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Abstract

Distribution functions of non-atomic Gibbs measures on the unit in-
terval define natural semiconjugacies between maps on $[0, 1]$ . Using this
method we extend a result of Milnor and Thurston in [3] about the semi-
conjugacy of unimodal maps to skew products with maps of the interval
as fiber maps.

1 Introduction
In this note we use the existence of Gibbs measures for a discrete time dynamical
system to define a semiconjugacy between the system and a piecewise linear
map. In particular, we discuss the analogue of this construction in the case of
skew products $(X¥mathrm{x}Y, ¥tau, (T_{x})_{x¥in X})$ where $¥tau:X¥rightarrow X$ , $T_{x}$ : $Y$ $¥rightarrow Y(x ¥in X)$ and

$T(x, y)=(¥tau(x), T_{x}(y))$ .

In the latter case the notion of a Gibbs measure can be generalized to that of
Gibbs families whose existence and uniqueness was discussed in [1]. Also recall
that a dynamical system $T$ : $Z¥rightarrow Z$ is called semiconjugate to the system
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$T^{¥prime}$ : $Z^{¥prime}¥rightarrow Z^{¥prime}$ if there is a continuous surjective map $¥Pi$ : $Z$ $¥rightarrow Z^{¥prime}$ such that the
diagram

$Z$
$¥rightarrow^{T}$

$Z$

$¥Pi¥downarrow$ $¥downarrow¥Pi$

$Z^{¥prime}$
$¥rightarrow^{T^{¥prime}}$

$Z^{¥prime}$

commutes, and we call $¥Pi$ : $ X¥times$ $Y¥rightarrow X^{¥prime}¥times Y^{¥prime}$ a semiconjugacy between the skew
products $(X¥mathrm{x}Y, T)$ and $(X^{¥prime}¥mathrm{x}Y^{¥prime}, T^{¥prime})$ if $¥Pi$ semiconjugates the dynamical systems
and if $¥Pi$ maps fibers to fibers, i.e. if $¥Pi(¥{x¥}¥times Y)¥subset¥{x^{¥prime}¥}¥times Y^{¥prime}$ for some $x^{¥prime}¥in X^{¥prime}$ .

Consider the special case of a skew product where $Y$ $=[01]¥}$ and where each
$T_{x}$ is a piecewise continuous and monotone map of the interval $Y$ with positive
relative topological entropy $h(T_{x})$ . Certain fiberwise expanding transformations
$T$ will be shown to be semiconjugate to a skew product where each fiber map is
a continuous piecewise monotone map of the interval with slope $¥exp h(Tx)$ .

Note that this result parallels the case of a map of the interval since the theory
of skew products and their Gibbs families reduces to this case if $X$ consists of a
single point. For unimodal maps we rediscover a result of Milnor and Thurston
in [3], where it has been sbown in Theorem 7.4, that every unimodal map, for
which tlie number of monotonicity intervals of $T^{n}$ increases exponentially fast, is
semiconjugate to a unimodal map with constant common slopes on each of the
monotonicity branches. The proof given here is different.

The idea of the proof relies on the following simple fact. If $¥mu$ is a distribution
on the unit interval, then its distribution function is monotone, surjective and
even continuous if $¥mu$ has no atoms. Hence the Milnor-Thurston result is a state-
ment of a piecewise scaling property of a distribution function without any atom.
Such distributions are obtained as non-atomic Gibbs measures, in particular, as
measures of maximal entropy.

In order to be more precise; let $T$ : $Z¥rightarrow Z$ be a dynamical system and
$¥varphi$ : $Z$ $¥rightarrow ¥mathbb{R}$ be a function. Recall that a measure $m$ is called a Gibbs measure for
$¥varphi$ if the Jacobian $ d¥mu ¥mathrm{o}T/d¥mu$ is defined $¥mu-$

$¥mathrm{a}.¥mathrm{e}$ . and is given by

$¥frac{d¥mu¥circ T}{d¥mu}=e^{¥varphi}$ .

