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The existence and the decay estimate of the
Green functions of higher order elliptic operators
with non-decaying complex-valued coeflicients

Yorimasa OSHIME, Doshisha University
FEEE (FFLRPF)

Abstract
Consider a uniformly elliptic operator of 2m-th order :

Au = E|a,52maaa"‘u

in RN(N > 2) . Assume that the top order coefficients a. (ja| = 2m)
belong to W™ (R"™) and real-valued while the lower order coefficients
are bounded and may be complex-valued. Then, the resolvent (4 — A)™!
with an arbitrary A € p(A) can be expressed as an integral operator with
a kernel function Ry(z,£) which decays exponentially as |z — £] = oo
(Theorem 15). In addition, the eigenfunction corresponding to a discrete
spectrum decays exponentially as |z| = oo (Theorem 16).

1 Basic Assumptions and Notations
We consider the uniformly elliptic operator of 2m-th order:
Au = Z as0%u
la|<2m

with m = 1,2,--- in LP(RV) (1 < p < 00, N > 2: arbitrary). Here we use the
multi-index a = (a1, a2, -+ ,an) to denote

lo] = a1+---+an

le|
0% = (8/8z)%u = 0'%u

Oz e Oz
as well as we use the notation

£ = in . 5%»1
later for

§= (&, ,éN)-
We make several hypotheses on its coefficients.
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(H1) Smoothness and real-valuedness of top order coefficients.
ag € WM™ = W™ (RY)  (|o| = 2m)
and they are real-valued for all |a| = 2m.

(H2) Uniform ellipticity.
D aaf® > dlgPm

|aj=2m

with some constant 6 > 0.
(H3) Boundedness and complex-valuedness of the lower order coefficients.
ag € L*RY) (jo|] < 2m-1)
and they may even be complex-valued.
In addition, 4, (1 < p < 0o) denotes the operator in LP(R") determined by
Apu= Au, u € Dom(4,) = W?™P = w?™P(RN)
We use also the following notation for convenience:

f(z) V g(z) = max{f(z),g(z)}

2 Bessel Potentials

First let us introduce the Bessel potentials, following Schechter[3] and Stein [4]
Definition Given any real a > 0, let

_ (Am)mNE P /s —(N—a)/2—1
Gu(z) = Ta/2) J, e 8 ds
(4m)~ N2 Nia /°° —|z|28—1/48 ;—~(N—a)/2—1
= ———1I|z e s ds
Tad W ),
9—(N+a—2)/2,—N/2

= T e T K wanel

for z € RN. Here K, (r) with arbitrary real parameter v is the modified Bessel
function of the second kind (sometimes called MacDonald’s function). Note
that K, (r) is a positive and strictly decreasing function on (0,00). This fact
directly follows from some of its integral representation. (see (5) or (7) of §6.22
of Watson([5].)

Lemma 1 Let N > 2 be the dimension of the space R .
Ga*Gp =Gatp (o, 8> 0: real).

Moreover, Ga; (a{ — &) is the intregral kernel which represents a homeomorphic
map (—A +1)~7 from LP(RY) into W2?(RN) for every 1 < p < 00.
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Proof See Schechter [3, Lemma 6.2] or Stein [4,p132] for the proof of this and
the other properties of Bessel potentials.

Various estimates of the Bessel potentials follow from those of the modified
Bessel functions of the second kind which we collect below.

Lemma 2 Let v be an arbitrary real and n be an arbitrary positive integer.

K,(z) ~ {/n]2}z" %"

holds as z — oco. Similarly

Ko(z) ~ —logz
Ku(z)=K_n(z) ~ 2" Yn-1)lz™
Kn-—l/z(ﬂ/‘) = K_n+1/2(m) ~ {2—71—1/2,”1/2(2” + 2)'/(” + 1)!}x—n+1/2

as z = 0.

Now we state the estimates of G;(z) (j = 1,2,---) which will be used in this
paper.

