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ABSTRACT. We describe some results and tormulate few problems concerning
dynanucal systems which combine fast and slow motions, both depending on each
other. The heuristic averaging principle which prescribes to approximate the slow
motion by averaging its parameters in fast variables does not always work in this
setup and if it does work then usually only in some average with respect to initial
conditions sense. We exhibit also resutts which rely on stochastic properties of
fast motions such as large deviations and stochastic resonances.

1. INTRODUCTION

Evolution of many real systems can be viewed as a combination of motions taking
place with significantly different velocities which leads to complicated multiscale
equations. We can arrive also at this setup viewing a physical system as a perttrrba-
tion of an ideal one, the latter depending on parameters which at the first approxi-
mation are considered as constants of motion. In the real system these parameters
start moving slowly (may be also with significantly different speeds) which lead to
a multiscale motion. Such problems arised first in celestial mechanics in 18th cen-
tury considering a multibody planet motion as a perturbation of certain two body
problem which can be integrated exactly.

Most of the time we will consider classical two scale systems

(1.1) $¥frac{dX^{5}(t)}{dt}=¥epsilon B(X^{¥overline{t}}(t), Y^{¥Xi}(t))_{¥partial}¥frac{dY^{¥zeta}(t)}{dt}=b(X^{¥Xi}(t), Y^{5}(t))$ ,

$X^{¥Xi}=X_{x,y}^{¥xi j}$ , $¥mathrm{Y}^{¥epsilon}=Y_{x,y}^{¥Xi}$ with initial conditions $X^{¥overline{¥mathrm{e}}}(0)=x$ and $Y^{¥Xi}(0)=y$ . At the
end we will describe also a stochastic resonance phenomenon which emerges in the
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setup of three scale systems

$¥frac{dW^{¥delta,¥epsilon}(t)}{dt}=¥delta¥epsilon A(W^{¥delta,¥overline{¥mathrm{e}}}(t), X^{¥delta,¥epsilon}(t)¥}Y^{¥delta,¥overline{¥epsilon}}(t))$

(1.2)
$¥frac{dX^{¥delta,¥in}(t)}{¥frac{dY^{¥delta,¥in}(t)dt}{dt}},=¥epsilon B(W^{¥delta,¥epsilon}(t), X^{¥delta,¥epsilon:}(t)=b(W^{¥delta,¥epsilon}(t),X^{¥delta,¥leftarrow}¥epsilon(t),’ Y$

$¥mathrm{Y}^{¥mathit{5},¥overline{¥epsilon}}(t))i,¥epsilon(t))¥}$

$W^{¥delta_{¥Xi}},=W_{w,x,y}^{¥delta,¥epsilon}$ , $X^{¥delta,¥epsilon}=X_{w,x,y}^{¥delta,¥in}$ , $Y^{¥delta_{¥Xi}},=¥mathrm{Y}_{w,x,y}^{¥delta,¥in}$ with initial conditions $W^{¥delta,¥epsilon}(0)=w$ ,
$X^{¥delta_{5}},(0)=x$ and $Y^{¥delta,¥overline{¥Leftrightarrow}}(¥mathrm{O})=y$ . In general, right hand sides in (1.1) and (1.2) may
explicitly depend on $¥epsilon$ and $¥delta$ but, usually, this does not lead to qualitatively new
effects, so in order to avoid unnecessary technicalities we do not consider this case
here. We assume that $W^{¥delta,¥overline{¥Leftrightarrow}}¥in ¥mathbb{R}^{l}$ , $X^{¥delta,¥epsilon}¥in ¥mathbb{R}^{d}$ while $¥mathrm{Y}^{¥delta,¥overline{¥mathrm{a}}}$ evolves on a compact
$n$-dimensional Riemannian manifold $M$ and the coefficients $A$ , $B$ , $b$ are bounded
smooth vector fields on $¥mathbb{R}^{l}$ , $¥mathbb{R}^{d}$ an $¥mathrm{d}M$ , respectively, depending on other variables
as parameters. The solution of (1.2) determine the flow of diffeomorphisms $¥Phi_{¥delta,¥epsilon}^{t}$

on $¥mathbb{R}^{l}¥times ¥mathbb{R}^{d}¥times M$ acting by $¥Phi_{¥delta_{¥Xi}}^{t}$

, $(w,x, y)=$ $(W_{w,x,y}^{¥delta_{¥Xi}},(t)_{3}X;,¥epsilon$, $x_{;}y(t)$ , $Y_{w,x,y}^{¥delta,¥overline{¥Leftrightarrow}}(t))$ . Taking
$¥epsilon=¥delta=0$ we arrive at the (unperturbed,) flow $¥Phi^{t}=¥Phi_{0,0}^{t}$ acting by $¥Phi_{0,0}^{t}(w, x, y)=$

$(w, x, F_{w,x}^{t}y)$ where $F_{w,x}^{t}$ is another family of flows given by $F_{w,x}^{t}y=Y_{w,x,y}(t)$ with
$Y=Y_{w_{¥mathrm{I}}i¥mathrm{r},y}=¥mathrm{Y}_{w_{,}x,y}^{0,0}$ with are solutions of

(1.3) $¥frac{d¥mathrm{Y}(t)}{dt}=b(w, x, Y(t))$ , $Y(0)=y$ .

It is natural to view the flow $¥Phi_{0,0}^{t}$ as describing an idealized physical system where
parameters $w$ $=(w_{1}, ¥ldots, w_{l})$ , $x$ $=(x_{1}, ¥ldots, x_{d})$ are assumed to be constants of motion
while the perturbed flow $¥Phi_{¥delta,¥epsilon}^{t}$ is regarded as describing a real system where evolution
of these parameters is also taken into consideration.

