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Upper bound of the best constant of the
Trudinger-Moser inequality and its application
to the Gagliardo-Nirenberg inequality
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We consider the best constant of the Trudinger-Moser inequality in R™. Let
Q) be an arbitrary domain in R".It is well known that the Sobolev space
HPP(), 1 < p < oo, is continuously embedded into L9(S2) for all ¢ with
p S ¢ < oo. However, we cannot take ¢ = oo in such an embedding. For
bounded domains 2, Trudinger [18] treated the case p = n(2 2) , i.e., Hy™ ()
and proved that there are two constants o and C such that

[l exp(aful™)l 1@ < CI9 (0.1)

holds for all u € Hy™(R2) with ||Vu||zni) £ 1. Here and hereafter p' rep-
resents the Holder conjugate exponent of p,i.e.,p’ = p/(p — 1). Moser [9]
gave the optimal constant for ¢« in (0.1), which shows that one cannot take
« greater than 1/(n"~2wn~1), where w, is the volume of the unit n-ball, that
is, wy, := |B;| = 27™?%/(nT'(n/2)) (T : the gamma function). Adams [2] gener-
alized Moser’s result to the case Hy"™™(§2) for positive integers m < n and
obtained the sharp constant corresponding to (0.1).

When © = R", Ogawa [10] and Ogawa-Ozawa [11] treated the Hilbert
space H™/2?(R™) and then Ozawa [14] gave the following general embedding
theorem in the Sobolev space H™/??(R") of the fractional derivatives which
states that

1@p(cel”) |2 @ny S Clluls @) (0.2)
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holds for all u € H™P?(R™) with ||(—=A)" Py 1@~y < 1, where

Jp—1
p(€) = exp(¢) Zg ZJ‘, jp=min{j €N|j 2p—1}.

1=Ip

The advantage of (0.2) gives the scale invariant form. Concerning the sharp
constant for « in (0.2), Adachi-Tanaka [1] proved a similar result to Moser’s
in H'™(R™).

Our purpose is to generalize Adachi-Tanaka’s result to the space H n/pP(R™)
of the fractional derivatives. We show an upper bound of the constant ¢ in
(0.2). Indeed, the following theorem holds :

Theorem 0.1. Let 2 £ p < oo. Then, for every a € (Ap, ), there exists
a sequence {ug}32, C HYPP(R™) \ {0} with ||[(—A)"®Puy||omn) S 1 such
that

1o (ct|us|? ) 2 @my

“uk“ip(mn)

— 00 as k — oo,
where A, is defined by

1 [2722e0 0/ (2p) )
o | /@)

Remark . Let o, be the best constant of (0.2) , i.e

Ay = (0.3)

ap = sup{a > 0| The inequality (0.2) holds with some constant C.}.

Then Theorem 0.1 implies that o, £ A, for 2 < p < .

Next, if we give a similar type estimate to (0.2) by taking another nor-
malization such as ||(I — A)"/®Py||prny < 1,then we can cover all 1 <
p < 00. Moreover, when p = 2, it turns out that our constant A, of (0.3) is
optimal. To state our second result, let us recall the rearrangement f* of the
measurable funcition f on R". For detail, see Section 2 (Stein-Weiss [16]). We
denote by f** the average function of f*,i.e.,

t
= —1—/ f*(r)dr fort > 0.
0

Qur theorem now reads:
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Theorem 0.2. Let 1 < p < 0o and A, be as in (0.3).
(i) For every a € (Ap, 00), there ezists a sequence {ux}, C H™P?(R") with
||(I — A)n/(2p)uk“Lp(Rn) < 1 such that

||‘1’p(a‘uklp’)||u(mn) — 00 as k — oo.

(ii) We define A; by 1
A2 = A,/ B,

where
Bp = (p— l)Psup {/(;oc(f"(t) - f*(t))pdt I Ilf”LP(R") § 1} .

Then for every a € (0, Ay), there exists a positive constant C depending only
on p and « such that
[ @p(elul” )| 1mny = C (0.4)

holds for all u € H™PP(R™) with ||(I — A)Y Py ogny S 1.
Remark . Later, we shall show that
1SB,SpP—(p—1) for 1<p< oo
In particular, for 2 £ p < oo, there holds
B, = (p— 1)1, (0.5)
In any case, we obtain Ay < A, for 1 < p < oo.