The following standard chain of arguments gives the existence of a Gib $¥mathrm{bs}$ measure
in the case of an open and expanding map $T$ acting on a compact space $Z$ arid a
coritinuous function $¥varphi$ . By these assu mptions, the rnap $T$ has locally a constant
number of preimages, which implies that $T$ acts on continuous functions by its
Perron-Frobenius operator

$V_{¥varphi}f(y)=¥sum_{T(y^{¥prime})=y}f(y^{¥prime})e^{¥varphi(y^{¥prime})}$

,

Furthermore, its dual operator acts continuously on the space of signed measures
on $Z$ . Therefore, by the Schauder-Tychonoff theorem there exists an eigenvalue
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λ $>0$ and a measure $¥mu$ such that $d¥mu¥circ T/d¥mu=$ λ exp $(-¥varphi)¥}$ where $ d¥mu¥circ T/d¥mu$ refers
to the Jacobian. In other words, $¥mu$ is a Gi $¥mathrm{bbs}$ measure for the potential $¥varphi+¥log$ λ.

In the case of skew products we use the notion of Gibbs families on skew
products as a generalization of Gibbs measures. Recall that a family $¥{¥mu_{x} : x ¥in X¥}$

of probability measures on $Y$ is called a Gibbs family for a measurable function
$¥varphi$ : $ X¥times$ $Y¥rightarrow ¥mathbb{R}$ if there exists a positive measurable function (called gauge
function) $A:X¥vec,$ $¥mathbb{R}$ , such that, for each $x¥in X$ , the Jacobian of $¥mu_{x}$ is given by

$¥frac{d¥mu_{¥tau(x)}¥mathrm{o}T_{x^{1}}}{d¥mu_{x}}=A(x)¥exp(-¥varphi)$ . (1)

Using the existence of Gibbs families we extend the result of semiconjugacies
for maps of the interval to certain skew products where the maps $T_{x}(x¥in X)$ are
maps of the interval.

2 Semiconjugacies for skew-products

In this section we prove our result about semiconjugacies. We begin with the
case of piecewise monotone map $T$ of a totally ordered Polish space $X$ . Recall
that $X$ is totally ordered if there exists an order relation $’¥preceq$

} such that for each
$x_{3}y$ $¥in X$ either $x$ $¥preceq y$ or $y¥preceq x$ and $x$ $¥preceq.y¥preceq x$ implies that $x$ $=y$ . This gives
rise to a further relation $’¥prec^{¥prime}$ , where $x$ $¥prec y$ if $x$ $¥preceq y$ and $x$ $¥neq y$ . With this setting,
the notion of closed and open intervals can be easily extended to the space $X$

and these intervals will be denoted by $[a, b]$ and $(a, b)$ , respectively. The topology
on $X$ is assumed to be generated by the open intervals or in other words, the
topology on $X$ is the order topology.

The map $T$ is referred to be piecewise continuous and monotone if there exists
a finite partition $¥alpha$ of $X$ into intervals such that for each $ a¥in¥alpha$ the restriction $T|_{a}$

is continuous and monotone. Let $m$ be a non-atomic and nonsingular probability
measure on $X$ and let $¥Pi$ : $X¥rightarrow[0,1]¥subset ¥mathbb{R}$ and $S$ : $[0, 1]¥rightarrow[0,1]$ be defined as
follows.

$¥Pi$ : $X$ $¥rightarrow$ $[0, 1]$ , $x¥vdash*m(¥{z¥in X|z¥preceq x¥})$ ,
5: $[0_{?}1]$ $¥rightarrow$ $[0,1]$ , $y$ $¥vdash+¥Pi(Tx)$ where $x¥in¥Pi^{-1}(¥{y¥})$ .

Note that, since $m$ has no atoms and is nonsingular, the map $¥Pi$ is onto, and $S$ is
well defined. Moreover we have that So $¥Pi=¥Pi ¥mathrm{o}T$ and $S$ is piecewise continuous
and monotone on $¥Pi(a)$ for each $ a¥in¥alpha$ . Furthermore, we obtain the following
immediate result.

