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DECAY AND REGULARITY FOR DISPERSIVE EQUATIONS
WITH NON-POLYNOMIAL SYMBOLS

MICHAEL RUZHANSKY AND MITSURU SUGIMOTO

1. INTRODUCTION

The aim of this paper is to provide a new method to prove and extend the result by
Hoshiro [1] on global smoothing estimates for dispersive equations such as Schrédinger
equations. Our method will produce time local estimates for operators with not only
polynomial symbols as well as give corresponding time global estimates. For the
purpose, the Egorov-type theorem via canonical transformation in the form of a class
of Fourier integral operators, together with their weighted L?-boundedness is used.

We consider (Fourier integral) operators, which can be globally written in the form

1) Tu@=@0" [ [ e Opey Quidudt (@ R,
where p(z, y, €) is an amplitude function and ¢(z, y, §) is a real-valued phase function.
If we take

¢(w,y,§) =2 g_y 1/"(E)

as a special case, we have

Tu(z) = F~{(Fu)($(£)(=),

where F (F~' resp.) denotes the (inverse resp.) Fourier transformation. Hence we
have the relation

(1.2) T-o(D)=a(D) T, a(D)=(o09)D),

for constant coefficient operators (D) and a(D). This fact is known as a special case
of Egorov’s theorem, which we modify to allow for the exact calculus. By choosing a
phase function appropriately, properties of the operator a(D) can be extracted from
those of the operator o (D).

We mention a boundedness theorem which will appear in [4]. For k € R, let L}(R™)
be the set of measurable functions f such that the norm

1/2
I!fIILz,;(Rn)=(/mn|(x)'°f($)|2dm) () = (14 af)”

is finite. Then we have the following:
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Theorem 1.1. Let the operator T be defined by (1.1) with ¢(z,y,€) = 2§+ (Y, §)-
Assume that

det 0,0 0(y, )| > C > 0,
and all the derivatives of entries of 8,0 are bounded. Also assume that
020y, &) < Caly) (Va2 1),
|02058)p(x, ¥, €)| < Copy ()™ (Va,8,7)
or
05020(3,6)| < Caly) ™™ (ver, 1812 1),
|02620]p(2,, )| < Capr ()™ (Yo, 8,7).
Then T is bounded on L%(R™) for any k € R.

2. SMOOTHING EFFECTS OF DISPERSIVE EQUATIONS

We consider the following dispersive equation:

2.1) { (10 + a(Dg)) u(t, ) = 0,
w(0,7) = p(a) € LAR"),
where a = a(£) € C®(R"\0) is a real-valued function. The solution u(t,z) to
equation (2.1) can be expressed as
u(t,z) = Py,

We assume that a(€) = an,(€) + r(€) for large &, where a,,(A§) = )\ma;n(g) for A > 0,

¢ # 0, and r(€) is a smooth symbol of order m — 1 satisfying |0°7(§)| < c(gym il
for all multiindices . Equation (2.1) with a(¢) = |£]? is the Schrédinger equation.
First we have the following time local estimate:

Theorem 2.1. Suppose m > 1, s > 1/2, and T > 0. Assume that Va(§) # 0 if
a(€) =0 and |€] is large. Then we have the estimate

T
-8 — 3 2 2
/0 “(m) IDml(m 1)/2e1ta(D)Sa(w)“L2(Rg)dt < CH‘P”Lz(mn)-

As a corollary, we have the following result obtained by Hoshiro [1] for polynomials
a(€). He used Mourre’s method which is known in spectral and scattering theories.

Corollary 2.2. Suppose m > 1, s >1/2, and T > 0. Assume that Van(€) # 0 for
|€] = 1. Then we have the estimate

T
[ @)

2

dt < C“‘P”iﬁ(mn)'

L*(R3)
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The proof of Theorem 2.1 will be outlined in Section 4. Let us now explain how it
implies Corollary 2.2. First, the assumption Van,(§) # 0 for |{| = 1 is equivalent to
the assumption of Theorem 2.1, so we obtain the desired estimate for large frequencies.
For small frequencies it follows by a general functional analytic argument under no
additional assumptions on a(¢) due to the boundedness of the time interval (see
Section 4 or [1]).

We have the time global estimate if we assume Va(§) # 0 for small £ also.

