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THE NAVIER-STOKES EQUATIONS IN $\mathbb{R}^{n}$ WITH LINEARLY
GROWING INITIAL DATA

OKIHIRO SAWADA

ABSTRACT. The local-in-time mild solutions to the Navier-Stokes equations with
the initial velocity $U_{0}$ of the form Uq(x) $=-Mx$ $+u_{0}(x)$ is constructed, where
$M$ is an $n\cross n$ constant matrix with $\mathrm{t}\mathrm{r}M=0$ and $u_{0}E$ $L_{\sigma}^{p}(\mathrm{R}^{n})$ . Key method
is to establish Ornstein-Uhlenbeck semigroup and studying its property, for ex-
ample, to establish the $L^{p}-L^{q}$ estimates. The solution is smooth in $x$ , but no
differentiate in $t$ . Moreover, if $||e$”$||\leq 1$ for all $t\geq 0,$ then this mild solution
is even analytic in $x$ . Also, some results related to main theorem are mentioned.

This paper is essentially based on the results in [21] with Matthias Hieber (in
Technische Universit\"at Darmstadt, Germany).

1. INTRODUCTION.

We consider the Navier-Stokes equations in the whole space $\mathbb{R}^{n}(n\geq 2)$ :

(NS) $\{\begin{array}{l}U_{t}-\Delta U+(U,\nabla)U+\nabla P=0,\nabla\cdot U=0 \mathrm{i}\mathrm{n} \mathbb{R}^{n}\mathrm{x}(0,T)U|_{t=0}=U_{0}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\nabla\cdot U_{0}=0\mathrm{i}\mathrm{n}\mathbb{R}^{n}\end{array}$

Here, $U=$ $(U^{1}(x,t)$ , $\ldots$ , $U^{n}$ (x, $t$) $)$ and $P(x, t)$ stand for the unknown velocity
and the unknown pressure of the viscous fluid at $x\in X^{j}l^{n}$ and $t>0;U_{0}=$
$(U_{0}^{1}(x), \ldots, U_{0}^{n}(x))$ is the given initial velocity. The notations of differentiations
are denoted as following: $U_{t}:=\partial U$/$\partial t$

: $\partial_{i}:=\partial/\partial x_{i}$ , $\Delta:=$ $\mathrm{E}7_{=1}\partial_{i}^{2}$ , $(U, \nabla):=$

$\sum_{i=1}^{n}U^{i}\partial_{i}$ , $zp$ $:=$ $(\partial_{1}P, \ldots, \partial_{n}P)$ , 7 $\cdot$ $U:= \sum_{i=1}^{n}\partial_{i}U^{i}$ .

Our purpose of this paper is to construct the mild solution of (NS), when the
initial velocity may grow linearly at space infinity. So, we select the initial velocity
is of the form

(1.1) $U_{0}(x)=-Mx$ $+u_{0}(x)$ , $x\in \mathbb{R}_{:}^{n}$

where $M$ is a real valued $n\mathrm{x}n$ constant matrix with $\mathrm{t}\mathrm{r}M=0,$ and $u_{0}\in L_{\sigma}^{\mathrm{p}}(\mathbb{R}^{n})$ .
Here, we denote $L^{p}(\mathbb{R}^{n})$ by the usual Lebesgue space, and $L_{\sigma}^{p}(\mathbb{R}^{n})$ by its solenoidal
subspace; $H_{p}^{s}(\mathbb{R}^{n}):=$ $(I- \mathrm{A})^{-s/2}7(\mathbb{R}n)$ stands for Sobolov space, and $H^{s}(\mathbb{R}^{n}):=$

$H_{2}^{s}(\mathbb{R}^{n})$ for simplicity. Throughout of this paper we do not distinguish the vector
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valued functions and scalar as well as function spaces. Also, we sometimes omit
$(\mathbb{R}^{n})$ as 7 $:=L^{p}(\mathbb{R}^{n})$ , if no confusion occurs likely.

If the case $M=0,$ it is well known that (NS) admits a local-in-time smooth
solution, provided that the initial velocity $U_{0}$ belongs to $H^{n/2-1}(\mathbb{R}^{n})$ (by [9, 28]),
$\mathrm{g}(\mathbb{R}^{n})$ for $n\leq p\leq\infty$ (see e.g. [12, 14, 17, 27]). Some researchers tried (and still
try) to construct the mild solution in several functions spaces (see e.g. [1, 6, 7, 30,
31, 32, 33, 34, 42]). However, the author has never seen yet that one can succeed
it in the function space which contains some growing functions up to now.

In the case of $M\neq 0,$ the situation is more complicated, in general. Once we
choose $M$ so that $Mx=$ ($x_{2},$ -xi, 0), we can easily get a unique classical solution
to (NS) with initial data given by (1.1), using rotating coordinate; see e.g. $[3, 22]$ .
However, we now impose $M$ satisfying $\mathrm{t}\mathrm{r}M=0$ only. We thus cannot expect to
apply this method, directly.

On the other hand, we consider the substitution
$u:=U-\overline{U}$ and $\tilde{P}:=P-\overline{P}$ ,

where $\overline{U}:=-$ Iyfx, $\overline{P}:=(\Pi x,x)$ , $\Pi:=\frac{1}{2}((M^{sym})^{2}+(M^{ssym})^{2})$ and $M^{sym}:=$

$\frac{1}{2}(M+M^{T})$ and $M^{ssym}:= \frac{1}{2}(M-M^{T})$ . Here $M^{T}$ denotes the transposed matrix
of $M$ . At that time we notice that the pair $(U, P)$ satisfies (NS) in classical sense
if and only if $(u,\tilde{P})$ solves

(NS2) $\{$

$u_{t}-\Delta u+(u, \nabla)u-(Mx, \nabla)u-Mu+VP$ $=0,$

7 $\cdot u=0$ in $\mathbb{R}^{n}\mathrm{x}(0,T)$ ,
$u|_{t=0}=u_{0}$ in $\mathbb{R}^{n}$ .