Proposition 2.1. The map $¥Pi$ is continuous and semiconjugates $T$ and S. Fur-
thermore, $S$ is continuous and monotone on the interior $(¥Pi(a))^{¥mathrm{o}}$ of $¥Pi(a))$ for
each $ a¥in¥alpha$ , and $¥lambda=m¥mathrm{o}¥Pi^{-1}$ where λ refers to $¥mathrm{f}he$ Lebesgue meas$ure$ . Moreover,
$¥Pi$ is a homeomorphism if and only if $m((a, b])¥neq 0$ for all $a$ , $b$ $¥in X$ , $a¥prec b$ .
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In case that $m$ is a Gibbs measure for the potential $¥varphi$ the following proposition
gives the relation between the derivative $DS$ of $S$ and $¥varphi$ .

Proposition 2.2. Let $m$ be a Gibbs measure for the potential $¥varphi$ . Assume that
$y_{0}$ belon$.qs$ to the interior $(¥Pi(a))^{¥mathrm{o}}$ of $¥Pi(a)$ for some $a$ $¥in¥alpha$ and that $¥exp(¥varphi)$ is
constant on $¥Pi^{-1}(¥{y_{0}¥}$ and continuous in 0$¥Pi^{-1}(¥{y_{0}¥})$ . Then $S$ is differentiate in
$y_{0}$ and for $x$ $¥in¥Pi^{-1}(¥{y_{0}¥})_{f}$

$DS(y_{0})=¥{$
$e^{¥varphi(x)}$ : $T|_{a}$ is increasing

$-e^{¥varphi(x)}$ : $T|_{a}is^{1}$ increasing

Proof. Assume without loss of generality that $S$ is monotone increasing on $ a¥in¥alpha$ .
For $y$ , $y_{0}¥in¥Pi(a)$ , $y>y_{0}$ and $x$ , $x_{0}¥in X$ such that $¥Pi(x)=y$ and $¥Pi(x_{0})=y_{0}$ we
have that

$,¥frac{¥mathit{5}(y)-S(y_{0})}{y-y_{0}}.=¥frac{m([T(x_{0}),T(x))}{m([x_{0},x))}$ .

If $¥exp(¥varphi)$ is constant on $¥Pi^{-1}(¥{y_{0}¥})$ and is continuous in an-1 $(¥{¥prime y_{0}¥})$ the limit as
$y¥rightarrow y_{0}$ is independent of the choice of the representatives of $y_{0}$ in $X$ . Hence,

$¥lim_{y¥prec y0}¥frac{S(y)-S(y_{0})}{y-ly_{0}}=[mathring]_{¥frac{dmT}{dm}}(x_{0})=e^{¥varphi¥acute{¥iota}^{x}¥mathrm{o})}$ .

$¥square $

Note that the latter condition for the existence of $DS$ can be reformulated as
follows. If the assignment $y$ $-¥dagger exp(¥varphi(¥hat{x})_{7}$ where $y¥in(¥Pi(a))^{¥mathrm{o}}$ and $¥hat{x}¥in¥Pi^{-1}¥{y¥}$ ,
is independent of the choice of $¥hat{x}$ and extends to a continuous function in $y$ then
$DS(y)$ exists. $¥mathrm{Furthermore}_{¥mathrm{J}}$ there is a straightforward generalization of these
results to skew products of the following class. Let $X$ be a topological space, $¥mathrm{Y}$

be a totally ordered space as above and $ T:X¥times$ $Y¥rightarrow X¥mathrm{x}Y$, $(x, y)¥vdash*(¥tau(x), T_{x}(y))$

where each fiber map is monotone and continuous on each atom of the partition $¥alpha_{x}$

of $Y$ . Moreover assume that $¥{¥mu_{x}|x¥in X¥}$ is a family of non-atomic, nonsingular
Borel probability measures on $Y$ such that $x$ $¥vdash+¥mu_{x}$ is weak* continuous. We then
have, for