Lemma 3
C(jzi~N v |z|(i—N-1)/2)g—la| (1<j<N-1)
Gj(z) < { C{(~loglz]) V|(z| + 1)"}/?}e7lol (j =N)
C(|z|G-N-1/2 y 1)e~l=l (j>N+1)

in RN with some common C > 0 for a finitely many j’s .

3 Preliminaries

We state a direct consequence of Tanabe [8] [9] in a way convenient later.
Let us begin with the divergence form operator with the same top order terms
as A.

Lemma 4 There ezists a divergence form operator

A% = Z 8"‘aaﬁaﬂu

la)=|8|=m

with domain W2™P such that the top order terms

Z ae38°tPu

ler|=|Bl=m
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are the same as those of

Au = Z a,0"u.

[v|<2m

Moreover the dual A°'

Ay = Y. %aqp0%u
la|=(8|=m

is also an operator with domain W2™P which satisfies the basic assumption
(H1),(H2), and(H3).

Proof. Consider each of top order terms a,8"u (|| = 2m) of A. One can find
two multi-indices @ andf satisfying a + 8 = 7 and |a| = |8| = m. Thus

a,8"u = a,0%6%u
We put
Gap = Gy = Ga+B
for each v = o + 3. Hence, the operator with divergence form
Au= )" 8%aep0°u
lee|=|Bl=m
has the same top order terms as Au and domain W2™P. Recall the basic

assumption a, € W™ for |y| = 2m. O
Next is a version of Tanabe’s result in the form convenient to us.

Theorem 5 Let A° be the elliptic operator obtained in Lemma 4 whose top
order terms coincide with those of A. Then there exists a positive Ag > 0 such
that [Ag, o0) C p(A3) = p(Ag') for all 1 < p < 0o . Moreover, all (A, — A)™!
(1 < p < ) with A > Ag have a kernel Ky(z,€) independent of 1 < p < oo and
C?*m-1 for x # £ such that

(45~ = [ Kol Of©k,

(49 - 2790 = [ Kola, Oa(@)de

forall f € L? and g € L? (1/p+1/q = 1). Moreover, for all multi-indices a > 0
with |a| < 2m — 1,

Clz — £|2‘m—N—-|a{e—c|A|l/2"‘[z—£| ifla| >2m - N
182K (z,€)| < { C(~log|A[1/2m|z — £| v 1)e=</*" =€l if || =2m — N
C|A|(el+N)/2m—1=c|AY/ 2™ |z —¢| ifla] <2m— N



See Tanabe [8] [9,p210] for the proof. An easier proof can be obtained if one
modifies the argument in Miyazaki[3] slightly.

Corollary With appropriate Ao > 0,
|(8/02) K (2,6)| < CGam_ja (& —8)  (0< ol <2m—1)
for some constant C' > 0. Note that each Gam—|q| 15 a Bessel potential.
Proof. Immediate if we consider also Lemma, 3.

Lemma 6 Let the assumptions be the same as in Theorem 5. Ifu € L? (1 <
p < 00) satisfies

Ay = E 0%aqp(x)0Pu = f(z) € LP
la|=|8|=m
weakly, i.e., _
[ ean@iz= [ T (Pap@ov@Nute)z = [ o) (@)
|a|=|8|=m

for all p(z) € C§°. Then
u € W2m?p

Proof. Let A\g > 0 be as in Theorem 5. Then there exists U € W2™P such that
(A% — X)U = —Xou + f € LP.

This turns out to be
[ = xa)ev @i = [(-oua) + @)plads

in the weak form. Subtracting this from the equation in the assumption, we
have

/ (4% = Xo)p(z){u(z) - U(z)}dz = 0.

Since {(A% —Xo)g; ¥ € C°} is dense in Ran(A4°' — o) = L9, then u(z)—U(z) =
0. Hence
u="U e W>m™?

Q.ED.

