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The Kramers-Fokker-Planck operator in the semiclassical limit.
Johannes Sj \"ostrand’

0. Introduction.

In this talk we describe the main results and ideas from a recent joint work [HeSjSt]
with F. Herau and C. Stolk. Following earlier works by many authors (Bouchut-
Dolbeault, Talay, Villani-Desvillettes, Rey-Bellet-Thomas, Eckmann-Hairer, Eckman-
Pillet-Rey-Bellet), F. Herau and F. Nier [HeNi] used more traditional methods of
partial differenial equations to study the Kramers-Fokker-Planck operator

$K=y \cdot\partial_{x}-\frac{1}{m}V’(x)$ . $\partial_{y}-"(\partial_{y}\cdot$ $( \frac{1}{m\beta}\partial_{y}+y)$ , $x$ , $y\in \mathrm{R}^{n}$ , (0.1)

and the long time behaviour of the corresponding evolution problem

$\{$

$\partial_{t}f$ $1$ $Kf=0$ on $[0,$ $+\mathrm{o}\mathrm{o}[\cross \mathrm{R}^{2n}$ ,
$f_{1_{t=0}}=f_{0}$ . (0.1)

Here $x$ denotes the position, $y$ the velocity, $m$ the mass of the particles, $\gamma>0$ is the
friction, $\beta=(kT)^{-1}$ where $T>0$ is the temperature and $k$ is a constant. $f(t, x, y)$ is
the particle density at time $t$ and we notice that $\iint f(t, x, y)$ dxdy is independent of $t$

under reasonable general assumptions.
The

$\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}-\rceil$$/\mathfrak{Q}\mathfrak{Q}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}$
part, y- Q\partial エー-L--ml--V- $,(x)–$ $–\cdot 2/n\mathrm{T}\Gamma/\partial_{y}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}1\mathrm{t}\mathrm{o}-\backslash$ $r_{\mathrm{I}^{\urcorner}\mathrm{L}\mathrm{R}\kappa_{\wedge\cdot,\wedge}\iota 1.}\mathrm{t}\mathrm{h}\mathrm{e}_{\wedge}$

$\mathrm{H}\mathrm{a}\mathrm{m}\mathrm{i}1\mathrm{t}\mathrm{o}\mathrm{n}\cdot$ vector field
$H_{q/m}=m^{-1}$ $(\partial_{y}q\cdot\partial_{x}-\partial_{x}q\cdot\partial_{y})$ where $q=my$$2/2+V(x)$ . The Maxwellian

$M(x, y)=e^{-\beta q(x,y)}$ (0.3)

is annihilated by $K$ . Following a tradition in the subject, H\’erau and Nier studied
rather the conjugated operator

$\tilde{P}=M^{-1}2KM^{\frac{1}{2}}=y\cdot\partial_{x}-\frac{1}{m}V’(x)\cdot\partial_{y}-\frac{\gamma m}{4}(y-\frac{2}{m\beta}\partial_{y})(y+\frac{2}{rn\beta}\partial_{y})$. (0.4)

Choose for simplicity $m=2,$ and replace $V$ by 2V. Then with $h=1/\beta$ , we get

$\frac{1}{\beta}\tilde{P}=y$ . $h \partial_{x}-V’(x)h\partial_{y}+\frac{\gamma}{2}(y-h\partial_{y})$ . $(y+h\partial_{y})=:7$ (0.3)

and the evolution problem becomes

$(h\partial_{t}+P)u=0$ , $u|_{t=0}=u0.$ (0.6)

Herau-Nier [HeNi] assumed some symbol behaviour for $V$ and some polynomial
growth at oo for $|V(x)|$ and $|V’(x)|$ . They showed that $P$ is globally hypoelliptic in a
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suitable sense and that the eigenvectors in $\mathrm{S}’$ belong to $S$ . Moreover $P$ is m-accretive
(a result considerably generalized by Helffer-Nier [HelNi]), implying that the evolution
problem (0.6) is wellposed for $u_{0}\in L^{2}(\mathrm{R}^{2n})|$ . They also showed that the spectrum
a(P) of $P$ is contained in a set of the form $R \mathrm{e}z\geq\max(\frac{1}{c}|{\rm Im} z|^{1/N}-C, 0)$ (with $C$

depending on the parameters) and away from such a region they obtained the estimate
$||$ $(\mathrm{s} ・P)$ $-1||\leq C|z|^{-\epsilon}$ . This implies results about the return to equilibrium:

If $V$ is positive near $\infty$ , then 0 is the only eigenvalue with ${\rm Re} z=0,$ and $e_{0}=$

