{A}\in \mathbb{R}$ such that $\lambda\alpha_{i}=\alpha i$ and $\lambda\beta_{i}=\beta j.$

Each $(\alpha_{i}, \beta_{i})$ is called a boundary hyperplane.
The family of region generated by a linear partition $\{(\alpha_{i},\beta_{i})\}_{i=1}^{l}$ of $\mathbb{R}^{n}$ is the family $\mathcal{R}$ of

subsets of $\mathbb{R}^{n}$ defifined as $\mathrm{R}=\{R_{I}|$ $I\subset\{1,2, \ldots, l\}$ , $\dim(R_{I})=n\mathrm{l}$ where

$R_{I}=\{xx$ $\in \mathbb{R}^{n}|_{\langle\alpha_{i\prime}x\rangle\leqq\beta_{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}i\not\in}\langle\alpha_{i},x\rangle\geqq\beta_{\dot{l}}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}i\in II’$ $\}$

Remark 2. $\mathbb{R}^{n}=\cup R$ holds.

Defifinition 2.6. [17] Let $\{(\alpha_{i}, \beta_{i})\}_{i=1}^{l}$ be a linear partition of $\mathbb{R}^{n}$ and $\mathcal{R}$ be the family of regions
generated by $\{(\alpha_{i}, \beta_{i})\}_{i=1}^{l}$ . Two regions $R_{I}$ , $R_{J}\in R$ are called(i-)neighbors if $I\triangle J=\{i\}$ .

Definition 2.7. [2] A function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ is called a piecewise-linear function if there exists
a linear partition $\{(\alpha_{i}, \beta_{i})\}_{i=1}^{l}$ of $\mathbb{R}^{n}$ which fulfifills the following condition:

(pwl) For every $R\in R,$ there exist a matrix $A\in \mathbb{R}^{m\mathrm{x}n}$ and a vector $b\in \mathbb{R}^{m}$ such that

/(z) $=Ax$ $+b,$ $\forall xx\in R.$

The right-hand side above $Ax+b$ is called the linear component of $f$ on $R$ . Moreover, $A$ is called
the Jacobian of $f$ on $R$ .
Remark 3. Every piecewise linear function is continuous. Moreover, every piecewise linear
function $f$ has infinitely many linear partition of $\mathbb{R}^{n}$ which fulfifills the condition (pwl).

The following proposition indicates that Choquet integral is a piecewise linear function.

Proposition 2.3. [12][14] Let $\mu$ be a fuzzy measure on $X$ , then the following function $\varphi_{\mu}$ : $\mathbb{R}^{n}arrow$?

$\mathbb{R}$ is a piecewise linear function
$? \mu(x_{1}, x_{2}, \ldots, x_{n})=(\mathrm{C})\int_{X}x_{j}d\mu(j)$, (2.2)

where the integrand in the $7^{\tau}ight$ hand side is j $\mapsto xj$ . Moreover, the piecewise linear function $\varphi_{\mu}$

has a linear partition $\{(e_{ij}, 0)\}_{1\leqq i<j\leqq n}$ of $\mathbb{R}^{n}$ , where $e_{ij}=(e_{ij1}, e_{ij2},$\ldots ,
$e_{ijn})$ is defined as

$e_{ijk}=\{$

1 if $k=i,$

-1 if $k=j,$

0 otherwise.

The family of regions generated by $\{(e_{ij}, 0)\}_{1\leqq i<j\leqq n}$ is $\mathcal{R}=\{R_{\sigma}\}_{\sigma\in S}$ , where $S$ is the set of
pemutations on $X$ and for $\sigma\in S$

$R_{\sigma}=$ $\{x\in \mathbb{R}^{n}| x\sigma(1)\leqq\cdots\leqq x_{\sigma(n)}\}$ .
Fuhhemore, the linear component of $\varphi_{\mu}$ on $R_{\sigma}$ is given by the $\tau\dot{\tau}ght$ hand side of (2.1) with the
substitution of $f(i_{k})=x_{\sigma(k)}$ and $jk=\sigma(k)$ , $(k=1,2, \ldots,n)$ .

Henceforth, the Choquet integral of a function $j\mapsto Xj$ with respect to a fuzzy measure $\mu \mathrm{w}\mathrm{i}\mathrm{l}$

be denoted by $\varphi_{\mu}(x)$ like as in (2.2).
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2.3 Chua’s canonical form

The expression form based on the defifinition of a piecewise linear function (Defifinition 2.7) has
problems such as a lot of parameters, the diffiffifficulty of analysis, and the immense cost of calcula-
tion. Because of these problems, Chua introduced the following expression form.