$¥Pi_{x}$ : $ Y¥rightarrow$ $[0_{¥mathrm{J}}1]$ , $y$
$¥vdash¥Rightarrow(x, ¥mu_{x¥prime}.(¥{z|z¥preceq y¥}))$

$S$ : $X¥mathrm{x}[0,1]$ $¥rightarrow X¥mathrm{x}[0, 1]$ , $(x, y)¥vdash¥rightarrow(¥tau(*¥prime r), ¥Pi_{¥tau(x)}(T_{x}(¥hat{y})))$

where $¥hat{y}¥in¥Pi_{x}^{-1}(¥{x¥})$ .

Proposition 2.3. The map $¥Pi$ : $ X¥mathrm{x}Y=X¥times$ $[0,1]$ , $(x, y)¥vdash¥rightarrow(¥backslash x, ¥Pi_{x}(|y))$ semi-
conjugates the skew products $T$ and $S_{f}$ and $S_{x}$ is continuous and monotone on
$(¥Pi_{x}(a))^{¥mathrm{o}}$ for each atom $a$ $¥in¥alpha_{x}$ . The map $¥Pi$ is a $hom$eomorphism if and only if
$¥mu_{x}$. $((a, b])¥neq 0$ for all $x¥in X$ , $a$ , $b¥in Y$, $a¥prec b$ .

Let $¥{¥mu_{x} : x¥in X¥}$ be a $weak^{*}$ continuous Gibbs family for the continuous
potential $¥varphi$ and continuous gauge function $A$ : $X¥rightarrow ¥mathbb{R}$ having no atom on each



16

fiber. We then have for $x¥in X$ and $ y¥in$ $(¥Pi_{x}(a))^{¥mathrm{o}}$ for $ a¥in$ $¥alpha_{¥mathrm{Jj}}$ , such that the
assignment $y¥vdash*¥exp(¥varphi(¥hat{y}))$ is independ$ent$ of the choice of $¥hat{y}¥in¥Pi_{x}^{-1}(¥{y¥})$ and
continuous in $y_{f}$

$DS_{x}(y)=¥{$
$e^{¥varphi(x,¥hat{y})}$ : $T_{x}|_{a}$ is increasing

$-e^{¥varphi(x,¥hat{y})}$ : $T_{x}|_{a}$ is decreasing.

Froof. Since the assertions concerning the fiber maps follow by Propositions 2.1
and 2.2 it is left to show that $(x, y)¥vdash¥rightarrow(x, ¥Pi_{x}(y))$ is continuous. So assume that
$((x_{n}, y_{n}))$ is a sequence in $X¥mathrm{x}$ $Y$ converging to $(x, y)$ . Since $¥mu_{x_{n}}$ has no atoms for
each $n¥in ¥mathrm{N}$, $¥lim_{m¥rightarrow¥infty}¥Pi_{x_{n}}(¥mathrm{y}_{m})=¥Pi_{x_{n}}(y)$ . Furthermore, the weak* continuity of
$x$ $¥rightarrow¥mu_{x}$ gives that $¥lim_{n¥rightarrow¥infty}¥mu_{x_{n}}(¥{z|z¥preceq y_{m}¥})=¥mu_{x}(¥{z|z¥preceq ¥mathrm{y}_{¥pi¥iota}¥})$ for all $ m¥in$ N.
This essentially gives the assertion. $¥square $

Note that sufficient conditions for the existence of weak* continuous Gibbs
families can be deduced from [1]. A skew product $T$ : $X¥mathrm{x}$ $Y¥rightarrow X¥times Y$

