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1 Some historical facts

In 1909-1910 P. Bohl, W. Sierpinski, and H. Weyl independently proved that
for any irrational number $\xi$ , the sequence $x_{n}=n\xi(\mathrm{m}\mathrm{o}\mathrm{d} 1)$ , $n$ $=1,2$ , $\ldots\}$

is uniformly distributed (or, as it was called then, uniformly $d$ense) in $[0, 1]$ ,
meaning that for any $0\leq a<b\leq 1$ , one has

$\lim_{Narrow\infty}\frac{\#\{1\leq n\leq N.x_{7L}\in(a,b)\}}{N}.=b-a$ . (1.1)

It was however the fundamental paper [We], published by Weyl in 1916,
that gave rise to the theory of uniform distribution, which today has connec-
tions to numerous mathematical disciplines, including number theory, com-
binatorics, probability theory, harmonic analysis, and ergodic theory.

Weyl starts his paper by noting that a sequence $(x_{n})_{n\in \mathrm{N}}\subset[0,1]$ satisfies
(1.1) if and only if for any function $f$ which is periodic with period 1 and
Riemann integrable on $[0, 1]$ , one has

$\lim_{Narrow\infty}\frac{1}{N}\sum_{n=1}^{N}f(x_{n})=\int_{0}^{1}fdx$ . (1.2)

While for Weyl the relation (1.2) expresses an analytic equivalent of the
fact that the sequence $(x_{n})_{n\in \mathrm{N}}$ is uniformly dense in $[0, 1]$ , it is the ergodic
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character of (1.2) which we would like to emphasize here. Indeed, the left-
hand side of (1.2) can be interpreted as a time average. (Think of $n=1,2$ , $\ldots$

as instances of time, $x_{n}$ as the position occupied by a moving particle, and
$f(x_{n})$ as a result of the measurement of some parameter at time $n.$ ) The right-
hand side of (1.2) is just the “space average” (which in a more general situa-
tion, when the interval $[0, 1]$ is replaced by a finite measure space $(X, B, \mu)$ ,
would be written, for a function $f\in L^{1}(X, B, \mu)$ , as $\frac{1}{\mu(X)}\int_{X}f(x)d\mu(x))$ .

Weyl also observes that since by the theory of Fourier series, any periodic
function can be represented as a linear combination of special periodic func-
tions of the form $e^{2\pi imx}$ , $m\in \mathbb{Z}$ , one has the following convenient criterion
for the equidistribution of a sequence $(x_{n})_{n\in \mathrm{N}}\subset[0,1]$ :

$\forall m\in \mathbb{Z}$ , $m \neq 0,\lim_{Narrow\infty}\frac{1}{N}\sum_{n=1}^{N}e^{2\pi imx}=0$ . (1.3)

Applying this criterion (and simultaneously extending the discussion to
higher dimensions) , Weyl obtains many by now classical results, among which
the following is perhaps the most popular.

Theorem 1.1 If a real polynomial $p(t)=\alpha_{k}t^{k}+\alpha_{k-1}t^{k-1}+\ldots+$ $\alpha_{0}$ has
the property that at least one coefficient other than $\alpha_{0}$ is irrational, then the
sequence $(p(n)\mathrm{m}\mathrm{o}\mathrm{d} 1)_{n\in \mathrm{N}}$ is uniformly distributed.

We will return to this result in Section 2 when discussing some modern
ramifications of the ergodic theorem.

It took another 15 years for the ergodic idea expressed by relation (1.2)
to take on the form of the ergodic theorem.

In 1931, B. Koopman published a short paper ([K]) which amounted
to a very simple but significant observation: if $T$ is an invertible measure
preserving transformation of a measure space $(X, B, \mu)$ , then the operator
$U$ , defined on $L^{2}(X, B, \mu)$ by $(Uf)(x)=f(Tx)$ , is unitary. The following
passage from an article by P. Halmos ([H], p. 91) gives a colorful description
of the story of the inception of J. von Neumann’s ergodic theorem.