Defifinition 2.8. [2] A piecewise linear function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ possesses a Chua’s canonical form
if $f$ is expressed as

$f(x)=a+Bx$ $+ \frac{1}{2}\sum_{i=1}^{l}c_{i}|\langle\alpha_{i}, x\rangle-\beta_{i}|$ , (2.3)

where $l$ is a nonnegative integer, $B\in \mathbb{R}^{m\mathrm{x}n}$ , $\alpha_{i}\in \mathbb{R}^{n}\backslash \{0\}$ , $a\in \mathbb{R}^{m}$ , $c_{i}\in \mathbb{R}^{m}\backslash \{0\}$ , $\beta_{i}\in \mathbb{R}$

$(i=1,2, \ldots, l)$ , and $\{(\alpha_{i},\beta_{i})\}_{i=1}^{l}$ fulfifills (1p).

Chua’s canonical form is unique in the sense that, if a piecewise linear function (2.3) is
represented as

$f(x)=a’+B’x+ \frac{1}{2}\sum_{i=1}^{l’}\mathrm{q}’.|\langle\alpha_{i}’, x\rangle-\beta_{i}’|$,

then $a=a’$ , $B=B’$ , $l=l’$ and there exist a bijection $\pi:\{1,2, \ldots, l\}arrow\{1,2, \ldots, l\}$ and positive
numbers ) $1$ , $\gamma_{2}$ , $\ldots$ : $\gamma_{l}$ such that for every $i\in\{1,2, \ldots, l\}$

$c_{i}=$ $)\mathrm{j}C’\pi(i)$ , $\alpha(i$ $=\gamma_{i}^{-1}\alpha_{\pi(i)}’$ , $\beta_{i}=\gamma_{i\pi(\mathrm{i})}^{-1\prime}’$ .

Based on the observation above, throughout the paper we put on Chua’s canonical form (2.3)
the constraint that $||\alpha_{\mathrm{i}}$ $||\infty=||$ $(0_{\mathrm{i}1}, \alpha_{i2}, \ldots, \alpha_{in})||\infty=\mathrm{s}\mathrm{u}\mathrm{p}j=1,2,\ldots,n|0_{\mathrm{i}\mathrm{j}}|$ $=1$ for $i=1,2$ , $\ldots$ , $l$ .

Besides the uniqueness, Chua’s canonical form has merits such as a concise expression, $\mathrm{a}$

small number of parameters, and the explicit information on a linear partition of $f$ , which is
given as $\{(\alpha_{i}, \beta_{i})\}_{i=1}^{l}$ by $x_{i}$

’
$\mathrm{s}$ and $\mathrm{f}\mathrm{l}\mathrm{i}$ ’s in (2.3). However, as shown in Remark 5 below, there

is a demerit that a piecewise linear function does not necessarily have a Chua’s canonical form;
in other words, the class of piecewise linear functions possessing Chua’s canonical form is very
small.

Defifinition 2.9. [2] Let $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ bea piecewise linear function. $f$ is said to possess the
consistent variation property if there exists a linear partition $\{(\alpha_{i},\beta_{i})\}_{i=1}^{l}$ of $\mathbb{R}^{n}$ fulfifilling the
following condition (cv):

(cv) For every boundary hyperplane $(\alpha_{i}, \beta_{i})$ , there exists a matrix $C_{i}\mathrm{E}$ $\mathbb{R}^{m\mathrm{x}n}$ such that, for
every pair of $\mathrm{z}$-neighboring regions $(R^{+}R^{-})iI’ iI$

’ it holds that

$A_{iI}^{+}-A_{iI}^{-}=C_{i}$ ,

where $A_{iI}^{+}$ and $A_{iI}^{-}$ are the Jacobians on $R_{iI}^{+}$ and $R_{iI}^{-}$ , respectively,

$R_{iI}^{+}=\{x\in \mathbb{R}^{n}|\langle\alpha_{l},x\rangle\geqq\beta_{l}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}l\in I\cup$

{
$\langle\alpha_{l},x\rangle\leqq\beta_{l}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}l\not\in I\cup\{$ii$\}$