Consider (1.1) and assume that the limit

(1.4) $¥overline{B}(x)=¥overline{B}_{y}(x)=¥lim_{T¥rightarrow¥infty}T^{-1}¥int_{0}^{T}B(x,$ $ F_{X}^{t}y)d¥#$

(where $F_{x}^{t}y=Y_{x,y}^{0}(t)$ ) exists and it is the same for “many” $y^{¥prime}¥mathrm{s}$ , for instance, for
almost all $y$ ’s with respect to some measure(s). Namely, let $¥mu_{x¥prime}$ be an ergodic invari-
ant measure of the flow $F_{x}^{t}$ . Then the limit (1.4) exists for $¥mu_{x}-$ almost all $y$ and it is
equal to

(1.5) $B-(x)=¥overline{B}_{¥mu_{oe}}(x)=¥int B(x, y)d¥mu_{x}(y)$ .

If $¥overline{B}(x)$ is Lipschitz continuous then we can speak about a unique solution $¥overline{X}^{¥epsilon ¥mathrm{i}}=¥overline{X}_{x}^{¥Xi}$

of the averaged equation

(1.6) $¥frac{d¥overline{X}^{¥epsilon}(t)}{dt}=¥epsilon¥overline{B}(¥overline{X}^{¥tilde{t}}(t))$ , $¥overline{X}^{¥overline{¥mathrm{e}}}(0)=x$ .
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The averaging principle suggests to approximate $X^{¥xi j}$ by $¥overline{X}^{¥overline{¥epsilon}}$ on time intervals of
order $ 1/¥epsilon$ . This approach works well when the vector field $b$ in (1.1) does not depend
on the slow variables, i.e. when $b(x, y)=b(y)$ , and so all $F_{iE}^{t}$ ’s coincide with some
flow $F^{t}$ . In this case for any ergodic $F^{t_{-}}$invariant measure $¥mu$ the limit (1.4) exists
for $¥mu-$ almost all $(¥mathrm{a}.¥mathrm{a}.)$

$y$ ’s and it coincides with $¥int B(x, y)d¥mu(y)$ . It is well known
(see, for instance, [27]) that for such $y$

’
$¥mathrm{s}$ ,

(1.7) $0¥leq t¥leq T/¥sup_{¥overline{¥mathrm{c}}}|X_{x,y}^{¥overline{¥epsilon}}(t)-¥overline{X}_{x}^{¥overline{¥epsilon}}(t)|¥rightarrow 0$
as $¥epsilon¥rightarrow 0$ .

An example due to Neishtadt which will be described in the next section shows that
in the fully coupled case, i.e. when the coefficients in (1.1) depend both on $x$ and
$y$ , the convergence (1.7) for fixed initial conditions , in general, does not hold true
and it is possible to speak about this convergence only in some average with respect
to initial conditions sense. This example is based on the phenomenon called the
“capture into resonance” which is well known in perturbations of integrable Hamil-
tonian systems. It would be interesting to understand whether such nonconvergence
examples can be constructed in another important setup which will be discussed
here where fast motions are hyperbolic dynamical systems.

We will consider also the discrete time case where (1.1) and (1.2) are replaced
by difference equations for sequences $W^{¥delta,¥epsilon}(n)=W_{w,x,y}^{¥delta,¥epsilon}(n)$ , A $¥delta,¥epsilon ¥mathrm{i}(n)=X_{w_{¥iota}x,y}^{¥delta,¥xi ¥mathrm{i}},(n)$ ,

and $Y^{¥delta,¥overline{¥epsilon}}(n)=Y_{w,x,y}^{¥delta,¥xi j}(n)$ , $n$ $=0,1,2$ , $¥ldots$ , so that

(1.8) $X^{¥overline{G}}(7l+1)-X^{¥Xi}(n)=¥epsilon¥Psi(X^{¥epsilon}(n)¥}Y^{¥tilde{¥epsilon}}(n))$ , $X^{¥Xi}(0)=x$ ,
$Y^{¥xi ¥mathrm{i}}(n+1)=¥Phi(X^{¥Xi}(n)_{3}Y^{¥overline{t}}(n))$ , $¥mathrm{Y}^{¥overline{¥mathrm{a}}}(0)=y¥}$

or
$W^{¥overline{¥delta},¥in}(¥gamma b+1)-W^{¥delta,¥epsilon}(n)=¥epsilon¥delta¥Xi(W^{i,¥overline{c}}(n), X^{¥delta,¥in}(n),$ $Y^{¥delta,¥epsilon ¥mathrm{i}}(7b))$ , $W^{(¥mathrm{i},¥epsilon}(0)=w$ ,

(1.9) $X^{¥delta,¥epsilon}(n+1)-X^{i,¥epsilon}(n)=¥epsilon¥Psi(W^{¥delta_{¥overline{¥mathrm{b}}}},(n),$ $X^{¥delta,¥in}(n)$ , $¥mathrm{Y}^{¥delta,¥in}(Tl))$ , $X^{¥delta,¥overline{¥epsilon}}(0)=x$ ,

$Y^{¥delta,¥epsilon}(n+1)=¥Phi(W^{¥delta,¥epsilon}(n)_{,}X^{¥delta,¥epsilon}(n), Y^{¥delta,¥epsilon}(n))$ , $Y^{¥delta,¥in}(0)=y$

$¥mathrm{where}---¥mathrm{a}¥mathrm{n}¥mathrm{d}$ $¥Psi$ are smooth vector functions and $F_{w,x}=¥Phi(w_{5}X^{ },¥cdot)$ : $M¥rightarrow M$ (or
$F_{gj}=¥Phi(x_{,}¥cdot)$ : $M¥rightarrow M$ in the case of (1.8) $)$ is a smooth map (a diffeomorphism or
an endomorphism). As usual in dynamical systems, it is quite useful to consider the
discrete time setup whenever possible since it provides a richer source of examples
than the continuous time (flow) case and it may better clarify the situation (see, for
instance, the example at the end of Section 3). In the case of the system (1.8) set
$F_{x}=¥Phi(X^{ },¥cdot)$ : $M¥rightarrow M$ . Then, if the limit