Koopman’s observation was simultaneously a challenge and a hint. If
there is an intimate connection between measure preserving transfor-
mations and unitary operators

$f$
then the known analytic theory of such



operators must surely give some information about the geometric be-
havior of the transformations. By October of 1931, von Neumann had
the answer; the answer was the mean ergodic theorem.

Here is the modern formulation of von Neumann’s ergodic theorem, ob-
tained in [Ni].

Theorem 1.2 Let $U$ be a unitary operator on a Hilbert space 7{. Denote by
$P$ the orthogonal projection onto the subspace $\mathit{7}\mathit{1}_{inv}$ $=$ $\{f^{1}\in \mathcal{H} : Uf=f\}$ .
For any $f\in\gamma${, one has

$\lim_{N-Marrow\infty}||\frac{1}{N-M}\sum_{7l=M}^{N-1}U^{n}f-Pf||_{\mathcal{H}}=0$ .

Corollary 1.3 Assume that $(X, B, \mu)$ is a finite measure space. Let $T:Xarrow$

$X$ be an invertible measure preserving transformation which is ergodic
$f$

that
is

$f$ for any $A\in B$ with $0<\mu(A)<\mu(X)_{f}$ one has $\mu(A\triangle TA)\neq 0$ . Then for
any $f\in L^{1}(X, B, \mu)$ , one has

$\lim_{N-Marrow\infty}\frac{1}{N-M}\sum_{n=\mathrm{j}\psi}^{N-1}f(T^{n}x)=\frac{1}{\mu(X)}\int_{X}f(x)dx$

in $L^{1}$ -nor$m$ .

Remark 1.4
1. The proofs of Theorem 1.2 and Corollary 1.3 can be found in any standard
text on ergodic theory. See, for example, [P] or [Wa].
2. In [N1], von Neumann deals with a unitary $\mathbb{R}-$ action $(U_{t})_{t\in \mathbb{R}}$ induced
by a continuous family of measure preserving transformations. While his
notation is cumbersome and the proof is complicated by the usage of overly
sophisticated machinery (such as the spectral resolution, obtained by M.
Stone in [S] $)$ , it is a truly outstanding paper.

In October 1931 von Neumann communicated his result to G.D. Birkhoff)
who was able to prove, (see [Bil], [Bi2]) by an original and rather classical
argument, the almost everywhere statement which, in modern terms, can be
formuiated as follows.



Theorem 1.5 Assume that $(X, B, \mu)$ is a finite measure space and let T :
X $arrow X$ be an invertible measure preserving transformation. For any f $\in$

$L^{1}(X, B, \mu)$ , there erists a function $\overline{f}\in L^{1}(X, B, \mu)$ such that

$\lim_{Narrow\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(T^{n}x)=\overline{f}(x)a.e$ .

If the transformation $T$ is ergodic, then $\overline{f}=\frac{1}{\mu(X)}\int_{X}f(x)dxa.e$ .

Curiously enough, Birkhoff’s theorem, published in two articles in PNAS
(Proceedings of the National Academy of Sciences), appeared in the Decem-
ber 1931 issue, whereas von Neumann’s paper appeared in the January 1932
issue of PNAS. It looks like Birkhoff was in a hurry: [Bil] was submitted on
November 27 1931, and [Bi2] was submitted on December 1, 1931. Von Neu-
mann’s paper [N1] was submitted on December 10,1931. This controversy
is (partly) explained in an account by S. Ulam ([U], p. 98). In the following
passage from [U], G.D. stands for Birkhoft and Johnny for von Neumann.

Von Neumann never quite forgave G.D. for having “scooped’$f$ him in

the affair of the ergodic theorem: von Neumann had been first in prov-
ing what is now calle$d$ the $such$ ergo$dic$ theorem. By a sheer virtuoso
type of $com$binatorial thinking, Birkhoff managed to prove a stronger
one$,$ and – having more influence with the editors of the Proceedings
of the National Academy of Sciences – he publishe$d$ his paper first.
This was something Johnny could never forget. He sometimes com-
plained about this to me, but afways in a most indirect and oblique
way.