}’ $\}$ ,

$R_{iI}^{-}=\{x$ $\in \mathbb{R}^{n}|_{\langle\alpha_{l},x\rangle\leqq\beta_{l}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}l\not\in I}\langle\alpha_{l},ox\rangle\geqq\beta_{l}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}l\in.I$

,
$\}$ ,

and $I\subset\{1,2, \ldots, l\}\mathrm{s}$ $\{i\}$ .
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Remark 4. When (cv) is fulfilled, there exists a unique vector $c_{\mathrm{i}}\in \mathbb{R}^{m}$ such that $C_{i}=c_{i}\alpha_{i}^{\tau_{1}}$

Moreover, this $c_{i}$ coincides with the constant vector $c_{i}$ in the right-hand side of (2.3).

Proposition 2.4. [2] A piecewise linear function f : $\mathbb{R}^{n}$ ” $\mathbb{R}^{m}$ possesses a Chua’s canonical
form if and only if f possesses the consistent variation property.

Remark 5. A piecewise linear function does not necessarily possess a Chua’s canonical form [2].
$c_{i}|\langle\alpha_{i}, x\rangle-\beta_{i}|$ in (2.3) expresses the variation of the linear component of $f$ when crossing over the
boundary hyperplane $(\alpha_{i}, \beta_{i})$ . Chua’scanonical form, equivalently the condition (cv), requires
that this variation is consistent independent of the crossing point over $(\alpha_{i}, \beta_{i})$ . Clearly, it is $\mathrm{a}$

very strong condition.

2.4 State-variable representation

van Bokhoven has introduced a new expression form of a piecewise linear function from a view-
point of nonlinear circuit theory.

Definition 2,10. [8] The correspondence $f$ from $x\in \mathbb{R}^{n}$ to $y\in \mathbb{R}^{m}$ is called a complementa rity
comspondence if there exist a nonnegative integer $k$ and matrices $A\in \mathbb{R}^{m\mathrm{x}n}$ , $B\in \mathbb{R}^{m\mathrm{x}k}$ ,
$C\in \mathbb{R}^{k\mathrm{x}n}$ , $D\in \mathbb{R}^{k\mathrm{x}k}$ , and vectors $q$

$\in \mathbb{R}^{m}$ , $h\in \mathbb{R}^{k}$ such that

$y=Ax$ $+Bu+g,$

$j=Cx$ $+Du+h,$

$u$ , $j\geqq 0,$ $\langle$ $u$ , j) $=0.$

The vectors $u$ and $i$ are called the $state- var\cdot ables$, $\mathrm{m}\mathrm{d}$ the expression using these state-variables
is called a state variable representation.

The state-variable representation has advantages such as the ability to express all the piece-
wise linear functions and, moreover, the ability to express correspondences, or multivalued
functions, which map each value of $x$ to one or more values for $y$ . On the other hand, it
has at least two disadvantages. One is that function values cannot be calculated easily. The
problem to fifind $y$ for each $x$ results in a linear complementarity problem (Defifinition 2.11
below) by substituting $q=Cx+h$; that is, in order to calculate a function value, we must solve
the linear complementarity problem each time. Another disadvantage is the lack of $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}_{8}$

to fifind a representation with minimum dimensional state-variables. A piecewise linear function
has infifinitely many state-variable representations, and the dimensions of their state-variables
are generally different; a method to fifind a minimum dimensional representation (the minimum
realization problem of state-variable representation) has not been clarified.

Defifinition 2.11. $[3][8]$ For a given matrix $D\in \mathbb{R}^{k\mathrm{x}k}$ and vector $q\in \mathbb{R}^{k}$ , the problem to fifind
apair of vectors $j$ and $u$ that fulfifill the following conditions is called a linear $complementar\dot{\tau}ty$

problem.

$j=Du+q,$ (2.4a)
$u$ , $j\geqq 0,$ $\langle u,j\rangle=0.$ (2.4b)

The constraint (2.4b) is called complementarity condition.

The coeffiffifficient matrix $D$ in (2.4a) is classifified according to properties of the linear comple-
mentarity problem $[3][8]$ . matrix classes related to piecewise linear functions are introduced
especially here.
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Definition 2.12. (P) A matrix $D\in \mathbb{R}^{k\mathrm{x}k}$ is said to be a $\mathrm{P}$-matrix if all its principal minors are
positive. The class of such matrices is called Class P.
(ULT) A matrix $D\in zk\cross k$ is said to be a unit lower triangular matrix, a $\mathrm{U}\mathrm{L}\mathrm{T}$-matrix for short,
if it is a lower triangular matrix and all its diagonal elements are 1. The class of such matrices
is called Class $\mathrm{U}\mathrm{L}\mathrm{T}$ .