(1.10) $¥Psi-(x)=¥overline{¥Psi}_{y}(x)=¥lim_{N¥rightarrow¥infty}¥frac{1}{N}¥sum_{n=0}^{N-1}¥Psi(x, F_{x}^{n}y)$
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exists, it is the same for “many” $y$ ’s and I (x) is Lipschitz continuous then we can
speak again about the averaged equation

(1.11) $¥frac{d¥overline{X}^{¥epsilon}(t)}{d¥mathrm{f}}=¥epsilon¥overline{¥Psi}(¥overline{X}^{¥overline{e}}(t))$ , $¥overline{X}^{¥overline{¥epsilon}}(0)=x$

and study the approximation of $X_{x,y}^{¥epsilon}(n)$ by $¥overline{X}_{x}^{¥overline{¥epsilon}}(n)$ for $n$ $¥in$ [$0,$ T $/¥epsilon$ ].
In the next section we will discuss convergence in (1.7) for fixed initial condi-

tions and exhibit Neishtadt’s nonconvergence example. In Section 3 we formulate a
general result which provide the convergence in (1.7) in some averaged in the initial
conditions sense. In Sections 4 and 5 we discuss results which rely on stochastic
(chaotic) properties of the fast motion. Namely, we will deal with the case where
$F_{x}^{t}$ (or $F_{x}$ ), $x¥in ¥mathbb{R}^{d}$ is a family of Axiom A flows (or diffeomorphisms) in a vicinity
of a hyperbolic attractor, in particular, they could be Anosov systems. Such sit-
uation can atise in perturbations of nonintegrable Hamiltonian systems which are
geodesic flows on manifolds of constant energy which are supposed to be nega-
tively curved. In the discrete time case we can also have $F_{¥mathrm{J}i}$ , $¥mathbb{R}^{d}$ to be a family of
expanding transformations which yields a wealth of explicit examples. This setup
enables us to obtain probabilistic descriptions of the error $X_{x,y}^{¥overline{e}}(t)-¥overline{X}_{x}^{¥epsilon}(t)$ in the
averaging approximation in the form of large deviations and stochastic resonance
type results. This series of results seems to be important as a fenomenological jus-
tification of models of weather-c imate interactions where weather is considered
as a fast chaotic motion and climate as a slow one (see [14], [15], [11], and [20]).
Several assertions which are Rnown in the uncoupled case ( all $F_{x}$ are the same)
have not been proved yet in the fully coupled situation and we formulate them as
problems in Section 6.

2. NEISHTADT’ S NONCONVERGENCE EXAMPLE

For any probability measure $¥mu$ on $M$ set

(2.1) $B-¥mu(x)=¥overline{B}(x)=¥int B(x, y)d¥mu(y)$ .

In the uncoupled case we have only one flow $F^{t}$ a $¥mathrm{nd}$ then for any ergodic $F^{t_{-}}$

invariant measure $¥mu$ and for $¥mu- ¥mathrm{a}.¥mathrm{a}$ . $y$ ’s the slow motion $X_{x,y}^{¥overline{¥epsilon}}(t)$ is close on time in-
tervals of order $ T/¥epsilon$ to the averaged motion $¥overline{X}_{x}^{¥Xi}(t)$ which solves (1.6) with $¥overline{B}=¥overline{B}_{¥mu}$ ,
i.e. for such $y$ ’s (1.7) holds true. In the fully coupled case the situation is more
complicated. Change the time and set $Z_{x,y}^{¥epsilon}(t)=X_{x,y}^{¥epsilon}(t/¥epsilon)$ . Since we assume that
the vector field is bounded then for fixed $x$ and $y$ $¥{Z_{x,y}^{¥overline{¥epsilon}}(t), ¥epsilon>0, t ¥in[0, T]¥}$ is
a compact family of Lipschitz continuous curves in $¥mathbb{R}^{d}$ with respect to the uniform
norm $||¥varphi||=¥sup_{0¥leq t¥leq T}|¥varphi(t)|$ , $¥varphi$ : $[0, T]¥rightarrow ¥mathbb{R}^{d}$ . A general result from [3] sais,
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essentially, that any limit point $Z^{0}=Z_{x}^{0}$ of this family is a solution of an equation
of the form

(2.2) $¥frac{dZ^{0}(t)}{dt}=B_{¥mu_{Z}0_{(t)}}(Z^{0}(t))$ , $Z^{0}(0)=x$

where $¥mu_{z}$ is some $F_{¥nu,¥sim}^{t_{-}}$

, invariant probability measure and $B_{¥mu}$ is defined by (2.1). In
particular, if all flows $F_{z}^{t}$ are uniquely ergodic (which happens very rarely) then we
obtain the convergence (1.7) for all initial conditions.

The following example due to Neishtadt (which appeared previously in [2] by
different reasons) shows that, in general, we cannot obtain results more precise than
the above assertion concerning the convergence (1.7) for individual initial condi-
tions. Consider the system of equations

(2.3) $¥dot{I}=¥epsilon(4+8¥sin¥gamma-I)$ , $¥dot{¥gamma}=I$

with the corresponding averaged equation

(2.4) $j=¥epsilon(4-J)$ .

Here $¥gamma$ belongs to the circle $¥mathbb{T}^{1}$ parametrized by the interval $[-2¥pi, 0]$ with the end
points glued together. Denote by $(I_{I_{0},¥gamma ¥mathrm{o}}^{¥xi ¥mathrm{i}}(t), ¥gamma_{I_{0},¥gamma ¥mathrm{o}}^{¥Xi}(t))$ and by $J_{I_{0}}^{¥epsilon}(t)$ the solution of
(2.3)and (2.4), respectively, with the initial conditions $I_{I_{0},¥gamma 0}^{¥Xi}(0)=I_{0;}¥gamma_{J_{0},¥gamma 0}^{¥Xi}(0)=$

$¥gamma_{0}$ and $J_{I_{0}}^{¥overline{¥mathrm{b}}}(0)=I_{0}$ .