Lemma 7 Let A" be the operator with the same top order terms as in A and
bounded lower order coefficients. If u € W' NW2m~1P (1 < p < 00) satisfies

loc
Alu=felLr,

then
u € w2mp
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Proof. Let A° be the operator in Lemma 4 (as well as in Theorem 5 and
Lemma 6 ). Since (4% — A')u contains only the derivatives of u of order less

than 2m,
Adu=(A"—ANu+ feLP

by assumption. Clearly u € LP C w2m™l 0 W2m-1p gatisfies this equation

loc
weakly. Therefore the previous lemma 6 ensures

u € W2m.p

Q.E.D.

The kernel function Ko(z,£) in Theorem 5, together with its derivatives up
to the 2m — 1st order are L!-valued function continuously dependent on the
parameter £ as the next lemma shows.

Lemma 8 Let a function K(z,€) in (z,§) € RN x RY be continuous inz # §
and satisfies
|K (2,8)] < Cle — g Neel=~¢l

for some constants C > 0 and € > 0. Then
K(e,6) € L'(RY)

is a family of L' functions dependent continuously (in norm sense) on the pa-
rameter §.

Proof. Fixing £,we regard
K(z + A&, €+ AE)
as a family of functions in z with a new parameter A§. Thus
K (z + A&, €+ A < Clz ~ g Nem ¢,

Together with the dominated convergence theorem, this implies that K(z +
AE, € + Af) a L'norm-continous family with A€. (Recall K(z, ) is continuous
in z # £.) In other words,

| K (o + A& E+ AL — K(o,8)llr 20 (AL~ 0)

that is,
K (0,6 + AE) — K(o — A&, €|l » 0 (A& —0).

On the other hand, -

K (e — AE,€) — K (0,8l =0 (A€ —0)
holds as is well known. Therefore

|K (o, + AE) — K(0,€)|[z: = 0 (AE —0).
Q.E.D.O



Corollary For each o with |a| < 2m — 1,
(8)*Ko(e,€) € L'(RY)
depends continuously on £ € RV.

Now we turn to the operator of our problem.

4 Exisistence and Estimates of the Resolvent
Kernel

We seek the solution u of
(A=XNu=felL?
in the form u = [ Ko(z,&)v(€)d€ with v € LP where Ky(z,£) is the kernel

function of (4% — \p)~! with a fixed )\ sufficiently large (see Theorem 5). Sub-
stituting this into the above equation, we have

v+ (A= A+ X — NKov = .

Here A — A° contains only lower order terms. Formally, the last equation can
be solved by successive iteration although the resulting infinite series diverges
in general. However, we can use the first several terms as parametrix to obtain
the true solution as in the below.

Lemma 9  For an arbitrary A € C (possibly, A € 0(A;),1 < p < ™),
there ezist kernel functions T'x(z,£) = C(z,¢; {as}) € C?*™ ! for z # £ and
Qk(zyé.) = Qk(zaf; {aa}) such that

(43 [ D@ os©d = 1@ - [ Qxiw 5@

Jor all f € LP with arbitrary 1 < p < oco. Here the integral in the left side (resp.
the right side) turns out to be a W2™P function (resp. L?function), therefore the
equation is regarded in the usual sense. On the other hand, the kernel functions
are estimated
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C{l:v _ §|2m—N-[a| Vv |a: - €|(2m—1)(N+1)/2—[a[/2}e—|z—£| iﬁal >9nm—N
62Tx (2, 6)] < { C{(~ loglz — €)) v |z — £[Gm—DN+1/2-lal/2}e==~¢1  ifia| = 2m — N
Clz — £|@m—1)(N+1)/2-|al/2¢~Iz—¢] ifla] <2m—N

for |a| < 2m —1, and
Q@x(=,€)| < C{1V [z — g B DINFD/2) e l=—e],

Here the constant C > 0 is uniform for any £ € RV, determined only by
2 aj=2m |@alwm.=, 3014 <om—1 |8alwm., [N, m and N. In addition, Qx(e,§)
is a family in L? (1 < p < oo:arbitrary)depending continuously on £. Further,
Ta(z,€) and Qa(z, &) are polynomial in .
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Proof Let Ko(z,£) be the kernel function of (A° — Ag)™! as in Theorem 5. It
is easy to see that the operator (linear in A)

