
Cellular automaton analyses on complex systems
- from ants to hun an beings-

Katsuhiro Nishinari’

Department of Applied Mathematics and Informatics,

Ryukoku University, Shiga 520-2194, Japan.

Cellular automaton models of complex systems, including vehicular traffic, pedes-

trian flow and ant trail are presented in this paper. Similarities and differences

between these models are discussed by using the fundamental diagram, i.e., the

flow-density relation. In the vehicular traffic there exists metastable branches near

the critical density. It is shown that the ant model shows an anomalous behaviour

due to the existence of pheromone. In appendix, an application of the Painleve

equation is discussed.

I. INTRODUCTION

Particle-hopping models have been used widely in the recent years to study the spati0-
temporal organization in systems of interacting particles driven far from equilibrium [1].

Often such models are formulated in terms of cellular automata (CA) [2]. Examples of such
systems include vehicular traffic and pedestrian flow [3-5] where their mutual influence is
captured by the inter-particle interactions. Usually, these inter-particle interactions tend to

hinder their motions so that the average speed decreases monotonically with the increasing
density of the particles. In a recent letter [6] we have reported a counter-example, motivated
by the flux of ants in a trail [7], where, the average speed of the particles varies non-
monotonically with their density because of the coupling of their dynamics with another
dynamical variable.

In this paper, we show cellular automaton models of vehicular traffic, pedestrian flow
and ant trail, and discuss similarities and differences between these models by using the

fundamental diagram, i.e., the flow-density relation.
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II. VEHICLE TRAFFIC MODEL

Recently, cellular automata (CA) have been extensively used for modeling complex phe-

nomena in various fields such as fluid dynamics, statistical physics, biology and other com-

plex systems[l]. Among these $\mathrm{C}\mathrm{A}$ , the rule-184 $\mathrm{C}\mathrm{A}$ , which is one of the elementary CA

(ECA) proposed by Wolfram[2], has attracted much attention as a model of dynamics of

interface[8] and traffic flow $[9, 10]$ . For the model of traffic flow, the rule-184 CA is known to

represent the minimal model for movement of vehicles in one lane and show a simple phase

transition from free to congested state of traffic flow [3].

In the previous paper[l 1], by using the ultra-discrete method [12], the Burgers $\mathrm{C}\mathrm{A}(\mathrm{B}\mathrm{C}\mathrm{A})$

has been derived from the Burgers equation $\rho_{t}=$ 2ppx $+\rho_{xx}$ which was used by Musha et $al$

as a macroscopic traffic m0de1[4][13]. BCA is written as

$U_{j}^{t+1}=U_{j}^{i}+ \min(U_{j-1}^{t}, L-U_{j}^{t})-$ $\min(Uj, L-U_{j+1}^{t})$ , (1)

where $U_{j}^{t}$ denote the number of vehicles at the site $j$ and time $t$ . The parameter $L$ represents

the maximum capacity of a cell and is related to the lattice interval of the spatial coordinate
$x[11]$ . Putting the restriction $L=1$ on (1), BCA is found to be equivalent to the rule-184
$\mathrm{C}\mathrm{A}$ , which is a prototype of the microscopic traffic models[10]. Since the Burgers equation is

considered to be the 1-dimensional Navier-Stokes equation, it is natural to say that (1) is the

Euler representation of traffic flow. In the Euler description, flow is observed at certain fixed

point in space and a dependent variable represents the amplitude of a field at that point.

It is noted that the above result has clarified the fact that there is a rigorous the relation

between a macroscopic traffic model and a microscopic one in the Euler representation via

the ultra-discrete method.

There is the other representation called Lagrange representation, which originally also

comes from hydrodynamics. In this representation, we observe each particle and follow

the trajectory of it. Then we would like to propose the Euler-Lagrange transformation by

developing new explicit transformation formulas containing the $\max$ and step function, and

connect the link of the Euler and Lagrange form in the microscopic models of traffic flow.



First we introduce the variable $n$ by

$S_{j}^{i}= \sum_{k=-\infty}^{J}u_{k}^{t}$.,

$U_{j}^{t}=u_{Lj+1}^{t}+u_{Lj+2}^{t}+\cdots+u_{L(j+1)}^{t}$

$=S_{L(j+1)}^{t}-\llcorner \mathrm{b}_{L_{J}}^{\gamma t}$ , $(\underline{.?})$

where $u_{j}^{t}$ denotes the number of vehicles whose value is zero or one at $j$ th site at time $t$ .