2.1. Proposition. For any initial condition $(I_{0}, ¥gamma_{0})$ wiih-2 $<I_{0}<-1$ there is $a$

sequence $¥epsilon_{n}¥rightarrow 0$ as $n$ $¥rightarrow¥infty$ such that $I_{J_{0},¥gamma 0}^{¥Leftrightarrow^{-}¥mathrm{n}}(t)<0$ for all $t$ $¥geq 0$ and $J_{I_{0}}^{¥overline{¥Leftrightarrow}n}(1/¥epsilon_{n})>$

$3/2$, so, in particular

(2.5) $¥sup_{0¥leq t¥leq 1/¥Xi n}|I_{I_{¥acute{0}_{,}}¥gamma 0}^{¥epsilon_{¥mathrm{L}}}(t)-J_{t_{¥mathrm{O}}^{n}}^{¥epsilon}(t)|>3/2$
.

A full proof of this assertion can be found in [24]. In fact, (2.5) holds true for
any $(I_{0}, ¥gamma_{0})$ belonging to certain strip $S_{¥overline{¥epsilon}}$ having width of order $¥epsilon^{3/2}$ which winds
around the lower half {I $<0_{,}¥varphi¥in[0.2¥pi]$ } of the phase cylinder so that the distance
between subsequent coils of $S_{¥Xi i}$ is of order $¥epsilon$ . So when $¥epsilon¥rightarrow 0$ the strip $S_{¥overline{¥mathrm{e}}}$ passes
trough all points, say, of the domain $¥{-2<I_{0}<-1¥}$ .

The phenomenon above is due to the resonance $I$ $=0$ . When $I$ $¥neq 0$ then the
equation $¥dot{¥gamma}=I$ defines a circle rotation which preserves only the Lebesgue mea-
sure on it and the time average of any continuous function coincides with its space
average with respect to the Lebesgue measure. On the other hand, $¥dot{¥gamma}=0$ defines
the identity transformation which preserves, of course, all probability measures but
more importantly, the time average of a continuous function will be just its value
at the initial point and not its space average with respect to the Lebesgue measure
which is usually different unless we have a constant function. More generally, non-
resonant and resonant unperturbed fast motions which are toral rotations differ from
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each other by having a unique and many invariant measures, respectively, with res-
onant directions occuring “very rarely”. It seems that a more important reason for
problems in averaging due to resonances is connected with the fact that the refer-
ence (Lebesgue) measure becomes nonergodic for some parameters and the time
averaging there has nothing to do with the space averaging with respect to this mea-
sure. We will discuss agaim this problem in the next section considering fast motions
being Axiom A systems and expanding transformations which have abundance of
invariant measures but there are natural families of ergodic invariant measures so
that time and space averages coincide for almost all initial conditions with respect
to appropriate measures.

3. GENERAL CONVERGENCE RESULTS

Consider the system of differential equations (1.1) on the product $¥overline{¥mathcal{X}}¥times$ $M$ where
$¥mathcal{X}¥subset ¥mathbb{R}^{d}$ is an open set, $¥overline{X}$ is its closure and $M$ is a compact $C^{2}$ Riemannian
manifold, and assume that there exists $L$ $>0$ such that for all $¥epsilon¥geq 0$ , $x$ , $z$

$¥in¥overline{X}$

and $y$ , $v$ $¥in M$ ,

(3.1) $||B(x, y)-B(z, v)||+||b(x, y)-b(z, w)||¥leq$ $L(|x-z|+d_{M}(y_{¥mathrm{J}}v))$

and $||B(x, y)||+||b(x, y)||¥leq L$

where $d_{M}$ is the distance on $M$ . Together with (1.1) we consider also the equation
(1.6) on $¥overline{X}$ with coefficients $¥overline{B}$ for which there exists $¥overline{L}>0$ such that for all $ x_{3}z¥in$

$¥overline{X}$ ,

(3.2) $||¥overline{B}(x)-¥overline{B}(z)||¥leq¥overline{L}|x-z|$ and $||¥overline{B}(x)||¥leq¥overline{L}$ .

The Lipschitz continuity conditions (3.1) and (3.2) ensure existence and uniqueness
of solutions of (1.1) and $(1’.6)$ , respectively. If $¥overline{B}$ is defined by (1.5) with $¥mu=¥mu_{x}$

then (3.2) is equivalent to the sxistence of $¥tilde{L}>0$ such that for all $x$ , $z¥in X$ ,

(3.3) $|¥int_{M}B(x, y)d(¥mu_{x}-¥mu_{z})(y)|¥leq¥overline{L}|x-z|$ ,

which is a condition of regular dependence of $¥mu_{x}$ on $x$ . Set $X_{t}=¥{x¥in X$ :
$X_{x,y}^{¥Xi}(s)¥in X_{;}¥overline{X}_{x}^{¥epsilon}(s)¥in X$ for $¥mathrm{a}1¥mathrm{J}$ $y¥in M$ and $s$ $¥in[0, t/¥epsilon]¥}$ . It is clear that $X_{t}$ is an
open set and by (3.1) and (3.2) it follows that $¥mathcal{X}_{t}¥supset$ {$x¥in X$ : $¥inf_{z¥not¥in ¥mathcal{X}}|z-x|>$

$2t$ $¥max(L,¥overline{L})¥}$ . Introduce

$E_{¥epsilon}(t, ¥delta)=¥{(x, y)¥in ¥mathcal{X}_{t}¥times M : |¥frac{1}{t}¥int_{0}^{t}B(x, Y_{x,y}^{¥overline{¥mathrm{e}}}(u))du-¥overline{B}(x)|>¥delta¥}$ .