K=-(A-A"+ X - )Ko

from L? (0 < p < 1: arbitrary) into itself has the kernel function K(z,£) such
that
|K (2,€)| < C(G1(z — £) + Gam (2 — §))-

Here the constant C > 0 can be expressed as

C=cmN)( Y loallwme+ 3 llaalle + 1A+ X))

||aj=2m lae|<2m-1

with ¢(m, N) depending only on the dimension N of RY and the order 2m of
the operator A. Therefore, using the positivity of G;(z — £) for all z,§,j, we
know that its j-th repeated kernel (polynomial in A) has the estimate

’ J
|K(7')(m,§)| = K«xKx*---xK(z,£)

/ / / K(z,&)K (61, 6) K (£-1,€)d6rdEs - - - dEj
RN JRN RN

i
< 0@ +Gm? e-9=0'Y (1)6¥™ <G4,

k=0
j
= Co Zg(j—k+2mk) < C1(Gj(z — &) + Gamj(z - §)) .
k=0

where C, is another constant depending on }°;(_om [Galwm.=, > ja|<2m lGalLe=, |Al
m and N. Now using the kernel function Ky(z,£) of the operator (A% — Ag)™?,
we define

rA(zig) = Ko((l? - 6) +K0 *K(m,f) +K0 *K(Z)(zsf) + "'+K0 *K(N)(m7£)

and regard £ as a parameter. It is clear that I'y(z,€) is a polynomial in A .
Using the estimates of K ) (z, £) and (8/8z)*K (z,£) and Ko(z,£) € C*™1 for
z # &, we obtain I'y(z,£) € C?>™~! and the estimates of (8/0z)*T'x(z, §).

('(.aa—z)ar,\(z,f)

So one can obtain the estimates of the last, using those of G (see Lemma 3).
Recalling Ko(z,€) is a kernel of (4A° — A\g)™! in any f € LP, we have

[ D@ o
= (A% — X)L f(z) + (4% — Xo) /RN {K(z,6) + KD(z,6) + -+ + KN (z,6)} F(£)dt

<C (G2m-—|a|(x - f) + GZm(N+1)—|cx}(z - 5)) (Ial < 2m"'1)
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Hence the integral on the left side turns out to be a W2™? function and
(42 =) [ (@700
RN

= @+ [ K@+ K@+ + KMo,k

+ [ K*@ 50 [ K@@

RN RN

= f@)+(-A+4" - X+ ) /R {Eo(@,6) + Ko x K(z,) + -+ + Ko K" (z,£)}f(€)dg

- [ K 5@
= f@+ A+ 2= xo+)) [ Ta@0f@d - [ KM@ 050

RN RN

Rewriting it, we obtain

-3 [ @ on©d =1 - [ K¥ 0
Therefore, it suffices to put
| Qa(z,6) = KN (z,8).
The last kernel function is estimated as follows.
(KN (2,8)| < C (Gn41(z = €) + Gamv1) (@ — §)) < C(1+Hz—gmNVH)e~I=~4l

Note that the above construction shows Qx(z,€) is a polynomial in A and its
degree is at most N + 1. Let us finally consider the continuous dependence of
Qa(e,8) = —K(Nt1) (e £) € L? on &. It follows from Lemma 8 that 82 Ky(e, ) €
L! (Ja] < 2m — 1), consequently {K(s,£)} € L* depends continuously on £ in
L!. On the other hand K(z, £) defines a continuous (bounded) integral operator
from L' to L! by virtue of its estimate. Therefore

KN+ (e,8) € L*

depends continuously on £ in L*-norm. This fact together with the bounded-
ness of K(N+1)(z, £) ensures its continuous dependence on &, éven in LP with
arbitrary 1 < p < o0.