$CM^{1/2}$ is the corresponding eigenfunction. If $V$ is negative near $\infty$ , all eigenvalues
have real part $>0.$ In the two cases we get respectively,

$||u(t)$ $-(u|e_{0})e_{0}||\leq e^{-r_{1}t}\cross$ a polynomial in $t$ , $t_{:}^{-1}$

$||u(t)||\leq e^{-\tau_{1}t}\cross$ a polynomial in $t$ , $t^{-1}$ ,

where here and in the following $||$ $||$ denotes the $L^{2}$ -norm if nothing else is indicated
explicitly. They also obtained very interesting estimates on the decay rate $\tau_{1}>0,$ in
terms of the first non-vanishing eigenvalue of the Witten Laplacian in degree 0:

$(- \partial_{x}+\frac{1}{2}\partial xV\beta)\cdot$ $( \partial_{x}+\frac{1}{2}\partial xV\beta)$ , $V_{\beta}(x)=\beta V(\beta^{-\frac{1}{2m}}x)$ .

Recently, there has been a lot of interest in the notion of pseudospectrum of ma-
trices and differential operators, introduced by $\mathrm{L}.\mathrm{N}$ . Trefethen. Roughly, this is the
set of points in the complex spectral plane, where the resolvent is large, and in the
semiclassical limit we can also view it approximately as the set of values of the semi-
classical $\mathrm{s}\mathrm{y}$ mbol of the operator. See works of $\mathrm{L}.\mathrm{N}$ . Trefethen, $\mathrm{E}.\mathrm{B}$ . Davies, M. Zworski
and others, [Tr], $[\mathrm{D}\mathrm{a}1,2]$ , [Zw], [DeSjZw]. There have also been interesting recent
works about evolution problems associated to non-self-adjoint operators in more or
less explicit relation to the pseudospectrum ([TanZw], [BuZw], [Da3], [Hi2]). For the
KFP-0perator, the pseudospectrum is (in the first approximation) the right half-plane,
while H\’erau-Nier show in this case that the actual spectrum avoids a parabolic neigh-
borhood of the imaginary axis. In this direction, there is a general result by Dencker,
Sj\"ostrand and Zworski [DeSjZw], valid in the semi-classical limit, which can be viewed
as an adaptation of general subellipticity results of Yu. Egorov and L. Hormander (see
[H\"o] $)$ , and of which we recall a very much simplified version:

Theorem 0.1. Let $P=P^{w}(x, hD_{x}; h)$ be the h- Weyl quantization of Pw(x, $\xi;h$ ) belong
$ing$ to a suitable symbol-class and with leading part $p(x, \xi)=ps$ $(x, \xi)+ip_{2}(x, \xi)$ . Then
the spectrum $\sigma(P)$ is contained in $p(\mathrm{R}_{x,\xi}^{2n})+D(0, o(1))_{f}harrow 0,$ where $D(z, r)\subset \mathrm{C}$

denotes the open disc of radius $r$ and center $z$ .
Assume also that $p_{1}\geq 0.$ $Let\sim 70\in i\mathrm{R}$ be away from the set of accumulation points

of $p(x, \xi)$ at $(x, \xi)=-$ and assume that

$p(\rho)=z_{0}\Rightarrow H_{\mathrm{p}_{2}}^{2}p_{1}(\rho)>0.$ (0.7)

Then when $h>0$ is sufficiently small, the resolvent $(P- z_{0})^{-1}$ exists as a bounded
operator in $L^{2}(\mathrm{R}^{n})$ and $||(P-z_{0})^{-1}||=\mathcal{O}(h^{-2/3})$ . In particular $D(z_{0}, h^{2/3}/C)$ $\cap$

$\sigma(P)=\emptyset_{f}$ for some $C>0.$
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1. The new results.

We now state the results obtained with F. Herau and C. Stolk in [HeSjSt]. We
consider $P$ in (0.5) in the semi-classical limit $(harrow 0)$ with $\gamma>0$ fixed and make the
following assumptions about $V$ :

$V\in C^{\infty}(\mathrm{R}^{n};\mathrm{R})$ , $\partial^{\alpha}V=\mathcal{O}(1)$ , $|0|\geq 2.$ (HI)

$|\mathrm{I}/’(x)$ $|\geq 1/C,\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}|x|\geq C$ for some $C>0.$ (H2)

$V$ is a Morse function. (H3)

In the following results it is tacitly assumed that $0<h\leq h_{0}$ for some fixed sufficiently
small $h0>0.$ Our first result is about the location of the spectrum.