Clearly, Class $\mathrm{U}\mathrm{L}\mathrm{T}$ is a proper subset of Class P. The classes of complementarity correspon-
dences associated with them, however, coincide with each other (Proposition 2.5 below).

Defifinition 2.13. The class of complementarity correspondences possessing a state-variable rep-
resentation with a coefficient matrix $D$ in Class $\mathrm{P}$ [resp. $\mathrm{U}\mathrm{L}\mathrm{T}$] is called Class $\mathrm{P}$ [resp. $\mathrm{U}\mathrm{L}\mathrm{T}$].

Proposition 2.5. [8] Classes $\mathrm{P}$ and ULT of complementarity correspondences coincide with
each other.

The following proposition is important for the existence and uniqueness of solutions to the
linear complementarity problem.

Proposition 2.6. $[3][8]$ The linear complementarity problem (2.4) has a unique solution for all
$q\in \mathbb{R}^{k}$ if and only if $D$ belongs to Class P.

Furthermore, the following holds.

Theorem 2.1. [15] The class of all piecewise linear functions coincides with Class $\mathrm{U}\mathrm{L}\mathrm{T}$ , or
equivalently Class $\mathrm{P}$ , of complementarity correspondence.

2.5 $\max-\min$ representation

It is has shown that every piecewise linear function is representable as $\mathrm{a}\max-\min$ combination
of its linear components $[5, 13]$ .

Proposition2.7. $[5,13]$ Let $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ be a piecewise linear function and $\{g_{1},g_{2}, \ldots, g_{l}\}$ be
the set of all its distinct linear components, then there exists an incomparable (with respect to
$\subset)$ family $\{Sj\}j\in J$ of subsets of $\{1, 2, \ldots, l\}$ such that

$f(x)=\vee\wedge j\in Ji\in S_{j}g_{i}$
(x) $\forall x\in \mathbb{R}^{n}$ . (2.5)

The right-hand side of (2.5) is called a disjunctive normal form of $\mathrm{a}\max-\min$ polynomial in the
variables $gk$ , or simply called $\mathrm{a}\max-\min$ representation.

The above assertion is valid for vector-valued piecewise linear functions also.

Corollary 2.1. [13] Let $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ be a piecewise linear function and $\{g_{1},g_{2}, \ldots,g_{l}\}$ be the
set of all its distinct linear components, then there exists a family $\{S^{k}\}jj\in J$, $1\leqq k\leqq m$ of subsets of
$\{1, 2, \ldots, l\}$ such that

$f_{k}(oe)=\vee\Lambda_{k}!7_{k}((i)x)j\in J_{i\in S_{\mathrm{j}}}$
’

$\forall ox\in \mathbb{R}^{n}$ , $1\leqq C$ $\leqq m,$

where

$f=(f_{1}, f_{2}, \ldots, f_{m})$ , $g_{i}=(g_{1}^{(i)},g_{2}^{(i)}, \ldots,g_{m}^{(i)})$ for $1\leqq i\leqq l.$
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3 Mutual transformation

This section gives the mutual transformation between Choquet integral and Chua’s canonical
form. Moreover, the transformation method ffom Choquet integral to state-variable representa-
tion is also given.

3.1 From Choquet integral to Chua’s canonical form

In the case of Choquet integral, the consistent variation property is expressed as follows.

Lemma 3.1. Let $\mu$ be a fuzzy measure. Then the following three $\omega nditions$ are equivalent to
each other.

(i) The Choquet integral $\varphi_{\mu}(x)$ possesses the consistent $var\dot{\tau}ation$ property.

(ii) For every pair $i$ , $j\in X$ with $i<j,$ there exists $c_{ij}\in \mathbb{R}$ such that for all $A\subset X\backslash \{i,j\}$

$\mu(\{i,j\}\cup A)-\mu(\{j\}\cup A)-\mu(\{i\}\cup A)+\mu(A)=c_{ij}$ .