Look at that $(\overline{U},\overline{P})$ is a solution of not only (NS) but also the stationary Eu-
ler equations; this fact was firstly shown by Majda in [35]. Then $(u,\tilde{P})$ can be
regarded as a perturbation between the solution to (NS) and Majda’s stationary
solution. One of our motivations is to observe the stability and uniqueness of
Majda’s solution.

A typical example of $M$ is $M=R+J,$ where

$R=$ $(\begin{array}{lll}0 -a 0a 0 00 0 0\end{array})$ and $J=(-b00 \frac{0}{0}$b $2b00)$

for $a$ , $b\in$ R. Note that $R$ corresponds to pure rotation, and describes the Coriolis
force. As we mentioned before, in the case of $M=R,$ the problem (NS2) was
investigated by Hishida [22, 23, 24] and by Babin, Mahalov and Nicolaenko $[3, 4]$ .
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Indeed, Hishida considered (NS2) with $M=R$ in an exterior domain $\Omega\subset \mathbb{R}^{3}$

and constructed a local-in-time mild solution, when the initial data $u_{0}$ belongs to
$H^{s}(\Omega)$ for $s\geq 1/2$ . Babin, Mahalov and Nicolaenko also showed that (NS) with
$U_{0}(x)=-Rx+u_{0}(x)$ has a unique classical solution, provided that $u_{0}$ is in $L_{\sigma}^{p}(\mathbb{R}^{n})$

or $u_{0}$ is a smooth periodic function. In [44], the author of this paper proved the
existence of a unique classical solution, still for $M=R,$ provided that $u_{0}$ belongs
to the Besov space $\dot{B}_{\infty,1}^{0}$ . Note that $\dot{B}_{\infty,1}^{0}\subset L^{\infty}$ , and contains some almost periodic
functions. In addition, the advantage of using $\dot{B}_{\infty,1}^{0}$ is the boundedness of the Riesz
transform in $\dot{B}2,1$ . The definitions and properties of the homogeneous Besov spaces
are found in e.g. [5, 47, 48]. In particular, $\dot{B}_{\infty,1}^{0}$ is investigated in $[44, 45]$ , more
precise.

On the other hand, according to Majda in [35], $M=J$ illustrates the jet flows
of the fluid. In fact, $/z$ corresponds to the drain along to $x_{1}$ and $x_{2}$-axises and to
the outgoing to infinity along to $x_{3}$-axis. Giga and Kambe [15] also investigated
the axisymmetric irrotational flow and studied the stability of the vortex, when
the velocity field of the fluid $U$ is expressed as $U=Jx+V,$ where $V$ is a tw0-
dimensional velocity field $V=(V^{1}, V^{2},0)$ .

In the back groud of this works, the author consideres the following problem:

What is the boarder case betw $een$ the well-posed and ill-posed of (NS) ?

Here the (time-local) well-posed means that one can construct a local-in-time
unique classical solution to (NS) with value continious up to initial time. The au-
thor guesses that the boarder is just when the initial velocity grows linear order at
space infinity. To consider the 1-dimensional Burgers equaiton $U_{t}-U_{xx}+UU_{x}=0,$

$U(0)=U_{0}$ , which seems to be a model case of 1-dimensional Navier-Stokes equa-
tion, we know the answer: let $|$ Uq(x) $|\sim|x|s$ as $xarrow\infty$ ,

(1) $ifs<1,$ then time-global well-posed

(2) $if$ $s=1,$ then time-local well-posed

(3) if $s>1,$ then ill-posed for any time.

Using the Cole-Hopf transform, we apply the classical results by Tychonoff [49]
to know above. On the multi-dimensional Burgers-like equation, similar results
were also obtained by Giga and Yamada $[20, 50]$ . Maybe, the structure of Burgers
equation is far form that of Navier-Stokes, but the author still believes to obtain
similar results on (NS).
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On the other hand, Okamoto [40] (and see also Kim and Chae [29]) studied the
uniqueness of (NS), when the velocity behaves $|x|$ :

Theorem. Let $n=2,3$ . If two pairs $(U, P)$ and $(\hat{U},\hat{P})$ are classical solutions
to (NS) with same initial velocity, satisfying $|U|=O(|x|)$ , $|\nabla U|=O(1)$ , $|P|=$

$O(|x|^{1-n/2})$ as $|x|arrow\infty$ , then $U$ ( $x$ , t)\equiv \^U(x, $t$ ) for $x\in \mathbb{R}^{n}$ and $t>0.$

Nobody knows there is a solution satisfying above condition. One of our moti-
vations is to give such a solution, ignoring the pressure condition.

This paper is organized as follows. In section 2 we shall state the main results
on this paper, and refer to related results. In section 3 we prepare the tools. In
particular, we establish several estimates for the semigroup. In section 4 we shall
give the proofs of our main theorems, breifly.

2. MAIN RESULTS.

Before mentioning the main results on this paper, we now define the operator $A$ in
$L_{\sigma}^{p}(\mathbb{R}^{n})$ for $p\in[1, \infty]$ as

Act $:=-lSu$ $-(Mx, \nabla)u+Mu$

with domain $D(A):=\{u\in H_{p}^{2}\cap L_{\sigma}^{p};(Mx, \nabla)u\in U\}$ . We may prove that $-A$

generates a $C_{0}$ semigroup $e^{-tA}$ on $L_{\sigma}^{\mathrm{p}}$ for $p\in[1, \infty)$ ; see e.g. $[37, 38]$ . For $p=\infty$ ,
$-A$ also generates a semigroup on $L_{\sigma}^{\infty}$ , but there is a lack of the strong continuity
at $t=0.$ Remark that the semigroup $e^{-tA}$ is not analytic, see [22]. In the next
section the detail of properties of this semigroup will be observed.

Applying the projection $\mathrm{P}$ to (NS2), formally, we have the abstract equation:

(ABS) $u_{t}+Au$ $+\mathrm{P}(u, \nabla)u-\mathit{2}PMu$ $=0,$ $u(0)=u0$ .

