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Abstract

In this paper we introduce an iterative process for finding a common element of the set of fixed
points of a nonexpansive mapping and the set of solutions of a variational inequality problem for a
monotone, Lipschitz continuous mapping. The iterative process is based on two well known methods
- hybrid and extragradient. We obtain a strong convergence theorem for three sequences generated
by this process.

1 Introduction

Let C be a closed convex subset of a real Hilbert space H and let Po be the metric projection of H onto
C. A mapping A of C into H is called monotone if

(Au - Av,u—v) 20
for all u,v € C. The variational ineguality problem is to find a u € C such that
(Au,v—u) 20

for all v € C. The set of solutions of the variational inequality problem is denoted by VI(C, A). A
mapping A of C into H is called a-inverse-strongly-monotone if there exists a positive real number a
such that

(Au — Av,u — v) 2> a|lAu - Av|®

for all u,v € C; see [1], [4]. It is obvious that an a-inverse-strongly-monotone mapping A is monotone
and Lipschitz-continuous. A mapping S of C into itself is called nonezpansive if

1Su — Svl| < lju - vi|

for all u,v € C; see [8). We denote by F(S) the set of fixed points of §. For finding an element of
VI(C, A) under the assumption that a set C C H is closed and convex and a mapping A of C into H is
o-inverse-strongly-monotone, liduka, Takahashi and Toyoda [2] introduced the following iterative scheme
by a bybrid method:

Tog =< € C

Yn = Po (T — AnAzy)

Cn={2€C:llyn — 2|l < llzn — ||}

Qn={2€C:(xp—2,2—2,) >0}

Zn+1 = Po,nQ.z
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for every n = 0,1,2,..., where A, C [a,b] for some a,b € (0,2a). They showed that if VI(C,A) is
nonempty, then the sequence {z,}, generated by this iterative process, converges strongly to Py (c, 4)Z.
On the other hand, for solving the variational inequality problem in a finite-dimensional Euclidean space
R™ under the assumption that a set C C R" is closed and convex and a mapping A of C into R" is
monotone and k-Lipschitz-continuous, Korpelevich [3] introduced the following so-called extragradient
method:

o=z € R* .

Tp = Po (zn — Azy) 1)
ZTn41 = Po (zn — AAZ,)

for every n =0, 1,2,..., where A € (0,1/k). He showed that if VI (C, A) is nonempty, then the sequences

{zs} and {Z,}, generated by (1), converge to the same point z € VI (C, A).

In this paper, by an idea of combining hybrid and extragradient methods, we introduce an iterative
process for finding a common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of a variational inequality problem for a monotone, Lipschitz continuous mapping in a
real Hilbert space. Then we obtain a strong convergence theorem for three sequences generated by this
process.

2 Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm ||-|| and let C be a closed convex subset
of H. We write z, — z to indicate that the sequence {z,} converges weakly to = and z, —+ z to indicate
that {z,} converges strongly to z. For every point £ € H there exists a unique nearest point in C,
denoted by Poz, such that ||z — Poz|| < llz — y|| for all y € C. Pc is called the metric projection of
H onto C. We know that Po is a nonexpansive mapping of H onto C. It is also known that Py is
characterized by the following properties: Poz € C and

(z — Poz,Poz - y) 2 0; (2)

llz = uli* > lle ~ Poal|® + lly — Posll® (3

for all z € H, y € C; see [8] for more details. Let A be a monotone mapping of C into H. In the context
of variational inequality problem this implies

u€eVI(C,A)©u=Ps(u—-AAu,) VYA2>0.

It is also known that H satisfies Opial’s condition [6], i.e., for any sequence {zn} with £, — z the
inequality
lﬂ‘gf”“n —z|| < h,fglggf Iz — yll

holds for every y € H with y # z.

A set-valued mapping T : H — 2H ig called monotone if for all z,y € H, f € Tz and g € Ty imply
(x—y,f—g) 2 0. A monotone mapping T : H — 2¥ is marimal if its graph G (T') is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping T is
maximal if and only if for (z,f) € H x H, (z —y,f — g) 2> 0 for every (y,9) € G(T) implies f € T'z.
Let A be a monotone, k—Lipschitz-continuous mapping of C into H and Ngv be the normal cone to C
atveC,ie Nov={we€ H: (v-u,w) > 0,Vu € C}. Define

Av+ Neov, ifveC,
Ty =
v {0, fv¢C.