O

Lemma 10 Let the assumptions and the notation be the same as in the previous
lemma 9. Assume further that A € p(A,) for a given 1 < p < co. Then
Sx(e,€) = (Ap — A)71Qa(e, &) satisfies

[Sx(0; O)llwzms, [|Sx (0, )| p2m-1 < M
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for some constant M > 0 independent of £, and it depends continuously on §
with respect to both norms || e ||wzm.r and || ® ||pzm-1. Moreover, the kernel
function

R}\(mﬁ E) = FA((L', 6) + S)\ (:E: €)
yields a solution

w@) = [ Ra@Or©d ¢ wine

to
(A-Nu=f (1)

for an arbz:trary f € LY (LY is the set of the L™ function with compact sup-
port).

Proof. From the estimate in the previous lemma,
QA(') E) € L

is continuous in £ and has an estimate independent of £. Hence the assumption
A € p(Ap) of the present lemma ensures that

Sx(9,€) = (A4p — 1) 71 Qx(s,€) € W2™P
depends continuously on £ and satisfies

15x(e, O)llwame < M

with M > 0 independent of £. Therefore, regarded as the limit of a Riemann
sum,

/RN Sx(z, &) f(£)dE € W™P

is easily seen for f € C3. This fact as well as the closedness of the operators A
guarantees

(A(z) - X) f Sx (e, ) F(€)dE
RN
= [ (4@~ N5s (2, 7t
- / Qa(z, €) f(€)de
RN

for f € C3. Now we prove the same holds also for f € L. Let

supp(f) C Q

with an open bounded set Q. Then there exists a seququence f, € C§ (n =
1,2,--- such that

supp(fn) C Q, sup | fn(z)] < sup |f (@), fu(z) = f(z)(a.ex).
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The estimate of (Sxf)(z) = [, Sa(z, &) f(€)d¢

/ |(Saf)(z)|Pdz < e ./;al [Sa(z, £)|PdzdE </5€Q lf(f)]"df) »/q

guarantees

Grf@ = [ 5@ O5©O% ~ [ S\@O7©d L),
Q Q
Similarly
/Q Qx (@, €) fa (€)dE - /Q Q@ &) f(E)de  (inLP).

Again, by the closedness of A, we obtain

4@ -2 [ s@oree=- [ o@oredx

for an arbitrary f € L§°.
Now let

R,\(m,f) = FA(z’ §) + S,\(.’B, E)

Then recalling the property of I'y(z, £) in the previous lemma , we know

u@) = [ Ra@0fQd e W

for f € Lg° and that u is the solution of (A — A)u = f for f € L§° .

What remains to be proved is the boundedness and the continuity of the
kernel function Sy(z, &) with respect to the norm || e || gzm-1. We have only to
apply the next lemma. .

Lemma 11 Let us pertubate only the lower order coefficients. Suppose that
Sx(e,8) = Sa(e, &5 {aa}aj<am—1) € W?™P has a uniform estimate

|Sx(e, E)llwam.s < C1
and that Qx(e,€) = Qr(e,&;a,V) has another type of uniform estimate
|Qx(z,€)| < Cope =812,

Here Cy > 0 and Cy > 0 are constants uniform for any £ € RN and X in an
open set U C C determined only by 3, oy, |0a|L= and the set U. Suppose
also that

(A= A)Sx(e,€) = Qa(e,€)
holds. Then Sy(e,£) € B?™~1 N W2™P gnd satisfies
|Sx(e,§)|gam—1 < C(Ch, C2).