} where
$X$ and $Y$ are compact metric spaces with metrics $d_{X}$ and $d_{Y}$ , respectively, is
called fiber erpanding, if the fiber maps $T_{il}$ : $¥{x¥}¥mathrm{x}$ $Y¥rightarrow¥{¥tau(x)¥}¥mathrm{x}Y$ are uniformly
expanding in Ruelle’s sense. This means that there exists $a>0$ and $¥rho¥in(0_{¥}}1)$

such that for $x$ $¥in X$ and $u_{f}$
$v^{¥prime}¥in Y$ and $d_{Y}(T_{x}(u), v^{¥prime})<2a$ , then there exists a

unique $v$ $¥in Y$ such that $T_{x}(v)=v^{¥prime}$ and $d_{¥mathrm{Y}}(u, v)<2a$ . Furthermore $f$ we have that

$d_{Y}(u, v)¥leq¥rho d_{Y}(T_{x}(u), T_{x}(v))$ .

The system $(X¥mathrm{x} Y, T)$ is called topologically exact along fibers if, for every $¥epsilon>0_{;}$

there is an $N¥in ¥mathrm{N}$ such that, for any $(x, y)¥in X¥mathrm{x}Y$ and $n¥geq N$ , we have that

$T_{x}^{n}(B(y, ¥epsilon))=Y$,

where $B(y, ¥epsilon)¥subset Y$ denotes the ball of radius $¥epsilon$ centered at the point $y$ and where
$T_{x}^{n}=T_{¥tau^{n-1}(x)}¥mathrm{o}T_{x}^{n-1}$ for $n¥geq 1$ . Under these conditions Gibbs families do exists
(see [1]).

The (weak*) continuity of the Gibbs family depends on properties of the map

$i$ : $X¥mathrm{x}$ $Y¥rightarrow¥{(x, (z,y))¥in X^{2}¥mathrm{x}Y : z =¥tau(x)¥}$

defined by $i((x, y))=(x, T((x, y)))$ . In order that a Gibbs family is weak* can
tinuous it is sufficient that $i$ is a local homeomorphism.

3 Applications
Let $S$ : $[0, 1]¥rightarrow[0,1]$ be a piecewise monotone and continuous map. By this we
mean that there are finitely many points $0=p_{0}<p_{1}<¥ldots<p_{s}=1$ partitioning
the unit interval, so that for each $k¥in¥{0,1 ¥ldots s-1¥}$ , $S|_{(ph,¥mathrm{P}k+¥iota)}$ can be extended to
a monotone and continuous map on $J_{k}=¥lceil p_{k},p_{k+1}$ ]. We first recall the Hofbauer-
Keller construction in [2]. Dividing each point $p_{h}$ and all its forward and backward
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iterates $p$ into two points $p+=¥lim_{x¥downarrow p}x$ and $p-=¥lim_{¥uparrow x}x_{1}$ one constructs a
compact extension $(X,¥tilde{¥mathit{5}})$ of $([0,1], ¥mathit{5})$ , such that $¥tilde{¥mathit{5}}$ is an open map and the
natural projection $¥pi$ : $X¥rightarrow[0,1]$ is one to-one except in countably many points.
Hence for every continuous potential $¥varphi$ : $[0,1]¥rightarrow ¥mathbb{R}$ there is a Gibbs measure $¥tilde{m}$

on $X$ so that
$¥int_{X}¥tilde{V}f(¥pi(z))¥tilde{m}(dz)=$ λ $¥mathit{1}_{X}$

.
$f(¥pi(z))¥tilde{m}(dz)$ .

If $¥tilde{m}$ has no atoms, then $ m=¥tilde{m}¥circ¥pi$ defines a Gibbs measure on $[0, 1]$ for the
potential $¥varphi$ .