The tension between von Neumann and Birkhoff can also be detected in
the way they wrote about the importance and physical adequacy of their
results. The reader may find the following three quotations both instructive
and amusing.

(i) From [N2], which was submitted on January 21,1932. In the text be-
low, (1) stands for von Neumann’s norm convergence result of the uniform
averages $\frac{1}{t-s}\int_{s}^{t}f(T^{\tau}x)d\tau$ , and (2) stands for Birkhoff’s result on the almost
everywhere convergence of the averages $\frac{1}{t}\int_{0}^{t}f(T^{\tau}x)d\tau$ .
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It is of interest to decide which of the two formulations, (1) or $(\mathit{2})_{f}$

corresponds to the actual physical proble$m$ of the ergodic hypothesis.
It turns out that the weaker form of statement (1) is sufficient, – that
$it_{,}$ indeed, is the precise mathematical equivalent of the physical state
of affairs. It is to be note$d_{f}$ furiher, that the knowledge of the spectral
resolution $E(\lambda),$ which is fundamental in Koopman’s method, enables
one to dominate the physical situation here completely; in particu-
lar, it furnishes a numerical estimation of the $d$egree of convergence
of the limiting process connecte$d$ with the ergodic hypothesis

$,$ whereas
Birkhoff ’s existence proof for (2) is of a non-constructive character.

(ii) From $[\mathrm{B}\mathrm{i}\mathrm{K}]$ , which was submitted on February 13, 1932. After agreeing
that von Neumann’s result is “sufficient for the needs of the kinetic theory,”
the authors still write on the subject of Birkhoff theorem:

From the viewpoint of the detailed statistics along an individual path-
curve, it is fundamentally more far-reaching: in it is proved for the
firsf time that the relative time of sojourn along almost every individ-
ual path-curve exists, a result often assumed implicitly in the writing
of physicists, but never proved.

(iii) In his American Mathematical Monthly article [Bi3], Birkhoff writes:

The integral of Lebesgue (4901), founded upon Borel measure, has been
a dominating weapon in the striking advance of Analysis during the
present century. Perhaps the Ergodic Theorem (1931) is destined to
hold a central position in this development.

As if this were not enough, Birkhoff adds the following in a footnote:

Our discussion here deals only with the “Ergodic Theorem,” and not
at all with the “Mean Ergodic Theorem” of von Neumann, which stirn-
ulated me to reconsi $d$er some old ideas, an $d$ so led me to the discovery
and proof of the Ergodic Theorem$,$ embodying a strong

$,$
precise result

which, so far as I know, had never been hoped for.
While the speculations offered in [N2] and $[\mathrm{B}\mathrm{i}\mathrm{K}]$ are interesting, they are

perhaps not totally convincing, especially when they address measurement
and numerical estimation. We shall offer in Section 2 one more take on the
question of which of the two ergodic theorems is more $\mathrm{u}\mathrm{s}\mathrm{e}\mathrm{f}\mathrm{u}\mathrm{l}/\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{n}\mathrm{t}$ in
studying physical phenomena.
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2 Some questions related to modern developments

Recall that a measure space $(X, B, \mu)$ is called a Lebesgue space if it is
measure-theoretically isomorphic to the unit interval, equipped with the stan-
dard Lebesgue measure. The following classical theorem shows that this
assumption is in no way too restrictive.

Theorem 2.1 (Cf. [R], Ch. 15, Sec. 5, Thm. 16) Assume that $\mu$ is the
completion of a finite Borel measure on a complete separable metric space
X. If $\mu$ is normalized ($i.e.$ $\mu(X)=1)$ and has no atoms, then $(X, B, \mu)$

(nhere 8 is the completion of the afgebra of Borel sets in $X$) is $m$easure-
theoretically isomorphic to the $u$nit interval with Lebesgue measure.