Here the constant C > 0 is uniform for eny £¢ € RN determined only by
2 |a|<2m |0alL=,U. Moreover, if Sx(e,£) € W?™P and Qx(e,€) € L™ depend
continuously on € for arbitrary 1 < r < oo, then so does also

SA(':E) € B2m_ .
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Proof. Rewriting the equation

(A% = X0)Sx(#,8) = (A° — A — X + N){Sx(2,6)} + Qr(,€)
with A% and )¢ in Lemma 4 and Theorem 5, we obtain
Sx(#,€) = (A% = 20) 1A = A= 2o + N){5x(#, )} + (4" = 20) ' Qx(%,€). (2)
Note that Qx(e,&) € L™ and (A% — o) 2 Qx(e, &) € W2™P for any (1 < r < 00).
Now, by the Sobolev embedding theorem, we have
SA(':E) c W2m,r C W2m—1,r1
with r; > p such that
—N/ri=—-N/p+1.

This guarantees that the first term on the right side of (2) belongs to W™,
while the second term belongs to W2™7 with arbitrary 1 < r < oo. Therefore
SA (.’6) € W2m,r1 C W2m—1,rz

with r, > r; such that
—nfrg = —-N/r1 + 1.

In this way, we obtain
rM<r<<ry<---

with
—N/ro==N/r1+1,-N/rg = —-N/rs +1,---

successively, and eventually reaches r; such that
-N / i +1>0.
Now this implies
S)«(‘,f) c W2m,r5 C BZm—l_

Finally, its continuous dependence on £ is clear from the above construction.
QED. O

Now we concentrate ourselves to obtain the exponential decay of S)(z, ) in
Lemma 10.

Lemma 12 Let Ay € p(Ap) and A, be the perturbation of A, in lower order
term:
Au= ) a(2)B/02)*u+ Y. @a(z)(8/0z)%u
la|=2m jal<2m—1

considered in the same LP (1 < p < 00) with the same domain Dom(4,) = W?,
Then, there exists a constant 6 > 0 determined only by ||(Ap — A) 7 || Lrwam.s
such that if

1A= o] <4 ]|aa(®) - Ga(®)lle <8 (laf <2m-1)



then )
A€ p(4p)

and
1(Ap = X Hloswams < 2[1(Ap — Xo) " lLrswems-
Proof. We consider successive approximation.
(Ap ~ X)(A4p ~ 20)™*
= {&-2)+Mo-N+ ¥ (Gals) - aa(2))(0/02)* }(4p — Xo)™*

|a|<2m—1

= I+S

where S is the operator expressed as

{Qo-N+ Y (Gale) — aa(2))(8/62)°} (4 — Ao)~".
la|<2m—1
On the other hand,
lullwams =Y 18%ullL»-
[
implies
18%(Ap = X) " Hlzeoze < [1(Ap = X) 7 lLemwams
for all |a| < 2m — 1. Now we determine § > 0 by

5 8\° 1
5+6 ” (a—z-) ’U«”Lp = 5
4

Thus
|A = Ao] < 6,]da(e) —aa(e)] <d (Ja|<2m -1
implies
”S"Lp_;Lp < 1/2.
Hence

1(Ap=X) "l zoswams = [[(Ap=0) Lo swams [(T+8) 72| < 2/l(Ap= o) M| Lo wam.s.

Q.E.D.
Now we compare the resolvent kernels of A, and A7 which is determined by
A" = e"* A(e " u).

Note especially that A and A" have the same top order terms.
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Lemma 13 Let A € p(4p) (1 < p < oo: arbitrary). Let also a perturbation A7
of the operator A, in LP be determined by

A"y = e A(e"%u)

with a small parameter € RN. Let T'x(z, &) be as in Lemma 9. Then A € p(A7)
and there exists a kernel function S} (z,€) such that

wa) = [ (70,0 + Sl(@ )/ (©)d € W™

for any f € L§° and it represents the solution of
(A" - Nu = f.