Since it follows from (0.5) that By = 1, we see that Ay = A} = (27)"/w, is
the best constant of (0.4). Hence, the following corollary holds :

Corollary 0.1. (i) For every a € ((27)"/wn, o), there ezists a sequence
{ur}2, € H™22(R™) with ||(I — A)™4ug|r2@ny S 1 such that

||‘I’2(a|uk|2)l|L1(Rn) — 00 as k — oo.

(i) For every a € (0, (27w)"™/wy), there ezists a positive constant C depending

only on a such that
|®2(elul®) [ @my £ C (0.6)

holds for all u € HY22(R") with ||(I — AY"/%u||2@ny < 1.
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It seems to be an interesting question whether or not (0.6) does hold for
a = (2m)"/wn.

Next, we consider the Gagliardo-Nirenberg interpolation inequality which
is closely related to the Trudinger-Moser inequality. Ozawa [14] proved that
for 1 < p < oo there is a constant M depending only on p such that

7 n 1—
ul] oqrmy S MM (|t | (— )™/ @)y 22 (0.7)

holds for all u € H™P#(R") and for all q € [p, 00). Ozawa [13},[14] also showed
the fact that (0.2) and (0.7) are equivalent and he gave the relation between
o in (0.2) and M in (0.7). Combining his formula with our result, we obtain
an estimate of M from below. Indeed, there holds the following theorem :

Theorem 0.3. Let 2 £ p < oo. We define M,, and m, as follows.

M, := inf{M > 0| The inequality (0.7) holds for all u € H™/PP(R")
and for all q € [p, 00).},
m, := inf{M > 0| There ezists go € [p, ) such that the inequality (0.7)
holds for all u € HMP?(R™)and for all q € [go, 00).}.

Then there holds !
> >
M, 2 m, 2 (peA,)VP"

Since Ozawa [13],{14] gave the relation between the constants ¢ in (0.2) and
M in (0.7), we obtain a lower bound of the best constant for the Sobolev
inequality in the critical exponent : '

Theorem 0.4. Let 1 < p < oo.
(i) For every M > (p'eA;)™/¥, there exists qo € [p, o0) depending only on p
and M such that

llul| Larny S M@ ||(I — A)™CPu|| ogny (0.8)

holds for all u € H™/PP(R™) and for all g € [go, 00).
(ii) We define M, and T, as follows.

M, := inf{M > 0| The inequality (0.8) holds for all u € H™P*(R")
and for all q € [p, ).},
M, = inf{M > 0| There exists go € [p, o) such that the inequality (0.8)
holds for all u € H™PP(R™)and for all g € [go, 0).}.



Then there holds

Since we have obtained A, = A% for p = 2, we see that

1 Wn

1
V2ed;  \f2eA; \ 27tlenn

Hence, the above theorem gives the best constant for (0.8). Indeed, we have
the following corollary :

Corollary 0.2. (i) For every M > +/wy,/ (2”+1éw"), there ezists go € [2, 00)
such that

lullza@ny £ M@ 2(I — A)*ull2@ny
holds for all u € H*?2(R™) and for all q € [go, o0).

(ii) For every 0 < M < \/w,/(2"*ler™) and q € [2,00), there ezist gy €
[q,00) and ug € HY*2(R™) such that

”uO”L‘m(R") > MQé/ZH(I - A)"/411'0“L2(IR")

holds.

To prove our theorems, by means of the Riesz and the Bessel poten-
tials, we first reduce the Trudinger-Moser inequality to some equivalent form
of the fractional integral. The technique of symmetric decreasing rearrange-
ment plays an important role for the estimate of fractional integrals in R™. To
this end, we make use of O’Neil’s result [12] on the rearrangement of the
convolution of functions. Such a procedure is similar to Adams [2]. First, we
shall show that for every o € (0, Ay), there exists a positive constant C' de-
pending only on p and « such that (0.4) holds for all u € H™PP(R") with
|(I=A)®P)y| ogny < 1. On the other hand, we shall show that the constant
a holding (0.2) and (0.4) in R™ can be also available for the corresponding
inequality in bounded domains. Since Adams [2] gave the sharp constant o
in the corresponding inequality to (0.1), we obtain an upper bound A, as in
(0.3). For general p, we have Ay < A,.In particular, for p = 2, there holds
Aj = Az, which provides us the best constant of (0.4).
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