Assume now that $(T_{v})_{v\in \mathbb{R}}$ is an ergodic continuous measure preserving
flow on a Lebesgue space $(X,B, \mu)$ . It is not hard to show that for all but
countably many $s\in \mathbb{R}$ , the element $T_{s}=S$ is ergodic. (See for example
[CFS], Ch. 12, Sec. 1, Lemma 1, or [Bel], p. 122.) Note also that since
the ergodicity of the flow $(T_{v})_{v\in \mathrm{I}\mathrm{R}}$ is obviously equivalent, for any real $c\neq 0$ ,
to the ergodicity of the flow $(T_{\mathrm{c}v})_{v\in \mathbb{R}}$ , it follows that for all but countably
many $s\in \mathbb{R}$ , the transformation $T_{s}=S$ is totally ergodic, meaning that $S^{n}$

is ergodic for any nonzero $n\in$ Z.
Consider now the following situation. In order to study the continuous

averages $\frac{1}{t}\int_{0}^{t}f(T_{v}x)dv$ , a physicist picks some $s\in \mathbb{R}$ and considers the
averages of the form $A_{N}(f)= \frac{1}{N}\sum_{n=0}^{N-1}f(S^{n}x)$ , where $S$ $=T_{s}$ . (One may
think of the averages $A_{N}(f)$ as corresponding to the average of measurements
performed at times $t$ $=0,1$ , $\ldots$ , $N-1.$ ) In reality, the measurements can
be done only approximately at times $t=i$ , $i\in\{0_{,}1, \ldots, N-1\}$ , and so
perhaps it is more natural to consider the “perturbed” averages $A_{N}^{*}(f)=$

$\frac{1}{N}\sum_{n=0}^{N-1}f(S^{n+\delta_{n}}x)$ , where (4) $n\in \mathrm{N}$ is an independent random sequence in a
small interval $[-\epsilon, \epsilon]$ . Assuming that the flow element $S$ $=T_{s}$ was chosen with
some luck, i.e. that $S$ is ergodic, our physicist would like to know whether
he can expect that for large $N$ , the averages $A_{N}^{*}(f)$ are close to $\int_{X}f(x)d\mu$ .
Note that the assumption of ergodicity of $S$ is not $\mathrm{u}\mathrm{n}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{b}1\mathrm{e},$ since as was
noted above, for all but countably many $s\in \mathbb{R}$ , $T_{s}$ is ergodic. Moreover, if
the flow $(T_{v})_{v\in \mathbb{R}}$ happens to be weakly mixing (which physically means that
the system has no angular variables, cf. [KN] $)$ , then one can actually show
that, for any nonzero $s\in \mathbb{R}$ , $T_{s}$ is ergodic and even weakly mixing.



The following considerations show that the answer to the question whether
$A_{N}^{*}(f)$ is close to $\int_{X}f(x)d\mu(x)$ is quite satisfactory if one is concerned with
norm convergence.

First, note that even if $A_{N}^{*}(f)$ does not converge in norm to $\int_{X}f(x)d\mu(x)$ ,
the averages $A_{N}^{*}(f)$ will be close in norm to $A_{N}(f)$ if $\epsilon$ is small enough. (Just
use the triangle inequality and the fact that, for any $f$ , $||T_{v}f-f||arrow 0.$ )

$varrow 0$

Now, since $S$ is ergodic, $\lim_{Narrow\infty}A_{N}(f)=\int_{X}f(x)d\mu(x)$ in norm which
impiies that for all large enough $N$ (and small enough $\epsilon$ ) the expression
$A_{N}^{*}(f)$ is close in norm to $\int_{X}f(x)d\mu(x)$ . Moreover, this reasoning equally
applies to the expressions $A_{N,\lambda/I}^{*}(f)= \frac{1}{N-M}\sum_{n=M}^{N-1}S^{n+\delta_{n}}f$ for large enough
$N-M$.

The following theorem says that if one is interested in norm convergence)

the expressions $A_{N}^{*}(f)$ are well behaved for a typical sequence $(\delta_{n})_{n\in \mathrm{N}}$ .