Theorem 1.1. There exists a constant $C>0$ such that for $h>0$ small enough, the
spectrum of $P$ is contained in

$\{z\in \mathrm{C};{\rm Re} z\geq\frac{1}{C}\min(|{\rm Im} z|, h^{\frac{2}{3}}|{\rm Im} z|:)-C_{N}h^{N}\}$, (1.1)

for every N $\in$ N.

The next result gives an estimate for the resolvent away from the set in (1.1).

Theorem 1.2. For ${\rm Re} z \leq(2C)^{-1}\min(|{\rm Im} z|, h^{2/3}|{\rm Im} z|^{1/3})-h,$ we have

$||(z-P)-1|| \leq\tilde{C}/\min( |z|, h^{2/3}|z|^{1/3})$ . (1.2)

The next result is about the spectrum inside any $h$-neighborhood of 0.
Theorem 1.3. Let $C>0.$ Then (for $h$ small enough depending on $C$) the spectrum
in $D(0, Ch)$ is discrete and the eigenvalu es are of the form $\lambda_{k}=\mu_{k}h+\mathcal{O}(h^{1/N_{0}})$ . Here
$\mu_{k}$ denote the eigenvalues of the quadratic approximations of $P_{h=1}$ at the finitely many
critical points of $V$ .

Here, if $x_{0}$ is a critical point of $V_{:}$ the corresponding quadratic approximation of
$P_{h=1}$ is the operator

$P_{0}=y\cdot\partial_{x}-(V_{0}’(x_{0})(x-x_{0}))$ $\partial_{y}+\frac{\gamma}{2}(y-\partial_{y})$ $(y+\partial_{y})$ ,

and since this is the Weyl-quantization of a quadratic form the eigenvalues can be
calculated explicitly [Ri], [Sjl]. (The calculation in [Ri] is formal and in [Sjl] there is
an assumption about ellipticity near infinity, that is not satisfied here, but we show
in [HeSjSt], how to pass to a new exponentially weighted space without changing the
eigenvalues and for which we do have the required ellipticity assumption.) From the
explicit formulae for these eigenvalues, we know that they are confined to an angle
$|\arg$ $z|\leq\theta_{0}<\pi/2$ , that 0 is an eigenvalue iff $x_{0}$ is a local minimum of $V$ and when it
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is an eigenvalue it is simple. Moreover the eigenvalues are all real $(\theta_{0}=0)$ precisely
when all the eigenvalues of the Hessian matrix $V’(x_{0})$ are $\leq\gamma^{2}/4$ .

Our last result concerns the large time asymptotics for the evolution problem.
Thanks to a recent result of F. Nier and B. Helffer, we know that $P$ is a so called
$\mathrm{m}$-accretive operator and this implies in our case that the semi-group $e^{-tP/h}$ i $\mathrm{s}$ well
defined for $t\geq 0$ and that $||e^{-tP/h}||\leq 1.$

Theorem 1.4. Choose $a>0$ with $a\neq{\rm Re}\mu_{k}$ for all $k$ . Let $\lambda_{j}(h)f\dot{7}=0,1$ , $\ldots$ , $N-1,$
be the eigenvalues of the preceding theorem with ${\rm Re}\mu j<a.$ Assume for simplicity that
the corresponding $\mu_{j}$ are distinct and simple. Then $\lambda_{j}(h)$ are also simple and $\mu jh$ is
the leading term in a complete asymptotic expansion of $\lambda_{j}(h)$ in integer powers of $h$ .
Let

$\mathrm{I}\mathrm{I}_{\lambda_{j}}=\frac{1}{2\pi i}\int_{1}$

Z-A$j|=\mathrm{e}h$

$(z-P)^{-1}dz=\mathcal{O}(1)$ , $0<\epsilon\ll 1,$

be the corresponding spectral projection. Then in $\mathcal{L}(L^{2}(\mathrm{R}^{2n}), L^{2}(\mathrm{R}^{2n}))$ , we have

$e^{-tP/h}= \sum_{0}^{N-1}e^{-t\lambda_{\mathrm{j}}}$ $/h\Pi_{\lambda_{j}}+\mathcal{O}(e^{-ta})$ , $t\geq 0.$ (1.3)

For other non-self-adjoint evolution problems, various asymptotic results about the
long time behaviour of the associated evolution problems have been given in [TaZw],
[BuZw], [Hi2], [Da3]. In many of these results, the possible exponential growth of the
resolvent inside the pseudospectrum implies that the final estimates are not as sharp
as the result in Theorem 1.4, where we use the resolvent estimates of Theorem 1.2.