Moreover,
1Sx (e, E)llwam.z, 1S3 (e, )l pam-2 < M

holds for all sufficiently small n € RY and all £ € RN with a certain constant
M > 0.

Proof. First, we prove
o) = [ T COTA(@ O (Ot € W,
The estimate of (8/9z)*T'x(z, &) (Ja| < 2m — 1) shows
' ((%) 0T, (z, §)l < |z — g[l-Ne-la—€l/2
and v € W2™~1?, On the other hand, e~ f(£) € L C LP ensures
o@) =er* [ Talm,Qe S (E)de € Win? C War
RN

and

(7= Mo@) = (4= [ T oee s

= e (@) - [ Qala e FO)
RN

1@ = [ ere0Qx(@, £(€)de).

RN

The estimate of |Qx(z, £)| < e~1*—¢1/2 ensures
(A" — Nv(z) € L?

Hence Lemma 7 guanrantees
v € W2m™P
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Now we define
S7(e,8) = (A7 - )\)‘l{e”'(z"ﬁ)Q,\(o,f)} c W2mp

Hence
Sy (e, €) € B>™1

follows. Thus
u@) = [ {7I@,) + 8]0, O}/ E)de € W

is the solution of
(A" —Nu = f e L.

QED.O

We are now on the position to prove the exponential decay of Sy (z,€) in
Lemma 10.

Lemma 14 Let the assumptions and the notations be the same as in Lemmas
9 and 10. Assume further that Ao € p(A,) for a given 1 < p < co. Then

Sx(e,&) € W2mr 0 g2m-1 (1 < r < oo:arbitrary)
for each £ € RN and

(%) Ss@oIsce®d  (a<om-1

with some constants C > 0 and € > 0 uniform in the neighborhood of A = Xg.
Moreover, as a family in W2™" with arbitrery 1 < r < oo, Sx(e,&) also depends
continuously on £.

Proof. Let
(A(z) — N)e "%y = e "% f(z) € L. (3)

have a solution u € C§™. Here L§° is the set of bounded function with compact
support. Thus Lemma 10 guarantees that

e " u(z) =/1;~ R,\(z,E)e"’"Ef(E)dE=/I;N{F,\($,§)+S,\(Z,E)}e—"'£f(€)d§-

Therefore
u(z) = /RN eI (,€) + Srf(©)}dé.
On the other hand, expanding (3), we have

(A"(z) — Au = f(z) € L.
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Hence Lemma 13 ensures
wa)= [ {erCOT@,0) + S](w O} (O

Combining the two equations, we have

J R N N L I G NP T

for any f(z) = (A" — A\)u = e7*(A4 — M)e "%y with u € CZ™. Since the set of
such f is dense in LP, we have

e @=O(Tx(z,8) + Sa(2,)} = e"~IT(,£) + S}(=,€)

SA (.’L‘, €) = e_"'(z%)sg(z, é)

Here Lemma 9 guarantees

(2) SworsM  (alsam-—y
Oz
with some constant M > 0 independent of 5 near 0 € R". Therefore

|Sa(z,&)] < Minfe (=8 < Meelz—¢l,
n
for some constant € > 0. Hence we have

(2) $so0l < Me==d (o] S 2m—1)

inductively (replacing the constant M > 0 if necessary). On the other hand,
(A= X)5x(s,6) =Q(e,§) = O(e™* ) e I7
for arbitrary (1 < r < o). Therefore Lemma 7 ensures
Sx(e, &) € WrmT
with any 1 < 7 < oo and it continuously depends on €. (Recall the similar

property of Qx(z,&)). Q.E.D. .