The following result is proved in [23] (and the same result for the discrete time
setup (1.8) is obtained in [21] $)$ .
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3.1. Theorem. Suppose that (3.1) and (3.2) hold true and let $¥mu$ be a probability
measure on $¥mathcal{X}¥times$ M. Then

(3.4) $¥lim_{¥epsilon¥rightarrow 0}¥int_{X_{T}}¥int_{M}¥sup_{0¥leq t¥leq T/¥overline{¥epsilon}}|X_{x,y}^{¥Xi}(t)-¥overline{X}_{x}^{¥Xi}(t)|d¥mu(x, y)=0$

ifand only if there exists an integer valuedfunction $ n=n(¥epsilon)¥rightarrow¥infty$ as $¥epsilon¥rightarrow 0$ such
thatfor any $¥delta>0$,

(3.5) $¥lim_{¥varepsilon¥rightarrow 0}¥max_{0¥leq j<n(_{¥overline{t}})}¥mu¥{(X_{T}¥times M)¥cap¥Phi_{¥epsilon}^{-jt(¥sigma)}E_{¥xi j}(t(¥epsilon), ¥delta)¥}=0$ ,

where $t(¥epsilon)=¥frac{T}{¥tilde{¥in}n(_{¥overline{¥mathcal{E}}})}$ and $¥Phi_{¥epsilon}^{t}(x, y)=(X_{x,y}^{¥epsilon}(t)_{¥}}Y_{x,y}^{¥overline{t}}(t))$ .

Taking into account that $¥mathrm{Y};$,$y(t)$ and $Y_{x,y}^{0}(t)$ stay close during the time $t¥leq t(¥epsilon)$

with $t(¥epsilon)$ much smaller than $¥log(1/¥epsilon)$ , we obtain a sufficient condition for (3.4) in
the form of (3.5) with $E_{0}(¥cdot, ¥cdot)$ in place of $E_{¥overline{¥epsilon}}(¥cdot, ¥cdot)$ . It is not difficult (see [23]) to
check (3.5) in two situations where (3.4) was known before, namely, when the fast
motion $Y_{x,y}^{¥epsilon}$ does not depend on the slow motion $X_{x,y}^{¥overline{e}}$ and in the situation of the
Anosov theorem (see [1]). The latter requires that $d¥mu(x, y)=d¥mu_{x}(y)d¥nu(x)$ with
$l/$ having a bounded $C^{1}$ density with respect to the Lebesgue measure on $¥mathbb{R}^{d}$ and
$¥mu_{x}$ , $x¥in ¥mathcal{X}$ being invariant measures of the corresponding unperturbed flows $F_{x}^{t}$ so
that $¥mu_{x}$ is ergodic for $¥nu-$almost all $(¥mathrm{a}.¥mathrm{a}.)$ $x$ and for each $x$ $¥in X$ the measure $¥mu_{x}$ has
a density $q_{x}=q_{x}(y)>0$ with respect to the Riemannian volume on $M$ that is $C^{1}$

in both $x$ and $y$ .
Theorem 3.1 gives conditions for convergence in average in the averaging prin-

ciple. In view of resonances (see, for instance, [25]) it is impossible for many inter-
esting examples to ensure (1.7) for all $x¥in X$ and $y$ . One still could hope that the
convergence in average (3.4) could be improved to convergence almost everywhere
but somehow this question has not been touched upon until recently in the literature.
In the example of the previous section the convergence (1.7) does not hold true for
any initial condition from a large open domain. Thus the type of convergence to the
averaged motion described in Theorem 3.1 cannot be improved, in general, in the
fully coupled averaging setup.

There is a very restricted class of systems where (1.7) holds true for all $ x¥in$

$X$ and $y¥in M$ . This happens, for instance, when Arnold’s conditions for two-
frequency systems are satisfied (see Section 3.5 in [25] and Sec ion 5.1 in [2]). If the
convergence in (1.4) is uniform in $x¥in ¥mathcal{X}$ and $y¥in M$ then (1.7) takes place, as well.
In fact, it suffices to assume a bit less, namely, that for any $¥delta>0$ there exists $¥epsilon_{¥delta}$ such
that for any positive $¥epsilon¥leq¥epsilon_{¥delta}$ one can find an integer valued function $ n(¥epsilon)¥rightarrow¥infty$ as
$¥epsilon¥rightarrow¥infty$ so that $ E_{¥Xi}(t(¥epsilon), ¥delta)=¥emptyset$ where, again, $t(¥epsilon)=T(n(¥epsilon)¥epsilon)^{-1}$ . Such conditions
can only be satisfied for some families of uniquely ergodic dynamical systems such
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as flows on a circle and horocycle flows nicely depending on a parameter (slow
variable).

Another situation where we are able to verify (3.5) is the case of fast motions
being slowly changing Axiom A flows where the averaging principle in the form
(3.4) has been established first in [23] using this approach.

3.2. Assumption. The family $b(x, $.) in (1.1) consists of C. vector fields on an
n-dimensional Riemannian manifold M with uniform $C^{2}$ dependence on the pa-
rameter x belonging to a relatively compact connected open set X and depending
continuously on x in its closure $¥overline{¥mathcal{X}}¥wedge$ Each flow $F_{ffj}^{t}$ , x $¥in¥overline{¥mathcal{X}}$ on M given by

(3.6) $¥frac{dF_{x}^{t}y}{dt}=b(x, F_{x}^{t}y)$ , $F_{x}^{0}y=y$

possesses a basic hyperbolic attractor $¥Lambda_{x}$ (see [17]) with a hyperbolic splitting
$T_{¥Lambda_{x}}M=$ I $xs¥oplus¥Gamma_{x}^{0}¥oplus¥Gamma_{x}^{u}$ , where $¥Gamma_{x}^{s}$ , $¥Gamma_{x}^{¥mathrm{u}}$ , and $¥Gamma_{x}^{0}$ are the stable, unstable, and flow
directions, respectively, and there exists an open set $¥mathcal{W}¥subset M$ with the closure $¥overline{¥mathcal{W}}$

and $t_{0}>0$ such that

(3.7) $¥Lambda_{x}¥subset ¥mathcal{W}$ , $F_{x}^{t}¥overline{¥mathcal{W}}¥subset ¥mathcal{W}¥forall t¥geq t_{0}$ , an
$¥mathrm{d}¥bigcap_{¥#>0}F_{i¥Gamma}^{t}¥mathcal{W}=¥Lambda_{x}¥forall x¥in¥overline{X}$

.