If $V$ has only one local minimum, then we have a unique eigenvalue $\lambda_{j}=:\lambda 0$ which
is $\mathcal{O}(h^{\infty})$ and the real parts of the other eigenvalues are bounded from below by $h/C$ .
Then (1.3) gives a fairly precise result about the so called return to equilibrium, namely
about the exponential rate of convergence of $e^{-tP/h}-e^{t\lambda_{0}/h}\Pi_{\lambda_{0}}$ to zero. (In the case of
a global minimum, we have $\lambda_{0}=0$ and $\mathrm{I}\mathrm{I}_{\lambda_{0}}$ is then the projection onto the equilibrium
state.) If $V$ has 2 or more local minima and say is positive near infinity, then there are
several eigenvalues that are $\mathcal{O}(h^{\infty})$ (and they are probably exponentially small) but
only one of them is 0. In this situation, H\’erau-Nier [HelNi] obtain interesting estimates
on the rate of return to equilibrium by establishing a relation with a corresponding
Witten Laplacian for $V$ . It would be most interesting to make a direct semi-classical
study in this case and possibly clarify some tunnel effect between the local minima of
$Vr$ Finally we recall that our results concern the conjugated Kramers-Fokker-Planck
operator (0.5), and it would be most interesting to know about similar ones for the
operator in (0.1).

2. Methods and ideas of the proofs

The semiclassical principal symbol of $P$ is

$p=p_{1}+ip_{2}$ , (2.1)



14

where
$p_{2}=y$ . $\xi-V’(x)\cdot\eta$ , $p_{1}= \frac{\gamma}{2}(y^{2}+\eta^{2})$ . (2.2)

The critical ponts of $p$ are of the form $(x, y;\xi, \eta)=(xj, 0;0,0)$ , where $xj$ are the critical
points of $V;V’(xj)$ $=0.$ Let $C$ be the set of critical points of $p$ . Notice that we also
have $p1c=0.$

If $\mathrm{V}"(\mathrm{x})y;\xi,$ $\eta)=0(\Leftrightarrow y=\eta=0)$ , then

$H_{\mathrm{p}_{2}}p_{1}=-$ $\mathrm{y}(\xi . \eta+V’(x) . \eta)$ $=0$

$H_{\mathrm{P}2}^{2}p_{1}=\gamma(\xi^{2}+V’(x)2-\eta. V’(x) . y)$ $=\gamma(\xi^{2}+V’(x)^{2})$ ,

and the last quantity is positive precisely when $(x, 0;0, \mathrm{O})\not\in C.$ Near $C$ , we introduce
$8(\mathrm{p})=$ dist $(2’ 4)$ . Then $H_{p_{2}}^{2}p_{1}\sim\delta^{2}$ on $\{p_{1}=0\}$ , and it follows from the assumption
(H3), that

$p_{1}+\epsilon H_{P2}^{2}p_{1}\sim\delta^{2}$ , (2.3)

in a fixed bounded set when $\epsilon>0$ is small and fixed.
In a compact set disjoint from $C$ the analysis is very much similar to that of

[DeSjZw] in the special case of Theorem 0.1 but new difficulties appear because of the
critical points and also because we need nice uniform control all the way to $\infty$ .

Consider a region $h^{\frac{1}{2}}\leq\delta$ $\leq \mathcal{O}(1)$ . (We only explain some ideas of the proof
and not the actual constructions which finally became a little different.) Here $H:=$

$\{\rho;H_{p_{2}}p_{1}(\rho)=0\}$ is a smooth hypersurface where $p_{1}$ is small, and if $\rho$ is an arbitrary
point, we represent it as $\rho=\exp tH_{p_{2}}(\rho’)$ , for $\rho’\in H.$ We now want to pass to
an exponentially weighted space (defined using an FBI-transform), and roughly this
space is the set of functions of the form $u=e^{\epsilon G(x,y,hD_{j}h)/h}\tilde{u},\tilde{u}\in L^{2}$ . Following now
standard constructions in the microlocal approach to resonances, the principal symbol
of $P$ , acting on the new space is $\tilde{p}(\rho|)=p(\exp i\epsilon H_{G}(\rho))$ which is approximately equal to
$p(\rho)-i\epsilon H_{p}G(\rho)$ . The new feature here (and also in [DeSjZw]) is that we want the new
space to have a norm which is uniformly equivalent to the ordinary $L^{2}$ norm when $h$

tends to 0 and this forces us to impose the condition $G=\mathcal{O}(h)$ .
Now put