Proposition 3.1. Let $S:[0,1]¥rightarrow[0,1]$ be a continuous and piecewise monotone
map with positive topological entropy $h(S)$ . Then there esists a non-atomic $G$ibbs
measure for the potential $(7)=0$ and $¥lambda=e^{h(S)}$

Froof. Let $(X,¥tilde{¥mathit{5}})$ denote the extension of $([0,1], S)$ as above. Let $¥tilde{m}$ denote the
Gibbs measure for $¥varphi¥circ¥pi$ on $X$ . It is well known that for piecewise continuous
maps of the interval topological entropy equals the asymptotic growth rate of the
number of inverse branches of $S^{n}$ . By inspecting the construction in [2] one can
easily show tbat $¥log$ λ is also equal to this asymptotic growth rate with respect
to 5 $n$

} which implies that λ $>1$ by assumption. Let $x¥in X$ . Then $¥tilde{m}(¥{¥tilde{S}^{¥mathrm{r}¥iota}(x)¥})=$

$¥lambda^{n}¥tilde{m}(¥{x¥})$ . In case $x$ is non-periodic we have $¥tilde{m}(¥{¥tilde{S}^{n}(x))¥rightarrow¥infty$ unless $m¥sim(¥{x¥})=0$ ,
and in case $¥tilde{S^{n}}(x)=x$ for some $n¥geq 1$ we get λ $=1$ unless $¥overline{m}(¥{x¥})=0$ . It follows
that $¥tilde{m}$ has no atoms, whence $¥pi$ is a measure theoretic isomorphism and $ m=¥overline{m}¥circ¥pi$

is a non-atomic Gibbs measure with $¥lambda$ $=$ $¥exp[h(S)]$ . $¥square $

Applying Propositions 2.1 and 2.2 in this situation immediately gives the
following result which is the advertised generalization of the result in [3].

Theorem 1. Let $S$ : $[0, 1]¥rightarrow[0,1]$ be a piecewise monotone and continuous
transformation of the unit inferval. Assume that

$¥limsup_{n¥rightarrow¥infty}¥frac{1}{n}¥log c_{n}=h(S)=M>0$ ,

where $c_{n}$ denotes the $nu$mber of monotone branches of S $n$

. Then there exists $a$

Gibbs measure $m$ for the constant potential with no atoms, and

$h(x)=m([0, x])$ $0¥leq x¥leq 1$

defines a semiconjugacy between $¥mathrm{S}$ and a piecewise linear and continuous rnap $T$

of the interval with slope $e^{M}$ .

Remark 3.2. The map T:[0, 1]→ [0,1] in Theorem1 is defined as follows:
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Let $p_{0}=0<p_{1}<¥ldots<p_{r}=1$ denote the coarsest partition so that 5 is
monofone on each of the intervals $J_{k}=[p_{k},p_{k+1}]$ . Let $a_{k}=h(p_{k})$ . In case that
5 is non-decreasing on $[p_{0},p_{1}]$ , for $a_{k}¥leq y¥leq a_{h+1}$

$T(_{¥backslash }y)=h(¥mathit{5}(p_{0}))+e^{M}(2¥sum_{j=1}^{k}(-1)^{j+1}a_{j}+(-1)^{k}y)$ . (2)

Similarly, if $S$ is non-increasing on $[p_{0},p_{1}]$ , for $a_{k}¥leq y¥leq a_{k+1}$

$T(y)=h(S(p_{0}))-e^{M}(2¥sum_{¥mathrm{j}=1}^{k}(-1)^{j+}’ a_{j}-$ $(-1)^{h}y)$ . (3)

If $S$ is unimod $al$ with turning point $p_{1}=c$ and $T(0)=T(1)=0_{P}$ then

$T(y)=¥{$
$e^{M}y$ if $y¥leq 1/2$

$e^{M}(1-y)$ if $y$ $¥geq 1/2$ .

It is also immediately clear that $h$ is a conjugacy if the Gibbs measure $m$ is
positive on non-empty open intervals. This occurs for erample, if the map $T$ is
piecewise expanding.

We give a short proof of (2) and (3). For $x¥in[p_{k},p_{k+1})$ and $S(x)¥geq S(p_{k})$ one
has

$h(S(x))$ $=m([0, S(x)])=m([0,¥mathit{5}(p_{k})])+m(S(p_{k}, x])$

$=$ $h(S(p_{k}))+e^{M}m((p_{k¥}}x])=h(S(p_{h}))+e^{M}(h(x)-h(p_{k}))$ .