We now deal with the whole space problem, the projection $\mathrm{P}$ can be written ex-
plicitly by $\mathrm{P}$ $:=(\delta_{ij}+R.R_{j})_{1\leq}i,j\leq n$

’ where $\delta_{ij}$ denotes the Kronecker’s delta, and &
is the Riesz transform defined by R. $:=\partial\dot{.}(-6)^{-1/2}$ . Note that $A$ and $\mathrm{P}$ commute,
since $\mathit{7}\cdot Au$ $=0$ if $\mathit{7}\cdot u$ $=0.$ Then, it is straightforward to get the integral equation:

(INT) $u(t)=e^{-tA}u_{0}- \int_{0}^{t}e^{-(}$’-s)APu(s) $\cdot$ $\nabla u(s)ds+2\int_{0}^{t}e^{-(t-s)A}$Vu(s)ds

for $t\in(0, T)$ with $u(0)=u_{0}$ , integrating (ABS) in time. For $T>0$ we call a
function $u\in C([0,T);L_{\sigma}^{\mathrm{p}}(\mathbb{R}^{n}))$ a mild solution, if $u$ satisfies (INT).

We are now in position to state the local-in-time existence and uniqueness results
for mild solutions in $L_{\sigma}^{p}$ spaces.
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2.1. Theorem. Let $n\geq 2,$ $p\in[n, \infty)$ and $q\in[p, \infty]$ . Let $M$ be a real valued $n\cross n$

constant matrix with $\mathrm{t}\mathrm{r}M=0,$ and assume that $u_{0}\in L_{\sigma}^{p}(\mathbb{R}^{n})$ . Then there exist
$T_{0}>0$ and a unique mild solution $u$ such that

(2.1) $t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}u\in C([0, \mathrm{f}\mathrm{i});L_{\sigma}^{q}(\mathbb{R}^{n}))$ ,

(2.2) $t^{\frac{n}{2}(\frac{1}{\mathrm{p}}-\frac{1}{q})+\frac{1}{2}}\nabla u\in C$ ( [0, To); $L^{q}(\mathbb{R}^{n}))$ .

2.2. Remark, (i) The functions defined in (2.1) and (2.2) are continuous in t up
to initial time, moreover, they vanish at t $=0$ provided q $\neq p$ in (2.1).
(ii) The case p $=\infty$ . It seems to be difficult to obtain the solvability in $L^{\infty}$ or
BUC. This difficulty comes form unboundedness of the Riesz transform onto $L^{\infty}$ .
Therefore, if we choose the initial data $u_{0}$ in $\dot{B}_{\infty,1}^{0}$ , we can show the local existence
of mild solution in $C([0, T_{0});\dot{B}\mathrm{L}_{1},)$ .

In order to prove Theorem 2.1 we derive the benefit estimates (for example,
$U$ $-L^{q}$ estimates) for the semigroup $e^{-tA}$ as well as heat semigroup. Nevertheless
the semigroup $e^{-tA}$ i$\mathrm{s}$ not analytic, thanks to the explicit formula of the semigroup,
we can derive them by direct calculations of the kernel; see Lemma 3.2. To construct
the mild solution we use a standard iteration scheme.

Prom similar argument of the proof of Theorem 2.1 we are able to derive uniform
bounds for $\nabla^{k}u(t)$ for any $k\in$ N, if $t\leq T_{k}$ for some $T_{k}\sim k^{-k}$ . This implies
evidently that $u(t)\in C^{\infty}(\mathbb{R}^{n})$ as long as mild solution exists.

Conversely, we cannot control the time-differentiation of $u$ , even if the initial
data belongs to $D(A)$ , in general. Because, it cannot be expected that the solution
is in $D(A)$ . This means, we do not know our mild solution is a strong solution, i.e.,

$??u\in C([0,T);\mathrm{D}(\mathrm{A}),$ $\cap C^{1}([0,7 )$ ; $L_{\sigma}^{p}$ ) $?$?

Of course, this difficulty comes from non analyticity of the semigroup. Therefore,
we do not know whether or not the mild solution satisfies (ABS), and (NS) with
some pressure. Once the mild solution $u$ solves (ABS), we show that the pair
$(u, 7P)$ fulfilles (NS2), provided that

$\partial_{l}\tilde{P}:=\sum_{i,j=1}^{n}\partial_{l}R_{\dot{1}}R_{j}u^{i}u^{j}+2\sum_{\dot{l},j=1}^{n}m_{j}R_{l}R_{\dot{\mathrm{r}}}u^{j}$.

We thus get the solution to (NS) as $(U, P):=$ $(u+Mx,\tilde{P}+ (’ \mathrm{Y}\mathrm{I}x, x))$ , formally. The
uniqueness theorem related this situation was obtained in [44].
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The estimates for the semigroup show that the linear term of (INT) grows at
$tarrow\infty$ exponentially, in general. Furthermore, the linear remainders, which is the
last term of (INT), prevents Kato’s argument in [27] (time-global well-posedness
for small data). Hence, it seems to be difficult to obtain results on global existence
of mild solutions, even if we solve it in scaling invariant space (e.g. $L^{n}(\mathbb{R}^{n})$ ).

In 2-dimensional case, we can apply the maximum principle for the vorticity,
at least when $M=0,$ see e.g. $[11, 13]$ . Once we obtain the uniform bound for
vorticity, we can get global solution, see [16]. However, in our situation we need
some new idea. Indeed, taking rot into (NS2), for general $M$ we have the vorticity
equation on the scalar function rv $:=\mathrm{r}\mathrm{o}\mathrm{t}$ $u$ :

(VOR) $\omega_{t}-\Delta\omega-(Mx, \nabla)\omega+$ tr $M\omega$ $+(u, \nabla)\omega=0$

with $\omega(0)=\omega_{0}:=$ rot $u_{0}$ ; under our assumption we suppose tr $M=0.$ At least we
may not apply the maximum principle for (VOR) directly, so it is not known how
to get the estimate like $||\omega(t)$ $||_{q}\leq||\omega_{0}||_{q}$ for $t>0$ with some $q$ . In [44, Lemma 3.3]
we have the following estimates:

$||\omega(t)||_{\dot{B}_{\infty,1}^{0}}\leq C||\omega_{0}||_{\dot{B}_{\infty}^{0}}$

,1
$\exp\{C\sum_{k=0}^{2}\int_{0}^{t}||\nabla^{k}u(s)||_{\dot{B}_{\infty,1}^{0}}ds\}$ .