Let $J_{x}^{u}(t, y)$ be the Jacobian of the linear map $DFl(y)$ : $¥Gamma_{x}^{u}(y)¥rightarrow¥Gamma_{x}^{u}(F_{x}^{t}y)$ with
respect to the Riemannian inner products and set

(3.8) $¥varphi_{x}^{u}(y)=-¥frac{dJ_{x}^{u}(t,y)}{dt}|_{t=0}$ .

The function $¥varphi_{x}^{u}(y)$ is known to be Holder continuous in $y$ , since the subbundles
$¥Gamma_{x}^{u}$ are Holder continuous (see [17]), and $¥varphi_{x}^{u}(y)$ is $C^{1}$ in $x$ (see [10]). The Sinai-
Ruelle-Bowen measure $¥mu_{x}^{¥mathrm{SRB}}$

, of $F_{x}^{t}$ is the unique equilibrium state of $F_{x}^{t}$ for the
function $¥varphi_{x}^{u}$ (see [9]), i.e. it is the only $F_{x}^{t}$ -invariant probability measure on $¥Lambda_{x}$

whose topological pressure is zero (since $¥Lambda_{x}$ is an attractor). We replace now the
condition (3.1) by the following stronger one:

3.3. Assumption. There exist L, $¥epsilon_{0}>0$ such that for all x $¥in¥overline{X}$ , y $¥in M_{,}$ and
$¥epsilon¥in[0_{f}¥epsilon_{0})$ ,

(19) $||B(x,y)||_{C^{1}(¥overline{¥mathcal{X}}¥times M)}+||b(x_{f}y,¥epsilon)||_{C^{2}(¥overline{X}¥mathrm{x}M)}¥leq L$

where $||¥cdot||_{¥overline{¥mathcal{X}}¥times M)}$ is the $C^{i}$ norm of the corresponding vector fields on $¥overline{X}¥times$ M.

Set

(3.10) $B-(x)=¥int B(x, y)d^{¥mathrm{SRB}}¥mu_{x}(y)$
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then under Assumption 3.3 $¥overline{B}$ is $C^{1}$ in $x$ (see [10]), and so (3.2) is automatically
satisfied. The following result was proved in [23] and its discrete time counter-
part (with $F_{x}=¥Phi(X^{ },¥cdot)$ in (1.8) being $C^{2}$ expanding endomorphisms or Axiom A
diffeomorphisms in a vicinity of a hyperbolic attractor) was derived in [21].

3.4. Theorem. Suppose thatAssurnptions 32 and 3.3 hold true. Define $¥overline{B}$ by (3.10)
and let $¥mu$ be the product of a probabiliry measure $¥nu$ with support in $X_{T}$ and the
nor malized Riemannian volume my on W. Then ($¥mathit{3}.¥mathit{5}j$ is satisfied with $t(¥epsilon)=¥frac{T}{¥in^{r}n(¥epsilon)}$

whenever both $ t(¥epsilon)¥rightarrow¥infty$ and $ n(¥epsilon)¥rightarrow¥infty$ as $¥epsilon¥rightarrow 0$, and so (3.4) holds true.
Moreove $r$, for any $a$ $>0$ there exist $c>0$ and $¥epsilon_{a}$ such that

(3.11) $¥mu¥{(x, y)¥in X_{T}¥times ¥mathcal{W} : _{0¥leq t¥leq T/¥in}¥sup|X_{x_{¥mathrm{J}}y}^{¥overline{¥epsilon}}(t)-¥overline{X}_{x}^{¥epsilon}(t)|>a¥}¥leq e^{-c/¥epsilon}$ ,

provided $¥epsilon¥leq¥epsilon_{a}$ . The result $re$ mains true if in place of the above we take $¥mu$ defined
by $d¥mu(x, y)=d¥nu(x)d¥mu_{x}(SRBy)$ .

Observe that we can take, in particular, $¥nu$ to be the Dirac measure (unit mass) at
a point $x¥in X$ , i.e. (3.4) follows here without integration in $x$ and (3. il) can be
replaced by

(3.12) $¥mu_{x}¥{y¥in ¥mathcal{W}:¥sup_{0¥leq t¥leq T/¥overline{¥epsilon}}|X_{x,y}^{¥epsilon}(t)-¥overline{X}_{x}^{¥overline{¥mathrm{g}}}(t)|>a¥}¥leq e^{-c/¥epsilon}$

for either $¥mu_{x}=m_{¥mathcal{W}}$ or $¥mu_{x}=¥mu_{x}^{¥mathrm{SRB}}$ . It is clear that in this setup $¥Phi_{¥xi ¥mathrm{i}}^{t}$ is a small
perturbation of the partially hyperbolic dynamical system $¥Phi_{0}^{t}$ but this observation
dies not help in the analysis.