Substituting (2) into (1), we obtain

$S_{Lj}^{t+1}= \max(S_{L(j-1)}^{t}, S_{L(j+1)}^{t}-L)$ . (3)

Replacing $Lj$ by $j$ , this becomes,

$S_{j}^{t+1}= \max(S_{j-L}^{t}, S_{j+L}^{t}-L)$ . (4)

Note that if we put $S_{j}^{t}=F_{j}^{t}+ \frac{j}{2}-\frac{Lt}{2}$ , this becomes the ultra discrete diffusion equation,

$F_{j}^{t+1}= \max(F_{j-L}^{i}, F_{\mathrm{j}+L}^{t})$ . (5)

Here, we put

$S_{j}^{t}= \sum_{i=0}^{N-1}H(j-x_{i}^{t})$ , (6)

where $H(x)$ is the step function defined by $H(x)=1$ if $x\geq 0$ and $H(x)=0$ otherwise, and
$N$ is the total number of vehicles on the road. $x_{i}^{t}$ is the Lagrange variable that represents

the position of the $i$-th car at time $t$ and, of course, the relation $x_{0}^{t}<x_{1}^{t}<$ $<x_{N-1}^{t}$ holds.

By using the newly proposed formula

$\sum_{k=1}^{n}H(j-\min(a_{k}, b_{k}))=\max(\sum_{k=1}^{n}H(j-a_{k}),$ $\sum_{k=1}^{n}H(j-b_{k}))$ , (7)

where we assume $a_{1}<a_{2}<$ $<a_{n}$ and $b_{1}<b_{2}<$ $<b_{n}$ , we obtain the Lagrange form

of BCA with general $L$ as

$x_{i}^{t+1}=x_{i}^{t}+ \min(L, x:_{+L}-x_{i}^{t}-L)$ . (8)

The formula (7) expresses the commutability of $\max$ function and step function which allows

us to manipulate Lagrange variables, and hence it is considered to be a fundamental formula

for the Euler-Lagrange transformation.



4

We should note here that the derived equation (8) is a special case of

$x_{i}^{t+1}\backslash =x_{i}^{t}+\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{n}(\mathrm{I}\prime^{\Gamma}, x_{i+S}^{t}-x_{i}^{t}-S)$ , (9)

where $V$ and $S$ are parameters and $V\neq S$ in general. This equation contains the Fukui-

Ishibashi mode1[10] and the quick-t0-start m0de1[14] as special cases by putting $S=1$ and

$V=1,$ respectively, thus it is considered as a generalization of these CA models of traffic

flow.

Next we will combine the above model with the NS model in order to take into account

the randomness of drivers. The NS model is written in Lagrange form as

$x_{i}^{t+1}=x_{i}^{t}+ \max(0,\min(V, x_{i+1}^{t}-x_{i}^{t}-1, x_{i}^{t}-x_{i}^{t-1}+1)-\eta_{i}^{t})$ . (10)

where $\eta_{j}^{t}=1$ with probability $p$ and $\eta_{i}^{t}=0$ with probability 1 – $p$ . The last term in

the mininum in (10) represents the acceleration of cars. The randomness in this model

is considered as a kind of random braking effect, which is known to be responsible for

spontaneous jam formation often observed in real traffic [3]. We also consider random

accerelation in this model which is not taken into account in the NS model. Thus a stochastic

generalization is given in the following set of rules:

1 Random accerelation
$v_{i}^{(1)}= \min(V_{\max}, v_{i}^{(0)}+\eta_{u})$ . (10)

where $\eta_{a}=1$ with the probability $p_{a}$ and $\eta_{a}=0$ with $1-p_{a}$ .

2 Slow-tO-start effect
$v_{i}^{(2)}= \min(v_{i}^{(1)}, x_{i+2}^{t-1}-x_{i}^{t-1}-2)$ . (12)

3 Deceleration due to other vehicles

$v_{i}^{(3)}= \min(v_{i}^{(2)}, x_{i+2}^{t}-x_{i}^{i}-2)$ . (13)

4 Random braking
$v_{i}^{(4)}= \min(v_{i}^{(3)}-\eta_{b}, 0)$ (14)

where $\eta_{b}=1$ with the probability $p_{b}$ and $\eta_{b}=0$ with $1-p_{b}$ .
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5 Avoidance of collision

$v_{i}^{(n+1)}=\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{n}(v_{i}^{(n)}, x_{\mathrm{i}+1}^{t}-x_{i}^{t}-1+v_{i+1}^{(n)}.)$ (15)

with $l?\geq 4,$ which is an iterative equation that has to be applied until /7 converges to
$\iota^{(n+1)}J_{i}=v_{i}^{(n)}(\equiv v_{i})$ .

6 Vehicle movement
$x_{i}^{t+1}=x_{i}^{t}+v_{j}$ . (16)

Again the velocity $v_{i}$ is used as $v_{i}^{(0)}$ in the next time step. Step 5 must be applied to each

car iteratively until its velocity does not change any more, which ensures that this model is

free from collisions. The fundamental diagrams of this stochastic model for some values of

$p_{a}$ and $p_{b}$ are given in Fig. 1. We see some metastable branches in the fundamental diagram.

Moreover, from the spati0-temporal pattern spontaneous jam formation is observed only if we

allow random braking. Random accerelation alone is not sufficient to produce spontaneous

jamming formation. We also note that a wider scattering area appears if we introduce both

random accerelation and braking.