But this is very far from what we desire, this does not help us.

It is a natural question to consider the exterior domains $\Omega$ , instead of $\mathbb{R}^{n}$ . This
initial-boundary value problem leads us to interesting applications such as spin-
coating of fluids. This will be the content of a forthcoming publication; in the
future we will prove that $-A$ generates a $C_{0}$ semigroup on $L_{\sigma}^{p}(\Omega)$ for $1<p<\infty$ .

We are forced to derive the estimates $T_{k}$ independent of $k$ under some condition
on $M$. In fact, if we select $M$ so that $||e$”$||\leq 1$ for all $t\leq 0,$ then we take
$T_{k}$ uniformly in $k$ ; involving the iteration scheme, we can control $||7^{k}u(t)||_{q}$ for
all $k$ , simultaneously. It is easy to verify that $M=R$ should satisfy $||e$”$||=1.$

Once we obtain it, the analyticity in $x$ of $uo$) can be shown. Actually, spatial-
analyticity is deduced form the following estimates of regularizing rates for higher
order derivatives of $\mathrm{J}\mathrm{j}\mathrm{F}$ :

2.3. Theorem. Let n $\geq 2,$ $u_{0}\in L_{\sigma}^{n}(\mathbb{R}^{n})$ . Assume that $||e^{tM}||$ $\leq 1$ for all t $\geq 0.$ Let
u be the local-in-time mild solution obtained by Theorem 2.1 in the class of

$u\in C([0,T];L_{\sigma}^{n}(\mathbb{R}^{n}))\cap C((0,7 ]$ ; $L_{\sigma}^{r}(\mathbb{R}^{n}))$
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for some $r\in(n, \infty]$ and $T>0.$ Assume further that there exist positive constants
$M_{1f}M_{2}$ such that

$\sup_{0<t<T}||u(t)||_{n}\leq M_{1}$ and $\sup_{0<t<T}t^{\frac{n}{2}(\frac{1}{n}-\frac{1}{f}}$

)
$||$ tz $(t)||_{r}\leq M_{2}$ .

Then there eist constants $K_{1}$ and $K_{2}$ (depending only on $n_{;}M$ , $r$ , $T$ , $M_{1}$ , $M_{2}$)
such that

(2.3) $||\nabla m\mathrm{u}(\mathrm{t})$
$||_{q}\leq K_{1}(K_{2}m)^{m}t^{-\frac{m}{2}-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})}$

for all $t\in(0, T]$ , $q\in[n, \infty]$ and $m\in \mathrm{N}_{0}$ . Here $\mathrm{N}_{0}:=\mathrm{N}\mathrm{U}\{0\}$ .

It is easy to see that from Theorem 2.3 the mild solution $u(t)$ is analytic in $x$ .
More precisely, we get the estimate for the size of the radius of convergence of
Taylor expansion $(=:\rho(t))$ from below:

$\rho(t)\geq\lim_{marrow}\sup_{\infty}(\frac{||\nabla^{m}u(t)||_{\infty}}{m!})^{-}"’\geq C\sqrt{t}$

for $t\in$ $(0, T]$ . This estimate comes ffom Cauchy’s criterion and Stirling’s formula.

To get (2.3) we prove an equivalent estimate
$|| \partial_{x}^{\alpha}\mathrm{t}\mathrm{z}(t)||_{q}\leq K_{1}(K_{2}|\alpha|)|\alpha|-\delta^{\alpha}t^{-\bigcup_{2}}-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})$

for all $t\in(0,7 ]$ , $q\in[n, \infty]$ and a $\in$ N3 with some $\delta\in(1/2,1]$ . Here the constant
$K_{1}$ and $K_{2}$ may depend on $\delta$ , but independent of $\alpha$ and $t$ . We differentiate the
both hand sides of (INT) and take $L^{q}$-norm. We notice that $e^{-tA}$ and $\nabla$ do not
commute, in general, we actually obtain that

(2.4) $\mathit{7}e$ $-tAf=etMe$-tA 7$f$.
(The meaning of the assumption on $M$ is for the uniform bound of shifting the
derivatives over semigroup as well as we like.) We divide the integral $\int_{0}^{t}$ into
two parts as $\int_{0}^{(1-\epsilon)t}+7_{(1-\epsilon)t}^{t}$ in order to distribute the singularity, and apply the
Gronwall type inequality (see [19, Lemma 2.4]). Finally, $\Xi$ is taken small enough
such that $\epsilon$ $\sim 1/|\alpha|$ with induction on $|\alpha|$ to get (2.3). This is essentially same
strategy in [19], they also prove the analyticity in $x$ for the mild solution in the
case $M=0.$

As the author mentioned before, due to the unbounded coefficient in the drift
term, $e^{-tA}$ is not analytic. Hence the estimate for $||7^{m}e^{-tA}||$ does not follow au-
tomatically as the classical Stokes semigroup from the analytic semigroup theory.
Therefore, we must establish the $?-L^{q}$ estimates with higher order differentials,
see Lemma 3.3 in the next section.
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The author does not know whether one can still show (2.3), when we relax the
assumption on $M$ , for example, $||e$

”$||\leq C_{*}$ with some $C_{*}>1.$ In our proof
we need $C_{*}=1$ to choose the constants $K_{1}$ and $K_{2}$ independently in $m$ . We
only obtain the spatial-analyticity, since the time-analyticity of $u$ does not follow
from our method directly. Probably, the mild solution should not be analytic in
time! The author also guesses that this method is not applicable for the boundary
value problem, since we need suitable commutativity between the semigroup and
differential.