Theorem 2.2 Let $I$ $=$ $[-\epsilon, \epsilon]$ and let $\Pi$ be th $e$ countably infinite cartesian
power of $I$ , equipped with the $n$ormalize$d$ product measure $m_{\infty}$ induced by the
Lebesgue measure $m$ on I. Let $S=T_{s}$ be an ergod$ic$ element of an ergodic
measure preserving flow $(T_{v})_{v\in \mathbb{R}}$ acting on a Lebesgue space $(X, B, \mu)$ . Then
for any $f\in L^{2}(X, B, \mu)f$ the set $D$ of sequences $(\delta_{n})_{n\in \mathrm{N}}\in\Pi$ for which

$\lim_{Narrow\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(S^{n+\delta_{n}}x)=\int_{X}f(x)d\mu(x)$

in the $L^{2}$ norm satisfies $m_{\infty}(D)=1$ .

Theorem 2.2 should be juxtaposed with the following negative result per-
taining to almost everywhere convergence.

Theorem 2.3 Under the assumptions and notational agreements of Theo-
rem $\mathit{2}.\mathit{2}_{,}$ there ecists a set $C\subset\Pi$ with $m_{\infty}(C)=1$ such that for any sequence
$(\delta_{n})_{n\in \mathrm{N}}\in C$ , there exists a function $f\in L^{\infty}(X, B, \mu)$ such that the averages
$A_{N}^{*}(f)$ fail to converge almost everywhere.

One can succinctly summarize the (mathematical) content of Theorems 2.2
and 2.3 as follows: for randomized sampling from an ergodic flow, von Neu-
mann’s ergodic theorem is more useful than that of Birkhoff. We leave it to
the reader to (try to) interpret these two theorems from the point of view of
their physical content.



Here are some comments of the proofs of Theorems 2.2 and 2.3.
The reason for Theorem 2.2 to hold is that one can utilize the spectral

theorem in order to reduce the problem to a question on the equidistribution
of a random sequence in $\Pi$ . The result then follows from an application of a
form of the law of large numbers.

As for Theorem 2.3, it immediately follows from the following fact proved
in [BeBB].

Theorem 2.4 (See [BeBB], Thm 1.1.) Let \lambda $=$ $(\lambda_{n})_{n\in \mathrm{N}}$ be a sequence of real
numbers which is linearly independent over Q. Then for any non-periodic
flow $(X, B, \mu, (T_{v})_{v\in \mathbb{R}}),$ there exists a boun$ded$ function $f\in L^{\infty}(X, B, \mu)$ for
which the averages

$A_{N}(f)= \frac{1}{N}\sum_{n=1}^{N}f(T_{\lambda_{n}}x)$

fail to converge almost everywhere.

To see that Theorem 2.3 follows from Theorem 2.4, it is enough to observe
that there exists a set $E\subset\Pi$ with $m_{\infty}(E)=1$ such that for any $(\delta_{n})_{n\in \mathrm{N}}\in E$ ,
the sequence $(n+\delta_{n})_{n\in \mathrm{N}}$ is linearly independent over Q.

Note that the conditions on the sequence $(\lambda_{n})_{n\in \mathrm{N}}$ in Theorem 2.4 are met
by some known “deterministic” sequences, such as $(\sqrt{p_{n}})_{n\in \mathrm{N}}$ where the $p_{n}$

are distinct primes. One can show that there exists an exceptional countable
set $P$ $\subset \mathbb{R}$ such that the sequence $(n^{\alpha})_{\Gamma_{l}\in \mathrm{N}}$ with $\alpha\in \mathbb{R}\backslash P$ consists of linearly
independent numbers. One can also show that sequences of the form $(n^{r})_{n\in \mathrm{N}}$ ,
where $r\in \mathbb{Q}\backslash \mathbb{Z}$ , $r$ $>0$ , also satisfy the conclusion of Theorem 2.4. The reason
behind this is that while, for example, numbers of the form \lambda

$n$
$=\mathrm{v}^{\overline{n},n}\in \mathrm{N}$

are linearly dependent over $\mathbb{Q}$ , one can extract a subsequence \lambda $n_{k}=\Gamma^{7?_{\lrcorner k}}$

such that (i) $(\lambda_{n_{k}})_{k\in \mathrm{N}}$ are linearly independent over $\mathbb{Q}$ , and (ii) the sequence
$(n_{k})_{k\in \mathrm{N}}$ has positive density. (See [BeBB], Section 2, for more details.)