Then T is maximal monotone and 0 € T'v if and only if v € VI (C, A); see [7].
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3 Strong Convergence Theorem

In this section we prove a strong convergence theorem by a combined hybrid-extragradient method for
nonexpansive mappings and monotone, k-Lipshitz-continuous mappings.

Theorem 3.1 Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and
k-Lipschitz-continuous mapping of C into H and S be a nonezpansive mapping of C into itself such that
F(S)NVI(C,A)#0. Let {z,}, {yn} and {z,} be sequences generated by

zo=z€C
Yn = Po (Zn — AnAz,)
zn = SFc (Tn — AnAyn)
n={2€ C:|lzn — zl| < l|lza — 2|}
Qn={2€C:{(zp— 2,2 —2,) 20}
| Zn+1 = Po,nQ. T

for everyn = 0,1,2,..., where {\,} C [a,b] for some a,b € (0,1/k). Then the sequences {z,}, {yn} and
{#n} converge strongly to Pg(s)nvi(c,a)%-

Proof. It is obvious that C, is closed and @, is closed and convex for every n = 0,1,2,.... As
Cp= {z €C:|lzn - .1:,,.”2 +_2 (2n = Zp,&n — 2) < 0}, we also have C,, is convex for every n = 0,1,2,....
Put t, = Po (zn — AnAyn) for every n = 0,1,2,.... Let u € F(S)NVI(C, A). From (3), monotonicity
of A and u € VI(C, A), we have

litn — u"2 € |z — Andyn - u”2 ~ ||zn = AnAyn — tn"2
= llza — ul® = |2n — tall* + 220 (Ayn, u — ta)
= ||lzn - '-‘"2 = llzn - tu”2 + 2An ((Ayn — Au,u — yn) + (Au,u — yn) + (AYn, Yn — ta))
< lizn = wll” = 120 — tall® + 2An (Atn, tn — ta)
= ||zn ~ “"2 = llzn ~ !In"z = 2(Tn — Yn)¥n — tn)_ ~llyn — tn|I2 + 2An (AYns Yn — tn)
= ||lzg — ““2 = ||lzn — ynllz - llyn - thZ + 2(Tn = AnAYn ~ Ynstn — Yn) -
Further, since y, = Po (2, — AnAz,) and A is k-Lipschitz-continuous, we have
(Zn — AnAYn — Yn,tn — Yn) v
= (Zp — AnAZp = Yn, tn — Yn) + (An ATy — AnAYn, tn — Yn)
< (MAzn — AnAyn, tn — Yn)
S Ank 120 — ynll l1tn = wall -

So, we have

fitn — ”“2 € lizn - “"2 ~ |0 - ?In"2 - ||y — tn"2 + 22k llzn = yall lita — wnll

< Nzn = ul® = 20 = vall® = ltm = tall® + X282 [z — yull® + llyn — tall®
< Mlzn —ulf? + (V2K ~ 1) [lzn — plf? @)
< lza —ul®.

Therefore from z, = St, and u = Su, we have
[lzn — ull = ||Stn — Sull < |itn — ul| < lizn — ull (5)

for every n = 0,1,2,... and hence u € C,,. So, F(S)NVI(C,A) C Cy, for every n = 0,1,2,.... Next,
let us show by mathematical induction that {z,} is well-defined and F (S)NVI(C,A4) C C,NQ, for
every n =0,1,2,.... For n = 0 we have Qg = C. Hence we obtain F (S)NVI(C,A) C CoNQp. Suppose
that zy, is given and F (S)NVI(C, A) C Cx N Qy for some k € N. Since F (S) NV I(C, A) is nonempty,
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C: N Qy, is a nonempty closed convex subset of C. So, there exists a unique element z41 € Cr N Qy such
that zx+1 = Po,ng, . 1t is also obvious that there holds (zr4+1 — 2,2 — Zg+1) 2> 0 for every 2 € Cr N Q.
Since F (S)NVI(C, A) C CrNQy, we have (Tp41 — 2,2 — Tg41) > O for z € F(S)NVI(C, A) and hence
F(S)NVI(C,A) C Qr+1- Therefore, we obtain F (S)NVI(C,A) C Cr41 N Q1.