Similarly, for $x¥in¥lceil p_{k},p_{k+1}$ ) and $¥mathit{5}(x)¥leq S(p_{k})$ one has

$h(S(x))$ $=m([0, S(x)])=m([0, S(p_{k})])-m(S(p_{k;}x])$

$=h(S(p_{k}))-e^{M}m((p_{k},x])=h(S(p_{k}))-e^{M}(h(x)-h(p_{k}))$ .

By induction one shows in case that $S$ is non-decreasing on the first interval

$h(S(p_{k}))=h(S(p_{0}))+2e^{M}¥sum_{j=1}^{k-1}(-1)^{j+1}a_{j}+e^{M}(-1)^{h+1}a_{k}$ ,

and similarly if $S$ is non-increasing on the first interval. If $T$ is defined as in
Remark 3.2, we get $h¥circ S=T¥circ h$ .

Suppose $T$ is semiconjugate to the piecewise linear map $S$ with slope λ and
with semiconjugacy $h$ . Clearly; $h$ defines a probability measure $m$ on $[0,1]$ and
satisfies

$h(T(x))=m([0, T(x)])=h(T(p_{k}))¥pm¥lambda m(¥lceil p_{k}, x])$
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for $x$ $¥in¥lceil p_{k},p_{k+1}$ ]. This implies that $m$ is a Gibbs measure. If this Gibbs measure
is unique, there is only one semiconjugacy to a piecewise linear map $S$ with can
stant slope.

In case of skew products, the existence of a Gibbs family is equivalent to
the existence of an eigenspace for some relative version of the transfer operator.
Namely, for a skew product $(X¥mathrm{x}Y, T)$ and a Borel measurable function $¥varphi$ :
$X¥times Y¥rightarrow ¥mathbb{R}$ the family $¥{¥mu_{x}|.x¥in X¥}$ is a Gibbs family (cf. section 1) for $¥varphi$ if and
only if there exists a Borel measurable function $A_{¥varphi}$ : $X¥rightarrow ¥mathbb{R}$ such that for $x¥in X$

and $f¥in L_{1}(¥mu_{x})$ we have that

$¥int V_{x}f(y)¥mu_{¥tau(¥mathrm{x})}(d¥mathrm{y})=A_{¥varphi}(x)¥int f(y)¥mu_{x}(dy)$ ,

where $V_{x}f(y):=¥sum_{T_{x}(y^{¥prime})=y}f(y^{¥prime})e^{¥varphi(y^{¥prime})}$ denotes the relative transfer operator.
We conclude describing two setups when Proposition 2.3 can be applied.

Example 1. Let $(X¥times[0,1], T)$ be a skew product where $¥tau$ : $X¥rightarrow X$ is bounded-
to-one and each fiber map $T_{x}$ is a piecewise continuous and monotone map of
the interval $Y=[0,1]$ . Like in the case of an interval rnap as above we split each
point in the partition $p_{0}(x)<p_{1}(x)<¥ldots<p_{s(a¥mathrm{i})}(x)$ for the fiber map $T_{x}$ over
$x$ $¥in X$ into two points, as well as their grand orbits. This procedure does not
give a continuous extension in general, but we assume here it does. The extended
system is then a fibered system (no longer a skew product in general), denoted by
$(¥tilde{Y},¥tilde{T})$ . Taking the order topology we may assume $¥mathrm{w}.1.¥mathrm{o}.¥mathrm{g}$ . that for each $x$ $¥in X$

the map $T_{x}$ is open. If this Hofbauer-Keller extension is fiberwise expanding and
exact along fibers we can proceed by taking $¥varphi$ : $X¥times[0,1]¥rightarrow ¥mathbb{R}$ to be constant,
hence its lift $¥underline{¥tilde{¥varphi}}:¥overline{Y}¥rightarrow ¥mathbb{R}$ is Holder continuous in the order space topology. Hence
by [1], if $i$ : $Y¥rightarrow X¥mathrm{x}¥tilde{Y}$ , $i(¥tilde{y})=(¥pi(y),¥tilde{T}(¥tilde{y}))$ is a local homeomorphism, where
$¥pi$ : $¥tilde{Y}¥rightarrow X$ denotes the canonical projection, the semiconjugacy of $T$ exists ac-
cording to Proposition 2.3.