(iii) $\mu^{\mathrm{m}}(A)=0$ for all $A\subset X$ with $|A|>2.$

The following theorem follows from Defifinition 2.4, Proposition 2.4, and Lemma 3.1.

Theorem 3.1. Let $\mu$ be a fuzzy measure. Then the Choquet integral $\varphi\mu(x)$ possesses Chua’s
canonical form if and only if $\mu$ is at most 2-additive. Moreover, Chua’s canonical $fom$ of the
Choquet integral is given as

$\varphi_{\mu}(x)=$
$\mathrm{L}$

$(\mu^{\mathrm{m}}(\{i\})+$ $\mathrm{t}$

$\mathrm{p}$

$\mu^{\mathrm{m}}(\{i,j\})$) $x_{i}- \frac{1}{2}\sum_{i<j}\mu^{\mathrm{m}}(\{i, \mathrm{y}\})\cdot|\langle eij=$
$x\}$ $|$ .

Example 3.1. Let $X=\{1,2,3,4\}$ , and consider the following fuzzy measure $\mu$ :

$\mu(\{1\})=\mu(\{2\})=\mu(\{3\})=1$ , $\mu(\{4\})=3,$

$\mu(\{1,2\})=\mu(\{2,3\})=2$ , $\mu(\{1,4\})=4,$

$\mu(\{1,3\})=\mu(\{2,4\})=\mu(\{3,4\})=3,$

$\mu(\{1,2,3\})=4$ , $\mu(\{2,3,4\})=3,$

$\mu(\{1,2,4\})=4$, $\mu(\{1,3, 4\})=5$ , $\mu(X)=5.$

Obviously, $\mu$ is 2-additive and Chua’s canonical form of $\varphi_{\mu}(x)$ is given as

$\varphi_{\mu}(x)=1.5x_{1}+0.5x_{2}+x_{3}+2x_{4}-0.5|x_{1}-x_{3}|+0.5|x_{2}-x_{4}|+0.5|x_{3}-x_{4}|$ .

3.2 Rom Chua’s canonical form to Choquet integral

The following $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}$ gives the transformation from Chua’s canonical form to the Choquet
integral.

Theorem 3.2. Let a piecewise linear function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ possess a Chua’s canonical form
(2.3). Then $f$ is representable as a Choquet integral $\varphi_{\mu}$ if and only if the parameters $a$ , $\alpha_{k}’ s$,
and $\beta_{k}’ s$ of (2.3) fulfill the following three conditions:



$\mathrm{t}\mathrm{t}$ \S

$\mathrm{o}$ $a=0.$. there exists an injection $\rho$ : $\{1, 2, \ldots, l\}arrow$ $(\begin{array}{l}X2\end{array})$ such that $x_{\mathit{1}}=e_{ij}$ for $\rho(k)=\{i,j\}$ and
$i<j,$ where $(\begin{array}{l}X2\end{array})$ denotes the family of all two-element subsets of $X$ .

$\iota$ $\mathrm{j}3_{k})=0$ for all $k\in\{1,2, \ldots,l\}$ .

In this case, the M\"obius inverse of the fuzzy measure $\mu$ is given as follows:

$\mu^{\mathrm{m}}(A)=\{$

0 if $A=\emptyset$ ,

$b_{i}+ \frac{1}{2}\sum_{j\neq i}c(\{i,j\})$ if $A=\{i\}$ ,

$-c(\{i,j\})$ if $A=\{i,j\}$

and $i\neq j,$

0 $if|$ $4|>2,$

(3.1)

where $b_{i}$ is the $i$ -th component of $B\in \mathbb{R}^{1\cross n}$ in (2.3),

$\mathrm{c}(\{i,j\})=\{$
$c_{k}$ if $\rho(k)=\{i,j\}$ ,
0 otherwise,

and $c_{k}\in \mathbb{R}^{1}\backslash \{0\}$ is the $k$ -th coefficient in (2.3). Moreover, $\mu$ is monotone if and only if for
every $A\subset X$ and for every $i\in A$

$b_{i}- \frac{1}{2}\sum_{j\in A\backslash \{i\}}c(\{i,j\})$ $+ \frac{1}{2}\sum_{j\not\in A}c(\{i,j\})\geqq 0.$
(3.2)

pmof. The first assertion and Eq. (3.1) follow from Theorem 3.1 $\mathrm{m}\mathrm{d}$ the uniqueness of Chua’s
canonical form. Hence it is suffiffifficient to show the monotonicity condition (3.2). In order to show
this, we use the following equivalence [1]:

$\mu$ is monotone $\Leftrightarrow$ $IA$ $\subset X$ , $li$
$\in A;\sum_{B:i\in B\subset A}\mu^{\mathrm{m}}(B)\geqq 0.$

Then we obtain the monotonicity condition (3.2) by using (3.1) as follows:

$\sum_{B:i\in B\subset A}\mu^{\mathrm{m}}(B)=\sum_{B:i\in B\subset A}\mu^{\mathrm{m}}(B)$

$|B|\leqq 2$

$=b_{i}+ \frac{1}{2}\sum_{j\neq i}c(\{i,j\})$

$- \sum_{j\in A,j\neq i’}c(\{i,j\})$

$=b_{i}- \frac{1}{2}\sum_{j\in A\backslash \{i\}}c(\{i,j\})+\frac{1}{2}\sum_{j\not\in A}c(\{i,j\})$
.

$\square$

Remark 6. The fuzzy measure $\mu$ in Theorem 3.2 is obtained by an application of Proposition 2.1
to (3.1) as follows:
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$\mu(A)=\{$

0if$A=\emptyset$ ,

$b_{i}+ \frac{1}{2}\sum_{j\neq i}$
$\mathrm{c}(\{i,j\})$ if $A=\{i\}$ ,

$b_{i}+b_{j}+ \frac{1}{2}\mathrm{x}\mathrm{k})$ $c( \{i, k\})+\frac{1}{2}Ikj$
$c(\{j, k\})$ if $A=\{i,j\}$ and $i\neq j,$

$\sum_{B\subset A}\mu(B)-(|A|-2)\sum_{i\in A}\mu(\{i\})$
if $|A|>2.$

$|B|=2$

3.3 State-variable representation of Choquet integral

In this section, state-variable representation of Choquet integral is given. Notice that, $\sin \mathrm{o}\mathrm{e}$

a piecewise linear function has infinitely many state-variable representations as mentioned in
Subsection2.4, the representation given here is one of them.

We use the following binary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\preceq \mathrm{o}\mathrm{n}2^{X}$ . For $E$ , $F\subset X,$

$E\preceq F$ \Leftrightarrow def $E=\{f\in F|f\leqq e\}$ for some $e\in F,$

where $\leqq \mathrm{i}\mathrm{n}$ the right-hand side above is the ordinary order $\leqq \mathrm{o}\mathrm{n}\{1,2, \ldots, n\}=X.$

Example 3.2. $E\preceq\{2,3,5\}$ iffff $E=\{2\}$ , {2, 3}, or {2, 3, 5}.
Next, one of the state variable representations of Choquet integral is given.

Theorem 3.3. Every Choquet integral $\varphi_{\mu}(x)$ possesses the following $state- va7\dot{\tau}able$ representa-
tion:

$\varphi_{\mu}(x)=Ax+Bu,$

$j=Cx$ $+Du$ , (3.3)
$u$ , $j\mathrm{g}$ $0$ , $\langle u$ , $j)$ $=0,$

where if we $wr\dot{\mathrm{v}}te\mathfrak{X}$ $=$ $\{E\subset X||E|\mathrm{i} 2\}$ ,

$j=(j_{E})_{E\in X}\in \mathbb{R}^{|\mathrm{X}|}$ ,
$u$ $=(u_{E})_{E\in X}\in \mathbb{R}^{|X|}$ ,

$A=(a_{i})_{i\in X}\in \mathbb{R}^{1\mathrm{x}n}$ : $a_{i}=E$ $\mu^{\mathrm{m}}(F)$ ,
$F[succeq]\{i\}$

$B=(b_{E})_{E\in X}\in \mathbb{R}^{1\cross|\mathrm{X}|}$ : $b_{E}=-$ $5$ $\mu^{\mathrm{m}}(F)$ ,
$F[succeq] E$

$C=(c_{E,j})_{E\in X,j\in X}\in \mathbb{R}^{|X|\mathrm{x}n}$ : $c_{E,j}=\{$

1 if $j= \max$E,
-1 if $j= \min E$ ,
0otherwise,

$D=(d_{E,F})_{E,F\in X}\in \mathbb{R}^{|X|\mathrm{x}|X|}$ : $d_{E,F}=\{$
1if $F\preceq E,$

0 otherwise.