Let tp = PF(S)nVI(C,A)w- From zn41 = Po,nq.z and tp € F (S)NVI(C, A) C CnNQn, we have

znt1 — || < lito — =| (6)

for every n = 0,1,2,.... Therefore, {z,} is bounded. We also have
llzn — ull = [|Stn — Sull < llta — ull < llzn — ull

for some u € F(S)NVI(C,A). So, {z,} and {t,} are bounded. Since 2,11 € C, N Q, C Q, and
z, = Pg, z, we have

llzn = 2|l < llEnsr — =il
for every n = 0,1,2,.... Therefore, there exists ¢ = lim ||z, — z||. Since z, = Fg,z and Zp41 € Qn, We
have

Zns1 = Tall® = llZns1 — 2| + llzn = 2l® + 2 {(Tp41 — 2,2 — z4)
= ||Tn41 — znz ~ ||za — 3"2 = 2(Ty ~ Tn41, T — Tn)

< Ienss — 2lf? ~ llzn — 2If

for every n = 0,1, 2, .... This implies that
nll)néo lZn+1 — zall = 0.
Since Zn41 € Cp, we have [|2, — Zn41|l < l|&n — Zn+1l| and hence
lza = znll < l|lZn = Zntill + 1Za41 — Znll < 2{|Enss — zall

for every n = 0,1,2,.... From [|zp41 — Zpn}l = 0, we have ||z, — 2| — 0.
For u € F(S)NVI(C, A), from (4) and (5) we obtain

l2n = ul® < lita — ull® < llza — ull® + (ALK 1) lizn ~ yall”

Therefore, we have

1
llzn — vall® < FEyvy (H:cn —ull® = flzn - u||2)
1
=~z (2 = ull = llzn ~ ul)) (lzn = ull + l1za — ul)
1
< T—ue (lzn = ull + lizn = ull) lizn — 2|l -
Since |25, — za}| = 0, we obtain z,, — y, — 0. From (4) and (5) we also have
lizn =l < [ita - ufl®
< zn = ul* = 12n = Uall® = lltn = tall® + 22nk 120 = ynll [1tn — ynl]
< N1z = ulf?* = 20 = yall® = llyn = tall® + lzn — yall® + A2 lin — tall®
< liwn = ul? + (A2E* = 1) llyn — tall” -
Therefore we have

1 2 2
tﬂ_y 25_____. Ty — U — |2 —u
it = wull* < s (e = wll = llon — wil")

T 1- iﬂ 72 Ulzn = ull = lizn = ull) (lon — ul + l|zn — ul)

1
S1= X2 k2 (llzn — ull + 120 — ull) llza = 2all -
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Since ||&n — zq|| = 0, we obtain £, —y, —+ 0. Since A is k-Lipschitz-continuous, we have Ay, — At, — 0.
From ||z, — tnl] < {|Tn — ynll + lyn — tal| we also have z,, — t,, — 0. Since

litn = Stall = litn = znll < litn — Zall + ll2n ~ zull,

we have ||t, — St,|| = 0.

As {z,} is bounded, there is a subsequence {z,,} of {z,} such that {z,,} converges weakly to some
u. We can obtain that u € F(S)NVI(C, A). First, we show u € VI(C, A). Since z, — t, — 0 and
Ty — Yn —* 0, we have {t,,} — v and {y,,} — u. Let

9, ifvgC.

Then T is maximal monotone and 0 € Tv if and only if v € VI (C, A); see [7). Let (v,w) € G(T). Then,
we have w € Tv = Av + Ngv and hence w — Av € Ngv. So, we have (v~ t,w — Av) >0forall t € C.
On the other hand, from t, = Po (z, — AnAys) and v € C we have

(Zn = AnAyn = tn,tn — ‘U) 20

Ty = {Av+ch, ifveC,

and hence

<v"‘tm fn = Zn +Ayn> 2>0.
An
Therefore from w — Av € Ngv and t,,, € C , we have
(v~ g, w) > (v —t,,, Av)

> (v —ty,, Av) ~ <v—t,,,.,t"‘ — I +Aym>

An;
= (v~ by, AV — Aly,) + (v — t5,, Aty — Ayn,) — <v =t t”‘; - >
n;

tn, — T,
Z (v —tn‘,Atﬂ‘- "Ayni) - <v""‘t”‘, —n—"x—_&> .
i

Hence, we obtain (v —u,w) >0as ¢ - 00. Since T is maximal monotone, we have u € T10 and hence
u € VI(C,A).
Let us show u € F (S). Assume u ¢ F (S). From Opial’s condition, we have

liminf ||t,, — ul| < liminf|{tn, ~ Sul
= Hminf [[tn, — Stn, + Stn, — Sul|
100
< liminf ||St,, — Sul|
1300
< liminf |j¢, — ulf.
1—00