3. ESTIMATES FOR THE SEMIGROUP $e^{-tA}$ .
In this section we establish the semigroup theory and research its properties. In
the next section we use these tools for proofs of main theorems.

Let $M$ be an $n\mathrm{x}n$ matrix of real valued constants; it is not necessary to impose
$\mathrm{t}\mathrm{r}M=0$ troughout this section. We now introduce the operator $A$ by

Au $:=-1\mathrm{s}u$ - $(Mx, \nabla)u+Mu,$

where $n$ $:=$ $(u_{1}, \ldots, u_{n})$ $\in L^{p}(\mathbb{R}^{n})$ for $p\in[1, \infty]$ and $A$ is an $n\mathrm{x}n$ matrix operator.
Observe that by simple calculation

$\nabla$ . (Mx, $\nabla$)$u+Mu\}=0,$ provided 7 $\cdot$ $u=0.$

We thus define $A$ as the realization of $A$ in $L_{\sigma}^{p}(\mathbb{R}^{n})$

(3.1) $($

Au $:=$ Au
$D(A)$ $:=$ $\{u\in H_{p}^{2}\cap L_{\sigma}^{p};(Mx, \nabla)u\in L^{\mathrm{p}}\}$ .

By standard perturbation theory it follows that

3.1. Lemma. The operator $-A$ generates a $C_{0}$ semigroup on $L_{\sigma}^{p}(\mathbb{R}^{n})$ $forp\in[1, \infty)$ .
The semiroup $\{e^{-tA}\}_{t\geq 0}$ has an explicit formula by

(3.2) $(e^{-tA}u)(x):= \frac{e^{-tM}}{(4\pi)^{n/2}(de\mathrm{t}Q_{t})^{1/2}}\int_{\mathrm{R}^{n}}u(e^{tM}x-y)e^{-}$ a ($Q_{t}^{-1}$y,y)dy,

where $Q_{t}:= \int_{0}^{t}e^{sM}e^{sM^{T}}$ds.

Notice that in the case $M=0$ the semigroup $e^{-tA}$ coincides with the heat
semigroup, since $t^{-1}Q_{t}=Id.$ The proof of Lemma 3.1 was shown by e.g. Metafune
and his collaborators $[37, 38]$ . Note that the semigroup $e^{-tA}$ is not analytic, In
fact, if we intend to show that $e^{-tA}$ is analytic semigroup, we may construct the
counter example by using $(Mx, \nabla)$ term; see [22]. The operator $-A$ also generates
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a semigroup on $L_{\sigma}^{\infty}(\mathbb{R}^{n})$ . But, as same as heat semigroup, there is a lack of strong
continuity at $t=0$ in $L^{\infty}$ .

We now turn to $If-L^{q}$ smoothing properties as well as gradient estimates for
$e^{-tA}$ . Due to the non analyticity of $e^{-tA}$ , gradient estimates do not follow from the
general theory of analytic semigroups.

3.2. Lemma. Let n $\geq 1$ and $1\leq p\leq q\leq\infty$ . Then there eist constants $\tilde{C}_{0}>0$

and $\omega_{0}\geq 0$ such that

(3.3) $||e^{-}$
”

$f||_{q}$ $\leq$
$\tilde{C}_{0}t^{-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}e^{\omega_{0}t}||f||_{p}$ , t $>0,$

(3.4) $||\nabla e$ $-tAf||_{p}$ $\leq$
$\tilde{C}_{0}$”$e^{\omega_{0}t}||f||_{p}$ , t $>0.$

Moreover, for p $<q$ and f $\in L^{p}(\mathbb{R}^{n})$ we have

(3.5) $t^{\frac{n}{2}(\frac{1}{\mathrm{p}}-\frac{1}{q})}||e^{-tA}f||_{q}$
$arrow$ 0 as t $arrow 0,$

(3.6) $t^{\frac{1}{2}}||\nabla e^{-}$”$f||_{p}$ $arrow$ 0 as t $arrow v$ 0.

We can prove (3.3) and (3.4) by direct calculations of the kernel of explicit
formula and Young’s inequality. In the proofs of (3.5) and (3.6) we use triangle
inequality, (3.3), (3.4) and the density $C_{0}^{\infty}\subset L^{p}$ for $p<\infty$ . We skip the proof
of Lemma 3.2 in this paper, because one can find it in [21]. Note also that if $M$

satisfies $||e^{-tM}||\leq C$ for all $t>0$ with some constant $C$ , we may take $\omega_{0}=0.$ In
the special case $M=Id$, $U$ $-L^{q}$ estimates for $e^{-tA}$ were obtained by Gallay and
Wayne [10].

To next we estimate for higher order derivatives of semigroup, i.e., for $\mathit{7}^{m}e^{-tA}f$ ,
which are very useful to consider smoothing properties of mild solutions. The main
difficulty is that the semigroup $e^{-tA}$ and tdifferential $\nabla$ do not commute, in general.
Nevertheless, we obtain following estimates similar to those of the heat semigroup.

3.3. Lemma. Let n $\geq$ 1 and 1 $\leq p\leq$ q $\leq\infty$ . Then there eist constants
$\tilde{C}_{1},\tilde{C}_{2},\tilde{C}_{3}>0,$

$\omega_{1},\omega_{2}$ , $\omega_{3}$ , $\omega_{4}\geq 0$ (depending only on n, p, q and M) such that

(3.7) $|| \nabla^{m}e^{-tA}f||_{q}\leq\tilde{C}_{1}e(\mathrm{u}_{1}+\omega_{2}\mathrm{v}\mathrm{m})tt-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})||\nabla^{m}f||_{p}$

for $t>0,$ $m\in \mathrm{N}$ and $f\in H_{p}^{m}(\mathbb{R}^{n})$ , and

(3.8) $||\nabla me^{-tA}f||_{q}\leq\tilde{C}_{2}(\tilde{C}_{3}m)^{m/2}e^{(\omega_{3}+\omega_{4}m)t}t^{-\frac{n}{2}(\frac{1}{\mathrm{p}}-\frac{1}{q})-\frac{m}{2}||}f[_{p}$

for $t>0$ , $m\in \mathrm{N}$ and $f\in L^{\mathrm{p}}(\mathbb{R}^{n})$ .