III. PEDESTRIAN TRAFFIC MODEL

Recent progress in modelling pedestrian dynamics [15] is remarkable and many valuable

results are obtained by using different models, such as the social force model [16] and the

floor field model $[8, 17]$ . The former model is based on a system of coupled differential

equations which has to be solved e.g. by using a molecular dynamics approach similar to

the study of granular matter. Pedestrian interactions are modelled via long-ranged repulsive

forces. In the latter model two kinds of floor fields, i.e., a static and a dynamic one, are

introduced to translate a long-ranged spatial interaction into an attractive local interaction,

but with memory, similar to the phenomenon of chemotaxis in biology [18]. It is interesting

that, even though these two models employ different rules for pedestrian dynamics, they

share many properties including lane formation, oscillations of the direction at bottlenecks

[17], and the s0-called faster-is-slower effect [16]. Although these are important basics for

pedestrian modelling, there are still many things to be done in order to apply the models

to more practical situations such as evacuation from a building with complex geometry. In



FIG. 1: Fundamental diagrams and typical spati0-temporal patterns of the new stochastic Lagrange

model with different value of random parameters. Parameters are set to $V_{\max}=5$ and $S=2.$

Upper two figures are the case of $p_{a}=0$ and $pb$ $=0.2,$ middle ones are $p_{C1}=0.8$ and $pb=0,$ and

the bottom ones are $p_{a}=0.8$ and $pb$ $=0.2.$

this paper, we will propose a method to construct the static floor field for complex rooms of

arbitrary geometry. The static floor field is an important ingredient of the model and has

to be specified before the simulations.

First we show the update rules of an extended floor field model for modelling panic

behavior of people evacuating from a room. The space is discretized into cells of size 40 cm $\cross$

$40$ cm which can either be empty or occupied by one pedestrian (hard-core-exclusion). Each

pedestrian can move to one of the unoccupied next-neighbor cells $(i,j)$ (or stay at the present

cell) at each discrete time step $tarrow t1$ $1$ according to certain transition probabilities $p_{ij}$

(Fig. 2) as explained below in Sec. III A.
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FIG. 2: Target cells for a person at the next time step. The von Neumann neighborhood is used

for this model.

For the case of evacuation processes, the static floor field $S$ describes the shortest distance
to an exit door. The field strength $S_{ij}$ is set inversely proportional to the distance from the
door. The dynamic floor field $D$ is a virtual trace left by the pedestrians similar to the
pheromone in chemotaxis [19]. It has its own dynamics, namely diffusion and decay, which
leads to broadening, dilution and finally vanishing of the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ . At $t=0$ for all sites $(i,j)$

of the lattice the dynamic field is zero, i.e., $D_{ij}=0.$ Whenever a particle jumps from site
$(i,j)$ to one of the neighboring cells, $D$ at the origin cell is increased by one.

The model is able to reproduce various fundamental phenomena, such as lane formation in
a corridor, herding and oscillation at a bottleneck $[8, 17]$ . This is an indispensable property
for any reliable model of pedestrian dynamics, especially for discussing safety issues.

A. Basic update rules

The update rules of our CA have the following structure:

1. The dynamic floor field $D$ is modified according to its diffusion and decay rules, con-

trolled by the parameters $\alpha$ and $\delta$ . In each time step of the simulation each single boson
of the whole dynamic field $D$ decays with probability $\delta$ and diffuses with probability
$\alpha$ to one of its neighboring cells.

2. For each pedestrian, the transition probabilities $p_{ij}$ for a move to an unoccupied neigh-
bor cell $(i, j)$ are determined by the two floor fields and one’s inertia (Fig. 2). The
values of the fields $D$ (dynamic) and $S$ (static) are weighted with two sensitivity pa-

rameters $k_{D}$ and $k_{S}$ :

$p_{ij}=N\exp$ $(k_{D}D_{ij})\exp(ksS_{ij})p_{I}(i,j)$pw, (17)



with the no rnalization $N$ . Here $p_{I}$ represents the inertia effect [17] given by $p_{I}(i,j)=$

$\exp(k_{I})$ for the direction of one’s motion in the previous time step, and $p_{I}(i,j)=1$

for other cells, where $f\hat{\iota}I$ is the sensitivity parameter. $p\mathfrak{s}v$ is the wall potential which is

explained below. In (17) we do not take into account the obstacle cells (walls etc.) as

well as occupied cells.

3. Each pedestrian chooses randomly a target cell based on the transition probabilities

$Pij$ determined by (17).

4. Whenever two or more pedestrians attempt to move to the same target cell, the move-

ment of all involved particles is denied with probability $\mu\in[0,1]$ , i.e. all pedestrians

remain at their site [20]. This means that with probability $1-\mu$ one of the individuals

moves to the desired cell. Which one is allowed to move is decided using a probabilistic

method $[17, 20]$ .