Note that Neishtadt’s example discussed in the previous section is constructed
in the standard resonance framework where for some $x$ the measures $¥mu_{x}$ (which all
coincide with the Lebesgue measure there) become nonergodic. In the setup of The-
orem 3.4 all measures $¥mu_{x}$ are ergodic, and so it is still not clear whether it is possible
in these circumstances to derive the convergence (1.7) for all (or for Lebesgue al-
most all) $x$ $¥in X_{T}$ and for $m_{¥mathcal{W}^{-}}$ almost all $y¥in ¥mathcal{W}$ and not just convergence in average
(3.4) or in measure (3.11) and (3.12). One difficulty in understanding this problem
is related to the fact that the relevant $F_{x}^{t_{-}}$ invariant ergodic measures $¥mu_{x}^{¥mathrm{SRB}}$ are, in
general, singular with respect to each other and with respect to my. Still, even in
the case when all $¥mu_{x}^{¥mathrm{SRB}}$ are equivalent to (or even coincide with) the Riemannian
volume on $M$ (for instance, when $F_{x}^{t}$ , $x¥in ¥mathbb{R}^{d}$ are geodesic flows with respect to
slowly varying metrics or $F_{x}^{t}$ , $x¥in ¥mathbb{R}^{d}$ are all conjugated to a flow preserving the
Riemannian volume by means of a family of diffeomorphisms) the answer is not
clear. Consider, for instance, the following explicit discrete time example which
manifests, in particular, usefulness of the discrete time setup as a rich source of
examples.
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3.5. Example. Let M be the unit circle $¥mathbb{T}^{1}$ in $¥mathbb{R}^{2}$ centered at (0,$ $0) and define $F_{x}$ :
$¥mathbb{T}^{1}¥rightarrow ¥mathbb{T}^{1}$ by $F_{x}e^{?¥varphi}.=e^{x(2¥varphi+x)}$ where $¥varphi_{,}$ x $¥in ¥mathbb{R}^{1}$ . Let B be a continuous $2¥pi-$periodic
function on $¥mathbb{R}^{1}$ such that $¥int_{0}^{2¥pi}B(¥varphi)d¥varphi=0$ (take, for instance, $ B(¥varphi)=¥sin¥varphi$ or
$ B(¥varphi)=¥cos¥varphi$ . Consider $X^{¥overline{¥mathrm{a}}}(n)=X_{x,y}^{¥overline{6}}(n)$ , $Y^{¥overline{¥mathrm{b}}}(n)=¥mathrm{Y}_{x,y}^{¥overline{¥epsilon}}(n)$ given by

(3.13) $X^{¥xi j}(n+1)-X^{¥xi j}(n)=¥epsilon B(¥varphi^{¥epsilon}(n))$ , $X^{¥Xi}(0)=x$

$Y^{¥overline{¥epsilon}}(n+1)=F_{X^{¥epsilon}(n)}e^{i¥varphi^{¥mathrm{e}}(¥tau b)}$ , $¥varphi^{¥epsilon}(n+1)=2¥varphi^{¥Xi}(n)+X^{¥epsilon}(n)$ ,
$Y^{¥Xi}(0)=y=e^{i¥varphi}$ , $¥varphi^{¥overline{c}}(0)=¥varphi$ .

Here all $F_{x}$ ’s preserve the Lebesgue measure Leb on $¥mathbb{T}^{1}$ and the averaged (with
respect to Leb) equation is

(3.14) $¥frac{d¥overline{X}^{¥overline{¥mathrm{e}}}(t)}{dt}=0$ .

It follows from both the Anosov type theorem from [21] (see Corollary 2.2 there)
and from the discrete time version of Theorem 3.4 above which was proved in [23]
that

(3.15) $¥lim_{¥epsilon¥rightarrow 0}¥int_{¥mathrm{F}^{1}}.¥sup_{0¥leq n¥leq T/¥epsilon}|X_{x_{1}y}^{¥zeta}(n)-x|dy=0$

and for any $¥delta>0$ there exist $c=c_{¥delta}>0$ such that for all sufficiently small $¥epsilon>0$ ,

(3.16) Leb $¥{y¥in ¥mathbb{T}^{1} ^{:} _{0¥leq n¥leq T/¥epsilon}¥sup|X_{x,y}^{¥epsilon}(n)-x|>¥delta¥}¥leq e^{-c/¥Xi}$ .

It is still not clear whether for Leb-a. $¥mathrm{a}$ . $y$ ’s and all or Leb-a. $¥mathrm{a}$ . $x$
’

$¥mathrm{s}$ ,

(3.17) $0¥leq¥sup_{n¥leq T/¥epsilon}|X_{x,y}^{¥xi j}(n)-x|¥rightarrow 0$
as $¥epsilon¥rightarrow 0$ .

4. LARGE DEVIATIONS

In this section we exhibit precise large deviations bounds which both will improve
the estimate (3.12) and will enable us to study the behavior of $X^{¥epsilon}$ on much longer,
exponential large in $ 1/¥epsilon$ , time intervals and employ these results in the next section
for deriving stochastic resonance type assertions. Assume that Assumptions 3.2 and
3.3 hold true. Recall, that the topological pressure of a continuous function $¥psi$ for
the flow $F_{x}^{t}$ satisfies the following variational principle (see, for instance, [17]),

(4.1) $F_{x}(¥psi|)=¥sup_{¥mu¥in,¥mathrm{W}_{x}}(¥int¥psi d¥mu+h_{¥mu}(F_{x}^{1}))$

where $¥mathrm{A}4_{x}$ denotes the space of $F_{x}^{t}-$ invariant probability measures on $¥Lambda_{x}$ and
$h_{¥mu}(F_{x}^{1})$ is the Kolmogorov-Sinai entropy of the time-one map $F_{x}^{1}$ with respect to $¥mu$ .



55

Averagrng

If $q$ is a Holder continuous function on $¥Lambda_{x}$ then there exists a unique $F_{x}^{t}-$ invariant
measure $¥mu_{x}^{q}$ on $¥Lambda_{x}$ , called the equilibrium state for $¥varphi_{x}^{u};+q$

} such that

(4.2) $F_{x}(¥varphi_{x}^{u}+q)=¥int(¥varphi_{x}^{u}+q)d¥mu_{x}q+h_{¥mu_{x}^{q}}(F_{x}^{1})$ .