It is evident to get (3.7) by (2.4) $m$-th times. So, it is clear to see that the
assertion (3.7) holds true with $\omega_{2}=0,$ provided that $||e$

”$||\leq 1$ for all $t>0.$ To
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obtain (3.8), we split $e^{-tA}$ into $m+1$ parts, and use (2.4) $m$-th times. Then we
have

$||\nabla^{m}e^{-tA}f||_{q}\leq C\tilde{C}^{m}||(\nabla e^{-\frac{t}{m+1}A})^{m}e^{-\frac{t}{m+1}A}f||_{q}$

with some constants $C$ and $\tilde{C}$ . For each terms we apply (3.3) and (3.4), and sum
up with them to show (3.8). In (3.8) the top order of dependence of $m$ is $m^{m/2}$ ,
which is natural in the sense that this order is same as that of heat semigroup.

As shown by Theorem 2.3 and its remarks, it is important to derive $||\nabla^{m}\mathrm{f}\mathrm{J}||_{\infty}$

for proving the spatial-analyticity. In the following lemma, the estimate of the
operator norm of $\nabla e^{-tA}$P into $U$ for all $p\in[1, \infty]$ will be done:

3.4. Lemma. Let n $\geq 1,$ $1\leq p\leq\infty$ and let A and P be as above. Then there e$\dot{m}t$

constants C $>0$ and $\omega\geq 0$ such that

$||\nabla e$$-tA\mathrm{P}||_{\mathcal{L}(L^{\mathrm{p}}(\mathrm{R}^{n}))}\leq Ct^{-1/2}e^{\omega t}$ , $t>0.$

The proof is based on [2, Proposition 8.2.3, Lemma 8.2.2]. In the case $M=0,$

we find it in [14]. We omit its detail to make this paper short.

4. Proofs OF THEOREMS.

We are now in position to show that (NS2) admits a local-in-time mild solution,

and to investigate its properties. Fistly, we give the proof of Theorem 2.1 briefly,
in the case $p=n,$ although that is standard argument by Kato [27].

Proof of Theorem 2.1. Let $n\geq 2$ and $u_{0}\in L_{\sigma}^{n}(\mathbb{R}^{n})$ . For $j\geq 1$ and $t>0$ we define
functions $u_{j+1}$ by

$u_{j+1}(t)$ $:=e^{-tA}u_{0}- \int_{0}^{t}e^{-(t-s)A}\mathrm{P}(u_{j}(s), \nabla)u_{j}(s)ds+2\int_{0}^{t}e^{-(t-s)A}\mathrm{P}Mu_{j}(s)ds$ ,

and strated at $u_{1}(t):=e^{-tA}u_{0}$ . Note that $u_{j}(t)$ keeps divergence-free for all $t$ $>0$

and $j$ . For $T\in(0,1]$ and $\delta\in(0,1)$ we define

$A_{0}:= \sup_{0<t\leq\tau}t^{\frac{1-\delta}{2}}||e$
$-tAu_{0}||_{n/\delta}$ and 4 $:= \sup_{0<t\leq T}t^{\frac{1}{2}}||\nabla e$

$-tAu_{0}||_{n}$

as well as $A_{j}:=A_{j}(T)$ and $A_{j}’:=A_{j}’(T)$ , where

$A_{j}(T):= \sup_{0<t\leq T}t^{\frac{1-\delta}{2}}||u_{j}(t)||_{n/\delta}$ and $A_{j}’(T):= \sup_{0<t\leq T}t^{1/2}||\nabla u_{j}(t)||_{n}$, $j\geq 1.$
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We thus obtain that

$||u_{j+1}(t)||_{n/\mathrm{y}}$

$\leq||e^{t\Delta}u_{0}11n/\delta$ $+ \int_{0}^{t}||e^{-(t-s)A}\mathrm{P}u_{j}(s)\cdot\nabla u_{j}(s)||_{n/\delta}ds+2\int_{0}^{t}||e^{-(t-s)A}\mathrm{P}Mu_{j}(s)||_{n/\delta}ds$

$\leq t^{-\frac{1-\delta}{2}}A_{0}+C\int_{0}^{t}(t-s)^{-\frac{n}{2}(\frac{1}{r}-\frac{\delta}{n})}||u_{j}(s)\cdot\nabla u_{j}(s)||_{r}ds+C\int_{0}^{t}||u_{j}(s)||_{n\prime\delta}$ ds,

where $r:= \frac{n}{1+\delta}$ . In order to estimate the second term on the right hand side of last
inequality, we now apply H\"older’s inequality to conclude that

$||u_{j}(s)$ . $\nabla u_{j}(s)||_{r}\leq||u_{j}(s)||_{n/\delta}||\nabla u_{j}(s)||_{n}\leq A_{j}A_{j}’s^{-\frac{1-\delta}{2}-\frac{1}{2}}$.
Multiplying with $t^{\frac{1-\delta}{2}}$ and taking $\sup_{0<t\leq T}$ on both sides we obtain

(4.1) $A_{j+1}\leq A_{0}+C_{1}A_{j}A_{j}’+C_{2}TA_{j}$

with some positive constants $C_{1}$ , $C_{2}$ independent of $j$ and $T$.

Similarly, taking $\nabla$ into approximations, and estimating it in the $L^{n}$-norm, by
(3.4) we obtain

(4.2) $A_{j+1}’\leq A_{0}’+C_{3}A_{j}A_{j}’+$ C2TAj

with some positive constants $C_{3}$ and $C_{4}$ . The estimates (3.5) and (3.6) imply
that for any A $>0,$ there exists $\tilde{T}_{0}>0$ such that AOi $A_{0}’\leq$ A for all $T\leq\tilde{T}_{0}$ .