Theorem 15 p(A;) does not depend on 1 < p < . And the resolvent (A, —
A)7! with A € p(Ap) can be written as an integral operator

(4o -0 N@ = [ Fa@0f )k




with the kernel function R)(z,£) independent of 1 < p < oo which belongs to
C?™~1 in x # £ for each fized £. It also satisfies
[(8/0:)* Ra(z,€)| <
C{|z — £|>m—N-lal}e—elz—¢l iflal| >2m ~ N
C{(—log|z —&]) vV 1}ecl=—¢l ifla| =2m — N
Clz — ¢|@m-1(N+1)/2-|al/2g—¢lz—¢]| iflal <2m — N

for |a] <2m —~1. Here e > 0 and C > 0 are constants uniform in the neighbor-
hood of each A € p(Ap).

Proof. Let p € (1,00) and A € p(A4,) be arbitrarily fixed. Choose any other
r € (1, 00) arbitrarily. We need only to prove A € p(4,). Recall the continuous
dependence of Sy(e,£) € W2™" on ¢ € RN (see Lemma 14)and its property
(see Lemma. 10):

(A= 2X)Sx(e,£) = Qx(e,8).
Put
R)\(zié) = F,\(Qf,f) + S,\(Q?, 5)

whose estimates follow immediately from Lemmas 9 and 14.
Then the same argument as in Lemma 10 guarantees

u@ = [ B OfO% €W, (A= Nu= @

holds at least for f € L .
Let us prove generally

Rf@) = [ Ra@Of(@de € W™, (A= NRaf = f

for any f € L™. Note that R) maps L" continuously into itself by the exponential
decay of the kernel function Ry(z,&). First we choose a sequence f, € L§® with
fn— fin L". Thus u, = Ry f, € W?™" and

(Ar = ANun=fp, — f inL"
un=Rxfn — RAf inlL"

The closedness of the operator A, ensures
u= Ryf € W™ = Dom(4,), (4, —-ANu=7{.
Finally, it suffices only to prove
Ry(Ar - ANu=u

for an arbitrary u € W2™". There exists an approximate sequence u,, € Ca™ C
W?2m.p N W2mr guch that u, — u in W2mr,

37
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On the left side, Ry is a bounded operator from L" into itself and (A, — A)un, —
(Ar — Mu in LT from the assumption. On the right side, clearly, u, — u in L.

Therefore
Ra(Ar, —Nu=u (ue W),

Together with the above obtained
(Ar =MNBaf=f (fel),
we have Ry = (A4, — A)~! and
A € p(4r).
QED. O

We define the discrete spectrum of operators to state the final theorem cor-
rectly.

Definition. Let A be an operator in a Banach space X and o(A) be its
spectrum. A9 € o(A) is called discrete spectrum if it is a pole of the resolvent
(A —A)~1 as a function in A, and the generalized eigenspace E corresponding
to Ag is finite dimensional.

Remark. See Kato [1, p.180] or Yosida [6, p.228] for the Laurent expansion
around the general isolated singularity of (4 — X))~ .

Theorem 16 Let \g be a discrete spectrum of A, (independent of 1 < p < o0).
Then each eigenfunction f ( aswell as generalized eigenfunction ) corresponding
to Ao satisfies

|f(z)| < Ceel®!

with certain constants C > 0 and € > 0

Proof Consider the Laurent expansion of the operator (4,—2A) ™! around A = A,.
Its expression with kernel functions is

> (A= 20)*Ti(z,8)

k>—n

where
-1

i ) O Rl )
ke

Tk(z75) =

with some small § > 0.
The spectral projection to the subspace of W2™P corresponding the isolated
spectrum {Ag} is expressed by T (z, £). Recall

Rx(z,€) =Ta(z, ) + Sa(z,€)
and I')(z,£) is a polynomial in A (See Lemma 5). Thus
1

T_1(z,€) = prrll N Sx(z,&)dA.




Meanwhile,

1Sx(z,€)] < Cemelo~¢l
holds on |A — Xg| = 4. Therefore

|T_1(z,€)| < Ce~eI= %L,

Since T (z, £) is the kernel function of the projection to the generalized eigenspace
E corresponding to Ao, it reresents a function in E for each . The proof is com-
plete. O
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