5. The pedestrians who are allowed to move perform their motion to the target cell

chosen in step 3. $D$ at the origin cell $(i, 7)$ of each moving particle is increased by one:

$D_{ij}arrow D_{ij}+1,$ i.e. $D$ can take any non-negative integer value.

The above rules are applied to all pedestrians at the same time (parallel update). Some

important details are explained in the following subsections.

B. Effect of walls

People tend to avoid walking close to walls and obstacles. This can be taken into account

by using “wall potentials” - We introduce a repulsive potential inversely proportional to the

distance from the walls. The effect of the static floor field is then modified by a factor (see

eq. (17) $)$ :

$p_{W}= \exp(k_{W}\min(D_{\max}, d))$ , (18)

where $d$ is the minimum distance from all the walls, and $kw$ is a sensitivity parameter. The

range of the wall effect is restricted up to the distance $D_{\max}$ from the walls.
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FIG. 3: Example for the calculation of the static floor field using the Dijkstra method, (a) A

room with one obstacle. The door is at $O$ and the obstacle is represented by lines $\mathrm{t}$ –H. (b)

The visibility graph for this room. Each node connected by a bond is “visible”: i.e., there are no

obstacles between them. The real number on each bond represents the distance between them as

an illustration.

C. Calculation of the static field in arbitrary geometries

In the following we propose a combination of the visibility graph and Dijkstra’s algorithm

to calculate the static floor field. These methods enable us to determine the minimum

Euclidian $(L^{2})$ distance of any cell to a door with arbitrary obstacles between them.

Let us explain the main idea of this method by using the configuration given in Fig. $3(\mathrm{a})$

where there is an obstacle in the middle of the room. We will calculate the minimum distance

between a cell $P$ and the door $O$ by avoiding the obstacle. If the line $PO$ does not cross the

obstacle $A-H,$ then the length of the line, of course, gives the minimum. If, however, as in

the example given in Fig. $3(\mathrm{a})$ , the line $PO$ crosses the obstacle, one has to make a detour

around it. Then we obtain two candidates for the minimum distance, i.e., lines PBAO and

PCDHO. The shorter one finally gives the minimum distance between $P$ and $O$ . If there

are more than one obstacle in the room, then we apply the same procedure to each of them

repeatedly. Here it is important to note that all the lines pass only the obstacle’s edges with

an acute angle. It is apparent that the obtuse edges like $E$ and $F$ can never be passed by

the minimum lines.



10

To incorporate this idea into the computer program, we first need the concept of the vis-

ibility graph in which only the nodes that are visible to each other are bonded [21] ( visible

means here that there are no obstacles between them). The set of nodes consists of a cell

point $P$ , a door $O$ and all the acute edges in the room. In the case of Fig. $3(\mathrm{a})$ , the node

set is $\{P, O, A, B, C, D, G, H\}$ and the bonds are connected between $A-B$ , $A-H,$ and so

on (Fig. $3(\mathrm{b})$ ). Each bond has its own weight which corresponds to the Euclidian distance

between them.

Once we have the visibility graph, we can calculate the distance between $P$ and 0 by

tracing and adding the weight of the bonds between them. There are several possible paths

between $P$ and 0, and the one with minimum total weight represents the shortest route

between them. The optimization task is easily performed by using the Dijkstra method [21]

which enables us to obtain the minimum path on a weighted graph.

Performing this procedure for each cell in the room, the method allows us to determine

the static floor field for arbitrary geometries.

D. Simulations: Inertia effect

We focus on measuring the total evacuation time by changing the parameters $ks$ , $f_{\vee D}^{n}$ , $k_{I}$ , $\mu$

and the configuration of the room, such as width, position and number of doors and obstacles.

In all simulations we put $D_{\max}=10$ , $\alpha=0.2$ and $\delta=0.2,$ and von Neumann neighborhoods

are used in eq. (17) for simplicity. The size of the room is set to 100 $\cross 100$ cells. Pedestrians

try to keep their preferred velocity and direction as long as possible. This is taken into

account by adjusting the parameter $k_{I}$ . In Fig. 4, total evacuation times from a room

without any obstacles are shown as function of $k_{D}$ in the cases $k_{I}=0$ and $k_{I}=3.$ We

see that it is monotonously increasing in the case $k_{I}=0,$ because any perturbation from

other people becomes large if $f_{\vee D}^{\wedge}$ increases, which causes the deviation from the minimum

route. Introduction of inertia effects, however, changes this property qualitatively as seen

in Fig. 4. The minimum time appears around $k_{D}^{\wedge}=1$ in the case $k_{I}=3.$ This is well

explained by taking into account the physical meanings of $k_{I}$ and $k_{D}$ . If $f_{\vee I}^{\wedge}$ becomes large,

people become less flexible and all of them try to keep their own minimum route to the exit

according to the static floor field regardless of congestion. By increas$\mathrm{i}_{1\mathrm{l}}\mathrm{g}k_{D}$ , one begins to

feel the disturbance from other people through the dynamic floor field. This perturbation
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FIG. 4: Total evacuation time versus coupling $k_{D}$ to the dynamic floor field in the dependence of

$k_{I}$ . The room is a simple square without obstacles and 50 simulations are averaged for each data

point. Parameters are $\rho=0.03$ , $ks=2$ , $kw=0.3$ and $\mathrm{p}$ $=0.$

makes one flexible and hence contributes to avoid congestion. Large $k_{D}$ again works as

strong perturbation as in the case of $k_{I}=0,$ which diverts people from the shortest route

largely. Thus we have the minimum time at a certain magnitude of $k_{D}$ , which will depend

on the value of $k_{s}$ and $k_{I}$ .