$G( \rho)=h\chi(\frac{\lambda p_{1}(\rho’)}{\delta(\rho)^{2}},)g(\frac{t}{\beta(\rho,h)},.)$ , (2.4)

where $\chi$ is a standard cut-0ff that we forget about and $g\in C_{0}^{\infty}(\mathrm{R}, \mathrm{R})$ is such that
$g(t)=t$ for $|1$ $<1.$ Then, we get for $\overline{p}=\tilde{p}_{1}+i\tilde{p}_{2}$ ,

$\tilde{p}_{1}\approx p_{1}+\epsilon H_{p2}G\geq\frac{1}{C}\delta^{2}t^{2}+\epsilon\{$

$h/\beta$ , $|\mathrm{t}|\leq$ $\mathrm{a}$ ,
$\mathcal{O}(h/\beta)$ , $|t|>\beta$ . (2.5)

Choose $\beta$ $>0$ with $\delta^{2}\beta^{2}=h\mathrm{Z}\beta$ , ie $\beta=h^{1/3}\delta^{-2/3}$ . Then we get $\mathrm{j}\mathrm{i}_{1}\geq C^{-1}(\delta h)^{2/3}$ if we
fix $\epsilon>0$ sufficiently small. On the other hand, $\tilde{p}_{2}=\mathcal{O}(\delta^{2})$ , so the values of $\tilde{p}$ from
this region of phase space are contained in the set $\{z\in \mathrm{C};{\rm Re} z\geq C^{-1}h^{2/3} |{\rm Im} z|^{1/3}\}$ .
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Now consider the region $\delta\leq h^{1/2}$ . Take

$G= \int k(t/T)p_{1}\mathrm{o}\exp(tH_{p2})dt(=\mathcal{O}(h))$, (2.6)

where $k(s)$ is the odd function which satisfies, $k(t)= \frac{1}{2}-t$ for $0<t< \frac{1}{2}$ , $k(t)=0$ for
$t \geq\frac{1}{2}$ . Then $H_{p2}G=p_{1}-\langle p_{1}\rangle\tau$ , where

$\langle p_{1}\rangle_{T}=\frac{1}{T}\int_{-T/2}^{T/2}p_{1}\mathrm{o}\exp(tH_{p_{2}})dt$ .

It follows that in this region (and with the new function $G=G\tau$), that $\tilde{p_{1}}(\rho)\sim\delta^{2}$ ,
$\tilde{p}_{2}=\mathcal{O}(\delta^{2})$ .

By suitably gluing together the two functions $G$ we get a new function $G$ , defined
in any fixed bounded subset of phase space, such that $G/h$ is bounded and such that

$\tilde{p}_{1}\geq\frac{1}{C}\min(\delta^{2}, (\delta h)^{2/3}),$ $p\sim 2=\mathcal{O}(\delta^{2})$ . (2.7)

In these geometrical considerations, we can replace ” $h$” by ” $Ah$” for some large $A$ .
This has the effect of increasing the neighborhood of the critical set where $G$ is a more
standard weight-function and and allows us to justify the quadratic approximation in
that set. Using FBI-transforms and associated techniques from [Sj2], [Sj3], [DeSjZw],
as well as a special study near infinity exploiting Hormander’s Weyl calculus [H\"o], we
get the theorems 1.1 and 1.2.

As for Theorem 1.3, we choose $A$ very large depending on the constant $C$ , if we
want to determine asymptotically the eigenvalues in $D(0, Ch)$ . In the region $\delta(\rho)=$

$\mathcal{O}((Ah)^{1/2})$ , we can assume the weight $G$ to be quadratic near each point of $C$ , and we
can replace $P$ up to a small error by its quadratic approximation, which becomes elliptic
near infinity in the quadratically weighted space. For the quadratic approximations,
we know the eigenvalues explicitly ([Sjl]), and by applying also techniques and ideas
from [HelSj], we get the theorem. One can also get complete asymptotic expansions in
(fractional) powers of $h$ .

The proof of Theorem 1.4 is more standard, just write down a Cauchy integral
formula,

$e^{-lP/h}= \frac{1}{2\pi i}\int$

y
$\mathrm{e}^{-tz/h}(z-P)^{-1}$ dz, (2.8)

where ) is the boundary of the set appearing in Theorem 1.2, oriented in the direction
of decreasing ${\rm Im} z$ , then in an $h$ neighborhood of $z=0$ we push the contour to the
right and add the corresponding residue terms.
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