Example 2. If $T$ : $X¥times Y$ $¥rightarrow X¥times$ $Y$ is an open map and bounded-to-one, the
operator $V_{x}$ : $C(¥{x¥}¥times Y)¥rightarrow C(¥{¥tau(x)¥}¥mathrm{x}Y)$ acts on continuous functions for each
$x¥in X$ . Moreover, we consider the map

$V^{*}:$ $C$ ($X$ , C’ $(Y)$ ) $¥rightarrow C$ ( $X$ , C’ (Y))

defined by
$¥int fdV^{*}d¥mu_{x}=¥int V_{x}f(¥tau(¥prime x1, ¥cdot)d¥mu_{¥mathcal{T}(x)¥}}$

where $¥mu¥in C(X, C^{*}(Y))$ and $f$

.
$¥in C(Y)$ .

For $¥mu¥in C$ ( $X$ , C’(Y)) define

$(L¥mu)_{x}=V^{*}¥mu_{x}/V^{*}¥mu_{x}(Y)$ ,
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and note that it is continuous since

$||V^{*}¥mu||_{¥infty}$ $=$
$¥sup_{x¥in X}$

$¥sup_{f¥in C(Y)_{¥}}||f||_{¥mathrm{w}}=1}||¥int fV_{x}^{*}d¥mu_{Jj}||$

$¥leq$

$||¥mu||_{¥infty}¥sup_{x¥in X}||V_{x}||||f||_{¥infty}$ .

Define $¥mathcal{M}$ to be the set of all $¥mu=(¥mu_{x})_{x¥in X}¥in C(X, C^{*}(Y))$ such that for all
$f$

.
$¥in C(Y)$ with $||f||_{¥infty}¥leq 1$ the map $x¥vdash*¥int f.d¥mu_{x}$ is Holder continuous with Holder

exponent $s$ and Holder constant bounded by some $M$ (independently of $f$ ).

Proposition 3.3. Let $(X¥times Y, T)$ be a she $w$ product with open map $T$ and assume
that $L$ leaves $¥mathcal{M}$ invariant. For every continuous potential $¥varphi$ : $X¥times Y$ $¥rightarrow ¥mathbb{R}$ there
esists a Gibbs family $¥{¥mu_{x}, : x ¥in X¥}$ . Moreover, for this fam$ily$ the rnap $x$

’
$¥rightarrow¥mu_{x}$ is

continuous in the weak* topology.

Froof. As it easily can be seen the set $M$ is convex. Assume that $(¥mu^{n})_{n¥in ¥mathrm{N}}$ is
a sequence in $M$ converging pointwise to $¥mu$ . By the triangle inequality, for any
$f¥in C(Y)$ with $||f||_{¥infty}¥leq 1$ and $¥epsilon>0$ there exists $n_{0}¥in ¥mathrm{N}$ so that for $n¥geq n_{0}$

$|¥int fd¥mu_{x}-¥int fd¥mu_{y}|$

$¥leq$ $|¥int fd¥mu_{x}-¥int fd¥mu_{x}|n+|¥int fd¥mu_{x}n-¥int fd¥mu_{y}.n$ $|+|¥int fd¥mu_{y}n-¥int fd¥mu_{y}|$

$¥leq$ $ Md(x, y)^{s}+2¥epsilon$ .

Clearly $¥mu¥in M$ , whence the set $M$ is compact. The proposition follows from the
Schauder-Tychonoff fixed point theorem.
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