This is a contradiction. So, we obtain 4 € F (S). This implies u € F (S)NVI(C, A).
From iy = PF(S)”VI(O’A)z yU € F(S) NVI(C,A) and (6), we have

lto = =il < lfu 2] < liminf an, ~ z|| < limsup |lza, ~al < [1to = a]-
oQ i—+00
So, we obtain
Jim iz, 2] = fju— 2]}

From z,, —z — u — z we have z,,, —z — u — z and hence z,, = u. Since z, € Pg,z and #; €
F(S)NVI(C,A) C CaNQn C Qpn, we have '

“Hto —-’Bmllz = (tO ~ ZTn;yZTn; -—2}) + (tO =~ Zn;,T ""tO) Z (tO = Tpn; T~ tO) .

Asi — 00, we obtain — |[g — u”’ >{tg—u,z— ) >0byty = PF(S)nVI(O,A)‘t and u € F(S)NVI(C, 4).
Hence we have u = tg. This implies that z,, — tg. It is easy to see y, = tg, 2, = tg.
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4 Applications.

Using Theorem 3.1, we prove some theorems in a real Hilbert space.

Theorem 4.1 Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and
k-Lipschitz-continuous mapping of C into H such that VI (C, A) is nonempty. Let {z,}, {yn} and {25}
be sequences generated by

=2€C

yn = Fc (zn - f\nAmn)

2p = Po (Zq ~ AnAyn)

Cn={2€C:|lzn—2|| < |lzn —2|}}

Qn={2€C:(zn—2,2~2,) 20}

Zni1 = Po,n@.T
Jor every n = 0,1,2,..., where {)\,} C [a,b] for some a,b € (0,1/k). Then the sequences {z,}, {yn} and
{2n} converge strongly to Py (c,a)z.

Proof. Putting S = I, by Theorem 3.1, we obtain the desired resuit.
Remark. See liduka, Takahashi and Toyoda [2] for the case when A is a-inverse-strongly-monotone.

Theorem 4.2 Let C be a closed convex subset of a real Hilbert space H and S be a nonezpansive mapping
of C into itself such that F (S) is nonempty. Let {z,} and {y.} be sequences generated by

zo=xz€C

Yn = SZp )

Co={2€C :|lyn — 2|l < llzn — 2|}
Qn={2€C:(zn—2,2-2,) 20}
Tn+i =PC..ﬂQ,.z

for everyn =0,1,2,.... Then the sequences {z,} and {y,} converge strongly to Pr)z.

Proof. Putting A = 0, by Theorem 3.1, we obtain the desired result.
Remark. See also Nakajo and Takahashi [5] for more general result.

Theorem 4.3 Let H be a real Hilbert space. Let A be a monotone, k-Lipschitz-continuous mapping of
H into itself and S be a nonezpansive mapping of H into itself such that F (S)N A~10 # 0. Let {z,}
and {y»} be sequences generated by

zo=z€C

Un = S(Tn — And (T — AnAzy))
Cn={2€C:|lyn — 2| < llzn — 2|}
Qn={2€C:{zp~-22~-2z,) 20}
Tn4r = Po,nQ,T

for every n = 0,1,2, ..., where {A\,} C [8,b] for some a,b € (0,1/k). Then the sequences {z,,} and {yn}
converge strongly to Pr(s)na-10%.

Proof. We have A~10 = VI (H, A) and Py = I. By Theorem 3.1, we obtain the desired result.
Remark. Notice that F(S) N A~0 ¢ VI(F(S),A). See also Yamada [9] for the case when A is a
strongly monotone and Lipschitz continuous mapping of a real Hilbert space H into itself and S is a
nonexpansive mapping of H into itself.

Theorem 4.4 Let H be a real Hilbert space. Let A be a monotone, k-Lipschitz-continuous mapping of
H into itself and B : H — 2¥ be a mazimal monotone mapping such that A~10N B0 # 0. Let JZ be
the resolvent of B for each r > 0. Let {z,} and {y.} be sequences generated by

Tp=2 € C

Un = JB (Zn — ApA (Tn — AnAzy))
Cn={2€C :|lyn — 2l < llza — 2|}
Qn={2€C: {2y —z,x—z,) 20}
Tntr = Po,nQ.2
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Jor every n = 0,1,2, ..., where {\,} C [a, b} for some a,b € (0,1/k). Then the sequences {z,} and {y,}

converge strongly to Pg-10np-102.

Proof. We have A0 = VI (H, A) and F (JB) = B~10. Putting Py = I, by Theorem 3.1 we obtain the
desired result.
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