$\mathrm{I}\mathrm{V}$ . ANT TRAIL MODEL

The ants communicate with each other by dropping a chemical (generically called

pheromone) on the substrate as they crawl forward $[19, 22]$ . Although we cannot smell

it, the trail pheromone sticks to the substrate long enough for the other following sniff-

ing ants to pick up its smell and follow the trail. Ant trails may serve different purposes

(trunk trails, migratory routes) and may also be used in a different way by different species.

Therefore one-way trails are observed as well as trails with counterflow of ants.

In [6] we developed a particle-hopping model, formulated in terms of stochastic CA [2],

which may be interpreted as a model of unidirectional flow in an ant-trail. As in ref. [6],

rather than addressing the question of the emergence of the ant-trail, we focus attention

here on the traffic of ants on a trail which has already been formed. Furthermore we have

assumed unidirectional motion. The effects of counterflow, which are important for some

species, will be investigated in the future.

Each site of our one-dimensional ant-trail model represents a cell that can accomodate
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$\cap^{9}$ $\cap \mathrm{Q}$ $r^{\mathrm{q}}\backslash$
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FIG. 5: Schematic representation of typical configurations; it also illustrates the update procedure.

Top: Configuration at time $t$ , i.e. before stage I of the update. The non-vanishing hopping prob-

abilities of the ants are also shown explicitly. Middle: Configuration after one possible realisation

of stage $I$ . Two ants have moved compared to the top part of the figure. Also indicated are the

pheromones that may evaporate in stage $II$ of the update scheme. Bottom: Configuration after
one possible realization of stage II. Two pheromones have evaporated and one pheromone has

been created due to the motion of an ant.

at most one ant at a time (see Fig. 5). The lattice sites are labelled by the index $i$

$(i=1,2, \ldots, L);L$ being the length of the lattice. We associate two binary variables $S_{i}$

and $\sigma_{i}$ with each site $i$ where Si takes the value 0 or 1 depending on whether the cell is

empty or occupied by an ant. Similarly, $\sigma_{i}=1$ if the cell $i$ contains pheromone; other-

wise, $\sigma_{i}=0.$ Thus, we have two subsets of dynamical variables in this model, namely,

$\{S(t)\}\equiv(S_{1}(t), S_{2}(t)$ , $\ldots$ : $S_{j}(t)$ , $\ldots$ , $S_{L}(t))$ and $\{\sigma(t)\}\equiv(\sigma_{1}(t), \sigma_{2}(t)$ , $\ldots$ : $\sigma_{i}(t)$ , $\ldots$ , $\sigma_{L}(t))$ . The

instantaneous state (i.e., the configuration) of the system at any time is specified completely

by the set $(\{S\}, \{\sigma\})$ .

Since a unidirectional motion is assumed, ants do not move backward. Their forward-

hopping probability is higher if it smells pheromone ahead of it. The state of the system is

updated at each time step in two stages. In stage I ants are allowed to move. Here the subset

$\{S(t+1)\}$ at the time step $t+1$ is obtained using the full information $(\{S(t)\}, \{\sigma(t)\})$ at
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time $t$ . Stage II corresponds to the evaporation of pheromone. Here only the subset $\{\sigma(t)\}$

is updated so that at the end of stage II the new configuration $(\{S(t+1)\}, \{\sigma(t+-1)\})$ at

time $t+1$ is obtained. In each stage the dynamical rules are applied in parallel to all ants

and pheromones, respectively.

Stage $I$: Motion of ants

An ant in cell $i$ that has an empty cell in front of it, i.e., $S_{i}(t)=1$ and $S_{i+1}(t)=0,$ hops

forward with

probability $=\{$

$Q$ if $\sigma_{i+1}(t)=1,$

$q$ if $\sigma_{i+1}(t)=0,$

(19)

where, to be consistent with real ant-trails, we assume $q<Q.$

Stage $II.\cdot$ Evaporation of pheromones

At each cell $i$ occupied by an ant after stage I a pheromone will be created, i.e.,

$\sigma_{i}(t+1)=1$ if $\mathrm{S}_{\acute{\mathrm{i}}}(t+1)=1.$ (20)

On the other hand, any ‘free’ pheromone at a site $i$ not occupied by an ant will evaporate

with the probability $f$ per unit time, i.e., if $S_{i}(t+1)=0$ , $\sigma_{\dot{\mathrm{a}}}(t)=1,$ then

$\sigma_{i}(t+1)=\{$
0 with probability $f$,

1 with probability $1$ -f.
(21)

Note that the dynamics conserves the number $N$ of ants, but not the number of

pheromones.