The coefficient matrix $D$ above is a $\mathrm{P}$-matrix. Moreover, if $u=$ $(uE_{1}, uE_{2}, \ldots, uE_{N})^{T}$ , where
$N=|$I $|$ , md if $i\leqq i$ whenever $E_{i}\preceq Ej$ , then $D$ is a ULT-matrix; for example, $\mathrm{m}$ arrangement
of the members of $\mathfrak{X}$ in cardinality-ascending order, $\mathrm{i}.\mathrm{e}.$ , $i\leqq j$ whenever $|E_{i}|$ $\leqq|Ei|$ , makes $D\mathrm{a}$

$\mathrm{U}\mathrm{L}\mathrm{T}$-matrix (See the following example).
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Example 3.3. Let $X=\{1,2,3\}$ , and consider the following fuzzy measure $\mu$ :

$\mu(\{1\})=\mu(\{2\})=1,$ $\mu(\{3\})=2$ , $\mu(\{1,2\})=\mu(\{2,3\})=2,$ $\mu(\{1,3\})=3$ , $\mu(X)=4.$

The coefficients in the state-variable representation (3.3) of the Choquet integral with respect to
$\mu$ are given as follows:

$A=(1$ -1 0$)$ , $B=(-1 0 0 -1)$ , $C–$ $(\begin{array}{lll}-1 \mathrm{l} 00 -1 1-1 0 1-1 0 1\end{array})$ , $D=(\begin{array}{llll}1 0 0 00 1 0 00 0 1 01 0 0 1\end{array})$ :

where $u=(u\{1,2\}, u\{2,3\}, u\{1,3\},ux)^{T}$ .

4 Generalization of Chua’s canonical form

In Section 3, it was shown that at most 2-additivity of fuzzy measure is a necessary and sufficient
condition for Choquet integral to possess Chua’s canonical form. In this section, we investigate
the relationship between $k$-additivity of fuzzy measure and a high-level canonical form of Choquet
integral. The high-level canonical form of piecewise linear functions is a generalization of Chua’s
canonical form introduced by Lin et al. [9]. Our observation shows that the high-level canonical
form is not suitable as $\mathrm{a}$ ”canonical form.”

4.1 High-level canonical form

In this subsection, existing results about the generalized Chua’s canonical form are introduced,

and several properties are described. Note that the following defifinition is essentially same as
that in [9].

Definition4.1. An affine function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ is called Oth-level canonical. For a positive
integer $K$ , apiecewise linear function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ is called $K\mathrm{t}\mathrm{h}$-level canonical if there exist
a nonnegative integer $l$ , a matrix $C\in \mathbb{R}^{m\mathrm{x}l}$ , and $(K-1)\mathrm{t}\mathrm{h}$-level canonical piecewise linear
functions $g:\mathbb{R}^{n}arrow \mathbb{R}^{m}$ , $h:\mathbb{R}^{n}arrow \mathbb{R}^{l}$ such that

$f(x)=g(x)+C|h(x)|$ lx $\in \mathbb{R}^{n}$ , (4.1)

where $|h|=$ $(|h_{1}|, |h2|, \ldots, |h\mathrm{g}|)T$ for $h=(h_{1}, h_{2}, \ldots, h_{l})^{\tau_{\mathrm{t}}}$

Remark7. By the defifinition above, obviously every $K\mathrm{t}\mathrm{h}$-level canonical piecewise linear func-
tion is $(K+1)\mathrm{t}\mathrm{h}$-level canonical.

By definition, a piecewise linear function $f$ : $\mathbb{R}^{n}arrow Qm$
$\mathrm{p}\mathrm{o}\mathrm{s}\Re \mathrm{s}\mathrm{s}\mathrm{a}\mathrm{e}$ a Chua’s canonical $\mathrm{f}\mathrm{o}\mathrm{m}$ if

and only if $f$ is fifirst-level canonical.
The following proposition shows that every piecewise linear function can be expressed as

(4.1).

Proposition 4.1. [9] For every piecewise linear function f there exists a nonnegative integer $K$

such that f is $Kth$-level canonical.

The following properties (i) - (iii) can be easily seen from the defifinition of high-level cmonical
form by induction. Note that the proof of (iii) uses the following well-known formulae:

$x \Lambda y=\frac{1}{2}(x+y-|x-y|)$ , $x$ $\vee y=\frac{1}{2}(x+y+|x-y|)$ .