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e},\mathrm{w}\mathrm{e}\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}A_{j}(T)\mathrm{a}\mathrm{n}\mathrm{d}(T’ \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}T\mathrm{M}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{y},\mathrm{w}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{y}\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e}\tilde{T}_{0}\leq\min(1, \frac{1}{\mathrm{s}c_{2},A_{j}’’},\frac{1}{3C_{4},)})\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}$$\leq A$ $\tilde{T}_{0}\leq\min(\frac{1}{9C_{1},\mathrm{m}’}, \frac{\mathrm{l}}{9C_{3},\mathrm{i}\mathrm{n}’})\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}1\mathrm{y}$j.
provided that $\tilde{T}_{0}$ is small enough.

Using the uniform bounds of $A_{j}$ and $A_{j}’$ we obtained, it follows that $t^{\frac{1}{2}-\frac{n}{2q}}||u_{j}(t)||_{q}$

as well as $t^{1-\frac{n}{2q}}||\nabla u_{j}$ ($t]|_{q}$ axe bounded for $q\in[n,$ $\infty$), $t\leq\tilde{T}_{0}$ and all $j\in$ N. The
continuity of the above functions also follows from similar calculations and (3.5).
We can derive estimates for the differences $u_{j41}-u_{j}$ vanish as $jarrow$ oo on $[0, T_{0}]$

by similar way, provided that we take suitable $T_{0}\leq\tilde{T}_{0}$ .

It thus follows that the above sequences are Cauchy sequences and we conclude
that there are unique limit functions

$t^{\frac{1}{2}-\frac{n}{2q}}u(\mathrm{t})\in C([0, T_{0}];L^{q})$ , $t^{1-\frac{n}{2q}}v(t)\in C([0, T_{0}];L^{q})$ ,

of the sequences $(t^{\frac{1}{2}\frac{n}{2q}}" u_{j}(t))_{j\geq 1}$ and $(t^{1-\frac{n}{2\mathfrak{g}}} ; u_{\mathrm{j}}(t))_{j\geq 1}$ . Finally, note that $v(t)=$
$t^{1/2}\nabla u(t)$ and that tz is a mild solution on $[0, \mathrm{f}\mathrm{i}]$ . Uniqueness of mild solutions
follows from Gronwall inequality. This completes the proof of Theorem 2.1. 0
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We now turn to the proof of Theorem 2.3. In the case $M=0,$ recently Giga
and author [19] proved that mild solutions are analytic in $x$ . The following proof
is a modification of their proof to our situation. So, we only give the outline of the
proof, briefly. Of course, the reader can find the precise proof in [21].

Proof of Theorem 2.3. We start by proving the assertion under the additional as-
sumption that mild solution is already smooth. Because, we may show this property
using same argument as below. We derive first an equivalent estimates to (2.3):

For $\delta$ $\in(1/2,1]$ there exist constants $K_{1}>0$ , $K_{2}>0$ (depending only on $n$ , $r$ ,
$M$ , $M_{1}$ , $M_{2}$ , $T$ and $\delta$) such that

(4.3) $||\nabla mu(t)1q\leq K_{1}(K_{2}m)^{m-\delta}t^{-\frac{m}{2}-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})}$

for all $t\in(0, t))$ , $q\in[n, \infty]$ and $m\in \mathrm{N}\circ\cdot$

To get (4.3), we use an induction with respect to $m$ . One may suppose $\mathit{7}^{m}u$ is
continuous up to $t=0$ with value in $L^{q}(\mathbb{R}^{n})$ by considering $u(\eta)$ for $\eta>0$ as initial
data and sending $\etaarrow 0.$ To this end, let $k_{0}\geq 2$ (depending only on $n$ and $M$).
Then (4.3) follows for all $m\leq k_{0}$ , provided $K_{1}$ is chosen laxge enough. Assume
hence that $k\geq k_{0}$ , and that (4.3) holds for all $q\in[n, \infty]$ and all $m\leq k-1.$ We
claim that (4.3) holds for $m=k.$

For simplicity, we first prove the assertion under the additional assumptions that
$T\leq 1$ , $n\geq 3$ and $q<\infty$ . The claim then follows by minor modifications of the
proof given below. We start by noticing that for $q\in[n, \infty)$ and $\epsilon\in(0,1)$

$|| \nabla^{k}u(t)||_{q}\leq||\nabla^{k}e^{-tA}u_{0}||_{q}+(\int_{0}^{(1-\epsilon)t}+\int_{(1-\epsilon)t}^{t})||\nabla^{k}e^{-(t-s)A}$ Pu $\cdot\nabla u(s)||_{q}ds$

+2 $( \int_{0}^{(1-\epsilon)t}+\int_{(1-\epsilon)t}^{t})||\nabla ke^{-()}$
” $A\mathrm{P}Mu(s)||_{q}ds$

$=:B_{1}+B_{2}+B_{3}+B_{4}+B_{5}$ .

We shall estimate each the above terms $B_{1}-B_{5}$ separately.

The estimates for $B_{1}$ are derived from (3.8) as follows:

$B_{1}\leq\tilde{C}_{2}(\tilde{C}_{3}k)^{k/2}e^{(v_{3}kt}||u_{0}||_{n}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\mathrm{z}}k\leq C_{5}(C_{6}k)^{k-\delta}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{k}{2}}$ , $t\in(0, T)$

with constants $C_{5}:=\tilde{C}_{2}||u_{0}||_{n}\leq\tilde{C}_{2}M_{1}$ and $C_{6}:=\tilde{C}_{3}e^{\omega_{3}}$ . Similarly, we also have
the estimates for $B_{2}$ , $B_{4}$ and $B_{5}$ .
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The main part is $B_{3}$ . We now calculate $\nabla^{k}(u\mathrm{g}u)$ by Leibniz’s rule. We divide
the sum into two parts:

$B_{3}\leq C_{7}/_{(1-\epsilon)t}^{t}(t-s)^{-1/2}||\nabla^{k}u(s)||_{q}||u(s)||_{\infty}ds$

$+C_{7} \int^{t}(1-\epsilon)t(t-s)^{-1/2}\max\sum_{0<\gamma<\beta}1\beta|=k$
$(\begin{array}{l}\beta\gamma\end{array})$ $||\partial_{x}^{\gamma}u(s)||_{q}||\partial_{x}^{\beta-\gamma}u(s)||_{\infty}ds$

$=:B_{3a}+B_{3b}$

with constant $C_{7}=2\overline{C}_{1}e^{\omega_{1}}$ ; note that $C_{7}$ does not depend on $k$ , since we assumed
that $|\mathrm{k}^{t}$

” $||\leq 1$ and $T\leq 1.$ Here $\gamma<\beta$ means $\gamma_{i}\leq\beta_{i}$ for all $i$ and $|\gamma|<|\beta|$ for
multi-indices $\beta$ and 7.