The rules can be written in a compact form as the coupled equations

$S_{j}(t+1)=S_{j}(t)+ \min(\eta j-1(t), Sj-1(t),$ $1-Sj(t))$

$- \min(\mathrm{t}\mathrm{X}\mathrm{j}(t), S_{j}(t)$ , $1-Sj+1(t))$ , (22)

$\sigma j(t+1)=\max(Sj(t+1),\min(\sigma j(t), \xi j(t)))$ , (23)

where $\xi$ and 7 are stochastic variables defined by $\mathit{5}j(t)$ $=0$ with the probability $f$ and
$\xi j(t)=1$ with l-f, and $\eta j(t)=1$ with the probability $p=q+(Q-q)\sigma j+1(t)$ and $\eta j(t)=0$

with l-p. This representation is useful for the development of approximation schemes.
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FIG. 6: Numerical results for the probabilities of finding an ant(o), pheromone but no ant(o) and

nothing(x) in front of an ant are plotted against density of the ants. The parameters are $f=$ 0.005

(in (a)) and $f=0.01$ (in (b)).

A. “Loose” cluster approximation (LCA)

Let us consider again the probabilities $Pa$ , $P_{p}$ , $P_{0}$ defined in the previous section. For

the purpose of clarifying some subtle concepts of “clustering” we replot these probabilities

for only two specific values of $f$ in Fig. 6; these data have been obtained from computer

simulations of our ant-trail model.

There is a flat part of the curves in Fig. 6 in the low density regime; from now onwards,

we shall refer to this region as “region 1”. Note that in this region, in spite of low density of

the ants, the probability of finding an ant in front of another is quite high. This implies the

fact that ants tend to form a cluster. On the other hand, cluster-size distribution, obtained

from our computer simulations, shows that the probability of finding isolated ants are always

higher than that of finding a cluster of ants occupying nearest-neighbor sites[23].

These two apparently contradictory observations can be reconciled by assuming that the

ants form “loose” clusters in the region 1. The term “loose” means that there are small gaps

in between successive ants in the cluster, and the cluster looks like an usual compact cluster

if it is seen from a distance (Fig. 7). In other words, a loose cluster is just a loose assembly

of isolated ants. Thus it corresponds to a space region with density larger than the average

density $\rho$ , but smaller than the maximal density $(\rho=1)$ of a compact cluster.

Let us assume that the loose cluster becomes stationary after sufficient time has passed.



1 $\mathrm{s}$

FIG. 7: Schematic explanation of the loose cluster. $H$ is the hopping probability of ants inside the

loose cluster and $h$ is that of the leading ant.

Then the hopping probability of all the ants, except the leading one, is assumed to be $H$ ,
while that of the leading one is $h$ (see Fig. 7); the values of $H$ and $h$ are determined self-
consistently. Before beginning the detailed analysis, let us consider the properties of $H$ and
$h$ . If $f$ is small enough, then $H$ will be close to $Q$ because the gap between ants is quite
small. On the other hand, if the density of ants is low enough, then $h$ will be very close to
$q$ because the pheromone dropped by the leading ant would evaporate when the following
ant arrives there.

Next we determine the typical size of the gap between successive ants in the cluster. We
will estimate this by considering a simple time evolution beginning with an usual compact

cluster (with local density $\rho=1$ ) without any gap in between the ants. Then the leading
ant will move forward by one site over the time interval $1$ /h. This hopping occurs repeatedly

and in the interval of the successive hopping, the number of the following ants which will
move one step is $H/h$ . Thus, in the stationary state, strings (compact clusters) of length
$H/h$ , separated from each other by one vacant site, will produced repeatedly by the ants
(see Fig. 8). Then the average gap between ants is

$\frac{(\frac{H}{h}-1)\cdot 0+11}{H/h}=\frac{h}{H}$, (24)

which is independent of the density $\rho$ of ants. Interestingly, the density-independent aver-
age gap in the LCA is consistent with the flat part (i.e., region 1) observed in computer

simulations (Fig. 6). In other words, the region 1 is dominated by loose clusters.

Beyond region 1, the effect of pheromone of the last ant becomes dominant. Then the
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$\mathrm{O}$ $\mathrm{O}$

FIG. 8: The stationary loose cluster. The average gap between ants becomes $h/H$ , which is

irrelevant to the density of ants.

hopping probability of leading ants becomes large and the gap becomes wider, which will

increase the flow. We call this region as region 2, in which the “looser” cluster is formed in

the stationary state. It can be characterized by a negative gradient of the density dependence

of the probability to find an ant in front of a cell occupied by an ant (see Fig. 6).