Theorem 2.3. Suppose m > 1 and s > 1/2. Assume that a € C®(R") and that
Va(€) # 0 if a(€) = 0. Then we have the estimate

oo
—s m— ita 2
[ @) Do 2P 0) [y < Clil ey
There are obstructions for the time global version of the estimate of Corollary 2.2
due to the small frequencies, see, e.g. [1] or [6].
3. MAIN TOOL

Based on the argument in the introduction, we will now describe the main tool for
the proofs of theorems of the previous section.
Let I', I' ¢ R" be open sets and 9 : I' = I' be a C*°-diffeomorphism. We assume

(3.1) C™' <|detdy(§)| <C (£€T),

for some C' > 0, and all the derivatives of entries of the n x n matrix 01 are bounded.
We set formally

- Tu(e) = F Pu() () = @n) [ [ eless Ouy)aya,
Iuge) = P [Fu(@(©)] @) = ny [ [ eteer Ougayae

The operators I and I ! can be justified by using cut-off functions v € C>(T") and
¥ =vyoy~! € C°(T') which satisfy suppy C T, suppy C I". We set

Lu(z) = F~ [y(§)Fu(¥(8))] ()

= (2m)™" / ) /F e VYOl (E)uly)dyde,
I'u(z) = F7 (5 Fu(y7(9)] ()

= (2m)™" / ) ff6““"5'”'*”_1“”‘r(ﬁ)u(y)dydﬁ,

and we have the expressions
I’Y=7(D)I=I:Y(D)) I»'):_1=:Y(D)'I—1=I_1"y(D);

and the identities

(3.2)

LIy =4D)* I'-I,=%(D)".
On account of (1.2), we have the formula

(3.3) I-o(D)=a(D)-L, a(&)=(oo%)().
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We have the boundedness on weighted spaces by Theorem 1.1.

Proposition 8.1. The operators I, and I defined by (3.2) are L{(R™)-bounded for
any k € R.

4. PROOF OF THEOREM 2.1

We will now outline the proof of Theorem 2.1. The details will appear in [5] which
also includes the proof of Theorem 2.3. '

We may assume supp ¢ C {¢; €] > R} for some large R > 0. In fact, if supp ¢ C
{& 1€l < R}, we have

T
/0 ()™ | Dy | = D/26 53D () ”i?(m;) dt

T
(m=-1)/2,5 2
< [ Dl )

e 1)/2 n s o 1|2
<CT ||l V"25(8) || aamy
<CTR™|ll72gn

by Plancherel’s theorem.

Furthermore, by the microlocalization and the rotation, we may assume supp ¢ C
I, where I' € R™\ 0 is a sufficiently small conic neighborhood of e, = (0,...0,1).
By formula (3.3) and Proposition 3.1, it is sufficient to find ¢ : T’ — I" which satisfies
(3.1) and to find o(n) such that a(§) = (o0 ¥)(§) (€ €T), and then show the result
by replacing a(D) by o (D), assuming supp ¢ C I'.

Since a(£), Va(§) behaves like a,,(€), Va,,(€) for large £, respectively, we have
Vanm(e,) # 0 by the assumption and the Euler’s identity a,,(§) = (§/m) - Van(§)-
We have the following two possibilities:

(1): O.am(en) # 0. Then, by Euler’s identity, we have am(e,) # 0. Hence, in
this case, we may assume that a(£)(> 0) and 8,a(€) are bounded away from
0 for £ €T and || > R.

(ii): 8.am(es) = 0. Then there exits j # n such that J;am(e,) # 0. Hence,
in this case, we may assume 0,a(£) is bounded away from 0 for £ € I and
€l > R.

Case (i). We take

0(’7) = 77;”; '¢'(£) = (61) s ;_fn-l; a(é-)l/m)
Then we have a(€) = (0 0 9)(€) and
E,_ 0
det 8v(¢) = " (l/m)a(ﬁ)l/m“lana(f)

satisfies (3.1), where E,_; is the identity matrix of order n — 1. The estimate for
o(D) = D™ is given by the following (see Kenig, Ponce and Vega [2, p.56] in the case
m=2):
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Proposition 4.1. In the case n = 1, we have

5up 1Dl 26457 £(2)]| e, < Ol oy

Hence we have

” (:r,)"lenl(m'l)/zeit”(D)w(x)”z,z(mtxmg) < Cllellragn

for s > 1/2. Here we have used the trivial inequality (z)™° < (z,)”°, Schwarz’s
inequality, and Plancherel’s theorem. Since 1 maps I into another small conic neigh-
borhood of e, |£,| is equivalent to |£| there. Hence we have the estimate

“ m)_SID I(m-—l)/2 zto'(D)(p “Lz(]RthR") C“‘P“Lﬂ(mn

by Theorem 1.1 with ¢(y, &) = —y - &
Case (ii). We take

o(m) =mny™", ¥ = (a@)& ™ & )
Then we have a(§) = (o 0 ¥)(£) and

01a(§)&™™
0

det 9%(€) = B,

satisfies (3.1). The estimate for o(D) = D D! was given by the following (see
Linares and Ponce [3, p.528] in the case m = 2):

Proposition 4.2. In the case n = 2, we have

sup [|D.|>1/26#7 Py (3, )
yeR

< C“f”m(m )

L2 (R¢XRz)

Similarly to the case (i), we have

1)~ | D | ™22 Plp(@) || 2 ey < Clollzame)
for s > 1/2.
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