122

Proposition 4.2. (i) If $f1$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m_{1}}$ and $f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m_{2}}$ are $K_{1}$ th- and $K_{2}$ th-level canonical,
respectively, then the product $f1\cross f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m_{1}+m_{2}}$ is $\max\{K_{1}, K_{2}\}th$-level canonical.
(ii) If $fi$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m_{\mathrm{Z}}}f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ are $K_{1}$ ih- and $K_{2}th-$ level canonical, respectively, then their
linear combination $f=\lambda fi+/f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ , where $\lambda$ , $\nu\in \mathbb{R}_{f}$ is $\max\{K_{1}, K_{2}\}th$-level canonical.
(iii) If $f1$ : $\mathbb{R}^{n}arrow \mathbb{R}$ , $f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ are $K_{1}$ th- and $K_{2}th$-level canonical, respectively, then
$f1\wedge f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ and $fi\vee f_{2}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ are $( \max\{K_{1}, K_{2}\}11)th$-level canonical.

4.2 Relation with the Choquet integral

This subsection clarififies the relationship between the level of canonical form of Choquet integral
$\varphi_{\mu}$ and the order of additivity of the fuzzy measure $\mu$ .

Theorem4.1. The Choquet integral $/\mu$ with respect to a $k$ -additive fuzzy measure $\mu$ is $a$

$\lceil\log_{2}$ $k\rceil th$-level canonical piecewise linear function, where $\lceil x\rceil e\varphi oesses$ the smallest integer
greater than or equal to $x$ .

proof. For each $A(\neq\emptyset)\subset X,$ we write $f_{A}(x)=\Lambda_{i\in}$ $\mathrm{q}p_{i}(x)$ , where $p_{i}$ is $\mathrm{t}\mathrm{n}\mathrm{e}$ projection onto
the $i$-th coordinate, $\mathrm{i}.\mathrm{e}.$ , $pi(X)=p_{i}(x_{1}, x_{2}, \ldots,x_{n})=x_{i}$ . Obviously, $p_{i}$ is a $0\mathrm{t}\mathrm{h}$-level canonical
piecewise linear function. It can be shown from Proposition 4.2 (iii) by induction that $f_{A}$ is $\mathrm{a}$

$\lceil\log_{2}$ $|A|\rceil$ th-level canonical piecewise linear function. By Proposition 2.2, the Choquet integral
$\varphi_{\mu}(x)$ with respect to a $k$-additive fuzzy measure $\mu$ is expressed as

$\varphi_{\mu}(x)=$
$\sum_{A\subset X}f_{A}(x)\mu^{\mathrm{m}}(A)$

.

$0<|A|\leqq k$

Therefore, by Proposition 4.2 (ii), $\varphi_{\mu}(x)$ is $\mathrm{a}\lceil\log_{2}$ $k\rceil \mathrm{t}\mathrm{h}$-level canonical piecewise linear function.
口

By Theorem 4.1 the Choquet integrals with respect to 3- and 4-additive fuzzy measures are
both second-level canonical piecewise linear functions, and by Theorem 3.1 neither is fifirst-level
canonical. Despite the mathematical difffference between 3- and 4-additivities, the canonicity level
cannot differentiate them. Generally, for $2^{K-1}<k<k’\leqq 2^{K}$ , the Choquet integrals with respect
to
k- and $k’$-additive fuzzy measures are both $K\mathrm{t}\mathrm{h}$-level canonical. The order of additivity of $\mathrm{a}$

fuzzy measure cannot be identifified from the canonicity level of the Choquet integral.

5 Concluding remarks

This paper has givena necessary and sufficient condition for the Choquet integral to possess
Chua’s canonical form, a necessary and suffiffifficient condition for Chua’s canonical form to be
representable as a Choquet integral, and the mutual transformation between them.

Moreover, the relationship between the generalized Chua’s canonical form and the Choquet
integral was investigated. $\mathrm{R}\mathrm{o}\mathrm{m}$ the observations in Section 4, we can conclude that the represen-
tation using absolute value signs such as(4.1)is not suitable as “canonical form” for the Choquet
integral. In addition, the canonicity level is too coarse as a scale of complexity of piecewise linear
functions. A further direction of this study will be to fifind another canonical form of piecewise
linear functions which can characterize the order of additivity of fuzzy measures.
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