Considering these facts, we finally obtain the following equations for $h$ and $H$ :

$( \frac{h-q}{Q-q})^{h}=(1-f)^{L-l}$ , $( \frac{H-q}{Q-q})^{H}=(1-f)^{\frac{h}{H}}$ , (25)

where 1 is the length of the cluster given by

$l= \rho L+(\rho L-1)\frac{h}{H}$ , (26)

and $\rho$ and $L$ are density and the system size, respectively. These equations can be applied

to the region 1 and $\underline{?}$ , and solved simultaneously by the Newton method.

Total flux in this system is then calculated as follows. The effective density peff in the

loose cluster is given by
$\rho_{\mathrm{e}\mathrm{f}\mathrm{f}}=\frac{1}{1+h/H}$ . (27)

Therefore, considering the fact that there are no ants in the part of the length $L-l,$ total

flux $F$ is
$F=$ ; $f(H, \mathrm{t}_{\mathrm{e}\mathrm{f}\mathrm{f}})$ , (28)

where $f(H,\rho_{\mathrm{e}\mathrm{f}\mathrm{f}})$ is given by

$f(H, \rho_{\mathrm{e}\mathrm{f}\mathrm{f}})=\frac{1}{2}(1-\sqrt{1-4H_{\beta \mathrm{e}\mathrm{f}\mathrm{f}}(1-\rho_{\mathrm{e}\mathrm{f}\mathrm{f}})})$ (29)

Above the density 1/2, ants are assumed to be uniformly distributed, in which a kind of

MFA works well. We call this region as region 3. Thus we have three typical regions in this

model. In region 3, the relation $H=h$ holds because all the gaps have the same length, i.e.
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FIG. 9: (a) Fundamental diagrams of the linear region (bold line) together with numerical results

with parameters $f=$ 0.005 (broken curve) and $f=0.01$ (solid curve). (b) The fundamental

diagram $(f=0.005)$ of the combination of LCA and (30) (solid curve). The broken curve is the

numerical result for $f=$ 0.005. The system size is $L=350.$

the state is homogeneous. Thus $h$ is determined by

$( \frac{h-q}{Q-q})^{h}=(1-f)^{\frac{1}{\rho}-1}$ , (30)

which is the same as our previous paper, and flux is given by $f\cdot(h, \rho)$ . It is noted that if we

put $\rho=1/2$ and $H=h,$ then (25) coincides with (30).

We can focus on the region 1 by assuming $h=q$ in (25). Under this assumption, we

can easily see that the flux-density relation becomes linear. In Fig. $9(\mathrm{a})$ , the two theoretical

lines are almost the same, and the gradient of numerical results are also similar among these

values of $f$ , which is quite similar to the theoretical one. In Fig. $9(\mathrm{b})$ , the results obtained

from (25) in the region $\rho\leq 1/2$ are shown. Above this value of density, equation (30) is

used. The jointed curve fits quite well the numerical one.



18

Acknowledgments

The author wishes to acknowledge J.Matsukidaira, A.Schadschneider, A.Kirchner and

D.Chouwdhury for collaborations of studying CA models presented in this paper.

[1] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge Uni-

versity Press, Australia, 1998).

[2] S. Wolfram, Theory and applications of cellular automata (World Scientific, Singapore, 1986).

[3] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).

[4] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).

[5] D. Helbing, H. Herrmann, M. Schreckenberg, and D.E.Wolf, Traffic and Granular Flow ’$gg$

(Springer-Verlag, Berlin, 2000).

[6] D. Chowdhury, V. Guttal, K. Nishinari, and A. Schadschneider, J. Phys. $\mathrm{A}$ :Math. Gen. 35,

L573 (2002).

[7] M. Burd, D. Archer, N. Aranwela, and D. J. Stradling, American Natur. 159, 283 (2002).

[8] A. Kirchner and A. Schadschneider, Physica A 312, 260 (2002).

[9] K. Nagel and M. Schreckenberg, Journal of Physics I France 2, 2221 (1992).

10] M. Fukui and Y. Ishibashi, J. Phys. Soc. Jpn. 65, 1868 (1996).

11] K. Nishinari and D. Takahashi, J. Phys. A. 31, 5439 (1998).

12] T. Tokihiro, D. Takahashi, J. Matsukidaira, and J. Satsuma, Phys. Rev. Lett. 76, 3247 (1996).

13] T. Musya and H. Higuchi, J. Phys. Soc. Jpn. 17, 811 (1978).

14] K. Nishinari and D. Takahashi, J. Phys. A. 33, 7709 (2000).

15] M. Scheckenberg and S. Sharma, Pedestrian and Evacuation Dynamics (Springer-Verlag,

Berlin, 2001).

16] D. Helbing, I. Farkas, and T. Vicsek, Nature 407, 487 (2000).

17] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, Physica A 295, 507 (2001).

18] E. Ben-Jacob, Contemp. Phys. 38, 205 (1997).