Consider $B_{3a}$ . Then there exists $C>0$ (depending only on $n,p$ , $M,$ $/\mathrm{U}_{1}$ , $M_{2}$ such
that $||12(s)$ $||_{\infty}\leq Cs^{-1/2}$ ; see Step 1 of the proof of Proposition 3.1 in [19]. Thus

$B_{3a} \leq C_{8}\int_{(1-\epsilon)t}^{t}(t-s)^{-1/2_{S}-1/2}||\nabla^{k}u(s)||_{q}ds$

with some constant $C_{8}:=C_{8}(n,p,q, M, M_{1}, M_{2})$ . We next estimate $B_{3b}$ . By as-
sumption of induction we obtain that

$B_{3b} \leq C_{7}\int_{(1-\epsilon)t}^{t}(t-s)^{-\frac{1}{2}}\max\sum_{0<\gamma<\beta}|\beta|=k$
$(\begin{array}{l}\beta\gamma\end{array})$ $K_{1}(K_{2}|\gamma|)^{|\gamma|-\delta_{S}-}$

$\mathrm{j}(\mathrm{A}-\mathrm{q})-\mathrm{h}_{2}1$

$\mathrm{x}K_{1}(K_{2}|\beta-\gamma|)^{|\beta-\gamma|-\delta_{S}-}W$
$( \frac{1}{n}-\frac{1}{q}-\frac{|\beta-\gamma|}{2}ds$

$\leq C_{7}K_{1}^{2}K_{2}^{k-2\delta}\sum_{0<\gamma<\beta}$

$(\begin{array}{l}\beta\gamma\end{array})$ $| \gamma|^{|\gamma|-\delta}|\beta-\gamma|^{|\beta-\gamma|-\delta}\int_{(1-\epsilon)t}^{t}(t-s)^{-\frac{1}{2}}s^{-1-\frac{n}{2q}-\frac{k}{2}}ds$ .

For the multiplication of multi-sequences we apply Kahane’s lemma [25, Lemma
2.1] and obtain

$B_{3b}\leq C_{9}K_{1}^{2}K_{2}^{k-2}$’k”$t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q}}$ ) $- \frac{k}{2}I(\epsilon)$

where $I(\epsilon):=7_{1-\epsilon}^{1}(1-\tau)^{-\frac{1}{2}}\tau^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{\mathrm{q}})-i-\frac{1}{2}}d\tau$ and $C_{9}$ depends only on $C_{7}$ and $\delta$ ; so
$C_{9}$ is indenpendent of $k$ and $C_{9}\mathrm{s}/$ $\sum_{j=1}^{\infty}j^{-}1/2-\delta/2$ .

We now put $b_{\epsilon}$ by
$b_{\epsilon}:=\tilde{C}_{5}((\tilde{C}_{6}k7\mathrm{a}:)^{k}’$ $+C_{9}K_{1}^{2}K_{2}^{k-2\delta}kk-\delta I(\epsilon)$

with some $\tilde{C}_{5}$ and $\tilde{C}_{6}$ . Combining the estimates for $B_{1^{-}}B_{5}$ , we thus obtain

$|| \nabla ku(t)||_{q}\leq b_{\epsilon}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{k}{2}}+\tilde{C}_{8}\int_{(1-\epsilon)}^{t}t(t-s)^{-1/2_{S}-1/2}||\nabla^{k}u(s)||_{q}ds$
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with some $\tilde{C}_{8}$ independent of $k$ . Applying a Gronwall’s type inequality (see [19,
Lemma 2.4]), there exists $\epsilon_{k}\in(0,1)$ such that

(4.4) $||\nabla ku(t)$
$||_{q}\leq 2b_{\epsilon_{k}}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{k}{2}}$ , $t\in(0, T)$ .

If $\epsilon_{k}:=1/k$ then $Io/k$) $\leq\frac{1}{2(C_{8})}$ for sufficiently large $k$ , say $k\geq k_{0}:=k_{0}(n,p, M, M_{1}, M_{2})$ .
Finally, we show $2b_{1/k}\leq K_{1}(K_{2}k)^{k-\delta}$ for any $k$ with suitable constants $K_{1}$ and $K_{2}$ .
Choosing $K_{1}$ large enough (4.3) holds for $k\leq k_{0}$ , $\mathrm{i}.\mathrm{e}.$ , there exists a constant $K_{0}>0$

(depending only on $n$ , $p$ , $M$ , $M_{1}$ and $M_{2}$ ) such that $||7^{k}u(t1|_{q}\leq K\circ$ for $k\leq k\circ\cdot$

Since $I(1/k)\leq 2$ for all $k\geq 2,$

$2b_{1/k}\leq 2\{\tilde{C}_{5}\tilde{C}_{6}^{k-\delta}+2C_{9}K_{1}^{2}K_{2}^{k-2\delta}\}kk-\delta$ .

Choosing the constants $K_{1}$ and $K_{2}$ ,

$K_{1}:= \max$ $(K_{0},4\tilde{C}_{5})$ and $K_{2}:= \max(\tilde{C}_{6}, (4C_{9}K_{1})^{\delta})$ ,

we obtain (4.3) for all $k$ . The proof is complete. 0
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