On the other $\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d},$ the following result, also proved in [BeBB], shows
that one has a strong positive result involving the norm convergence.

Theorem 2.5 Let $\alpha_{1_{,}}\alpha_{2}$ , $\ldots$ , $\alpha_{k}\in(0,1)_{f}\alpha_{i}\neq\alpha_{j}$ for $i\neq j$ . Let $(T_{v})_{v\in \mathbb{R}}$

be an ergodic measure preserving continuous flow acting on a Lebesgue space
$(X, B, \mu)$ . Then for any $f_{1}$ , \ldots ’

$f_{k}\in L^{\infty}(X, B, \mu)$ , one has
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$\lim_{Narrow\infty}||\frac{1}{N}\sum_{n=1}^{N}f_{1}(T_{n^{\alpha_{1}}}x)\ldots f_{k}(T_{n^{\alpha_{k}}}x)-\int_{X}f_{1}d\mu\ldots\int_{X}f_{k}d\mu||_{L^{2}}=0$ .

We will discuss now some natural problems which are suggested by the
following beautiful theorem due to J. Bourgain (see [Bol], [Bo2]).

Theorem 2.6 Let $(X, B, \mu, T)$ be a measure preserving system and let $p(t)$

be a polynomial with integer coefficients. Then for any $p>1$ and any $f\in$

$L^{p}(X, B, \mu)$ , the averages $\frac{1}{N}\sum_{n=1}^{N}f(T^{p(n)}x)$ converge almost everywhere.

One can check that when $T$ is totally ergodic, for any $f\in L^{p}(X, B, \mu)$ ,
where $p>1$ , one has

$\lim_{Narrow\infty}\frac{1}{N}\sum_{n=1}^{N}f(T^{p(n)}x)=\int_{X}f(x)d\mu(x)\mathrm{a}.\mathrm{e}$ . (2.1)

Indeed, one needs only to check that, when $T$ is totally ergodic, the aver-
ages $\frac{1}{N}\sum_{n=1}^{N}f(T^{p(n)}x)$ converge to a constant in $L^{2_{-}}$norm. (See for example
[F], Ch. 3, Sec. 4, or [Be2].)

While from the $L^{2}$ result the convergence in any $L^{p}$ space, where $1\leq$

$p<\infty$ , follows almost immediately, the question whether (2.1) holds in
$L^{1}$ $(X, B, \mu)$ is open (and is perhaps one of the most interesting problems in
the area of almost everywhere convergence).

Here is another interesting set of problems, related to the physical in-
terpretation of Bourgain’s theorem. Assume that the transformation $T$ in
Bourgain’s theorem is totally ergodic. (As we explained above, if one has
an ergodic flow $(T_{v})_{v\in \mathbb{R}}$ , then for all but countably many $s$ , the transforma-
tion $T_{s}$ will also be totally ergodic.) For, say, a bounded and measurable
function $f$ , one will have then, for almost every $x$ , the equality of the space
average $\int fd\mu$ and the time average $\lim_{Narrow\infty}\frac{1}{N}\sum_{n=1}^{N}f(T^{\mathrm{p}(n)}x)$ , taken along
the polynomial sequence $p(n)$ , $n=1,2$ , $\ldots$ . What is the physical meaning
of this? Why does Nature (in the case of totally ergodic transformations)
work so well along the polynomials? It seems, intuitively, that the higher the
degree of $p(n)\}$ the slower the rate of convergence should be. Can one make a
mathematical theorem out of this sentiment? Note that the last question is
not so simple since it is well known that “there is no speed of convergence”
in Birkhoff’s ergodic theorem (see, for example, [P], p. 99, Ex. 3). But can
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one estimate the speed of convergence (as a function of the degree of the
polynomial $p(n))$ for smooth enough $T$ arid $f$ ?
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