19] A. Mikhailov and V. Calenbuhr, From Cells to Societies (Springer-Verlag, Berlin, 2002).

20] A. Kirchner, K. Nishinari, and A. Schadschneider, Phys. Rev. $\mathrm{E}67$ , 056122 (2003).

21] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational geometry

[2] S. Wolfram, Theory and applications of cellular automata (World Scientific, Singapore, 1986).

[3] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).

[4] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).

[5] D. Helbing, H. Herrmann, M. Schreckenberg, and D.E.Wolf, Traffic and Granular Flow ’$gg$

(Springer-Verlag, Berlin, 2000).

[6] D. Chowdhury, V. Guttal, K. Nishinari, and A. Schadschneider, J. Phys. $\mathrm{A}$ :Math. Gen. 35,

L573 (2002).

[7] M. Burd, D. Archer, N. Aranwela, and D. J. Stradling, American Natur. 159, 283 (2002).

[8] A. Kirchner and A. Schadschneider, Physica A312, 260 (2002).

[9] K. Nagel and M. Schreckenberg, Journal of Physics I France 2, 2221 (1992).

10] M. Fukui and Y. Ishibashi, J. Phys. Soc. Jpn. 65, 1868 (1996).

11] K. Nishinari and D. Takahashi, J. Phys. A. 31, 5439 (1998).

12] T. Tokihiro, D. Takahashi, J. Matsukidaira, and J. Satsuma, Phys. Rev. Lett. 76, 3247 (1996).

13] T. Musya and H. Higuchi, J. Phys. Soc. Jpn. 17, 811 (1978).

14] K. Nishinari and D. Takahashi, J. Phys. A. 33, 7709 (2000).

15] M. Scheckenberg and S. Sharma, Pedestrian and Evacuation Dynamics (Springer-Verlag

Berlin, 2001).

16] D. Helbing, I. Farkas, and T. Vicsek, Nature 407, 487 (2000).

17] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, Physica A295, 507 (2001).

18] E. Ben-Jacob, Contemp. Phys. 38, 205 (1997).

19] A. Mikhailov and V. Calenbuhr, From Cells to Societies (Springer-Verlag, Berlin, 2002).

20] A. Kirchner, K. Nishinari, and A. Schadschneider, Phys. Rev. $\mathrm{E}67$ ,056122 (2003).

21] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, $C,\mathrm{o}nlputational$ geometry



I9

(Springer-Verlag, Berlin, 1997).

[22] E. Wilson, The insect societies (Belknap, Cambridge, USA, 1971).

[23] $\mathrm{I}[searrow]’$ . Nishinari, D. Chowdhury, and A. Schadschneider, Phys. Rev. $\mathrm{E}67$ , 036120 (2003).

APPENDIX: THE PAINLEVE 2 EQUATION AND ITS APPLICATION

In this appendix, application of the Painleve 9 equation to an engineering process is

discussed in order to emphasize the importance of the soliton theory.

Injecting glass fibers in an extruder is an important technology in making plastic materials

in order to reinforce them. The injected fibers are, however, sometimes broken into pieces

due to inertial forces in the extruder, which damages the strength of materials. Thus it is

important to consider under which conditions fibers will break. To this purpose, let us first

derive a dynamical equation of a fiber in the extruder. The equation of balance of moments

is given by
$\frac{\partial NI}{\partial s}=Q,$ (A.1)

where $M=E$Its is the moment and $\kappa$ is the curvature of the fiber (Fig . $Q$ and $s$

are respectively the shearing force and the arc-length of the fiber. Equations of balance of

tangential and transversal force are given by

$\frac{\partial N}{\partial s}+\kappa Q+q_{i}=0$ (A.2)

$- \frac{\partial Q}{\partial s}+\kappa N+q_{n}=0,$ (A.3)

where $N$ is the normal stress and $q_{t}$ , $q_{n}$ are the external force acting on the fiber.

FIG. 10: A segment of a fiber and forces acting on it.
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Eliminating $N$ , $Q$ and $\Lambda 1$ , we obtain the equation for the curvature as

$\kappa_{ss}=-\frac{\kappa^{3}\sim}{9_{\sim}}-\frac{\kappa^{\sim}}{EI}\int q_{t}ds+\frac{q_{n}}{EI}$. (A.4)

In the extruder it can be shown that we can put both $q_{t}$ and $q_{n}$ as a constant. Thus

(A.4)

which is nothing but the P2 equation. Boundary conditions are

$\kappa(0)=\kappa(L)=0,$ (A.6)

where $L$ is the total length of the fiber, which is usually $\sim$ lOmm. We investigate the P2

equation with the boundary conditions (A.6) numerically. Shooting method is used to adjust

the conditions (A.6). A typical result are given in Fig.11. From this figure, we know the

maximum curvature of the fiber. If the maximum exceeds the surrender condition of the

material, then it will break into pieces and the number of pieces may correspond to the

number of extremums appear in the curve.
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FIG. 11: Numerical results