We denote $¥mu_{x}^{0}$ by $¥mu_{x}^{¥mathrm{SRB}}$ since it is the Sinai-Ruelle-Bowen (SRB) measure for $F_{x}^{t}$ .
Since $¥Lambda_{x}$ are attractors we have that $P_{x}(¥varphi_{x}^{u})=0$ (see [9]).

For any probability measure $¥nu$ on $¥overline{¥mathcal{W}}$ define

(4.3) $I_{x}(¥nu)=¥{$
$-¥int¥varphi_{x}^{u}d¥nu-h_{¥nu}(F_{x}^{1})$ if $¥nu¥in ¥mathcal{M}_{x}$

$¥infty$ otherwise.

It is known that $h_{¥nu}(F_{x}^{1})$ is upper semicontinuous in $¥nu$ since hyperbolic flows are
entropy expansive ( see [8]). Thus $I_{x}(¥nu)$ is a lower semicontinuous functional in $¥nu$

and it is also convex since entropy $h_{¥mathit{1}/}$ is affine in $¥nu$ .

Denote by $C_{0T}$ the space of continuous curves $¥gamma_{l}$ , $t¥in[0, T]$ in $¥mathbb{R}^{d}$ which is the
space of continuous maps of $[0, T]$ into $¥mathbb{R}^{d}$ . For each absolutely continuous $¥gamma¥in C_{0T}$

set

(4.4) $S_{0T}(¥gamma)=¥int_{0}^{T}¥mathrm{i}_{¥mathrm{I}¥underline{1}}¥mathrm{f}¥{I_{¥gamma t}(¥nu) : ¥dot{¥gamma}_{t}=¥overline{B}_{¥nu}(¥gamma_{t}),l/¥in ¥mathrm{A}4_{¥gamma t}¥}dt$ ,

(where $¥overline{B}_{¥nu}(x)=¥int B$ ( $x$ , $y)d¥nu(y)$ ), provided for Lebesgue almost all $t$ $¥in[0, T]$ there
exists $¥nu_{t}¥in ¥mathcal{M}_{¥gamma t}$ for which $¥dot{¥gamma}_{b}=¥overline{B}_{¥nu t}(¥gamma_{t})$ , and $ S_{0T}(¥gamma’)=¥infty$ otherwise. It follows
from [9] and [10] that

$S_{0T}(¥gamma)¥geq S_{0T}(¥gamma^{u})=-¥int_{0}^{T}F_{¥gamma_{t}^{u}}(¥varphi_{¥gamma_{t}^{u}}^{u})dt=0$

where $¥gamma_{t}^{u}$ is the unique solution of the equation

(L5) $¥dot{¥gamma}_{t}^{u}=¥overline{B}(¥gamma_{t}^{u})$ , $¥gamma_{0}^{u}=x$ ,

where $¥overline{B}(z)=¥overline{B}_{¥mu_{¥approx}^{¥mathrm{SRB}}}(z)$ , and the equality $S_{0T}(¥gamma)=0$ holds true if and only if
$¥gamma=¥gamma^{u}$ .

Define the uniform metric on $C_{0T}$ by

$¥rho_{0T}(¥gamma, ¥eta)=¥sup_{0¥leq t¥leq T}|¥gamma_{t}-¥eta_{t}|$

for any $¥gamma$ , $¥eta¥in C_{0T}$ . Set $¥Psi_{0T}^{a}(x)=$ $¥{¥gamma¥in C_{0T} : ¥gamma_{0}=x, S_{0T}(¥gamma)¥leq a¥}$ . It flows
from [10] and Section 9.1 of [16] that $S_{0T}$ is a lower semicontinuous functional on
$C_{0T}$ , and so $¥Psi_{0T}^{¥mathrm{t}1}(x)$ is a closed set. The following result can be derived employing
the machinery of [18], [23] and a certain modification of [28].

4.1. Theorem. Suppose that $X_{x,y}^{¥Xi}$ and $Y_{x,y}^{¥overline{¥mathrm{g}}}$ are solutions of (1.1) with coefficients
satisfying Assumptions3.2 and 3.3. Set $Z_{x,y}^{¥overline{t}}(t)=X_{x,y}^{¥epsilon}(t/¥epsilon)$ thenfor any $a$ , $¥delta,$ $¥lambda>0$
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and every $¥gamma¥in C_{0T}$ , $¥gamma_{0}=x$ there exists $¥epsilon_{0}=¥epsilon_{0}(x, ¥gamma, a, ¥delta, ¥lambda)>0$ such that for
$¥epsilon<¥epsilon_{0}$ ,

(4.6) $¥mu_{x}¥{y ¥in ¥mathcal{W}:¥rho_{0T}(Z_{x,y}^{6}, ¥gamma)<¥delta¥}¥geq¥exp¥{-¥frac{1}{¥epsilon}(S_{0T}(¥gamma)+¥lambda)¥}$

and

(4.7) $¥mu_{x}$ { $y$
$¥in ¥mathcal{W}$ : $¥rho 0T(Z_{x,y}^{¥epsilon}$ , I $ 0Ta(x))¥geq¥delta$ } $¥leq¥exp¥{-¥frac{1}{¥epsilon}(a - ¥mathrm{A})$ $¥}$

where either $¥mu_{x}=m$ or $¥mu_{x}=¥mu_{x}^{SRB}$ an$dm$ is the normalized $Rie¥iota m$annian volume
on M. The functional $S_{0T}(¥gamma)$ for $7¥in C_{0T}$ is finite if and only if $¥gamma b=¥overline{B}_{¥nu t}$ $(¥gamma_{t})$ for
$¥nu_{t}¥in ¥mathcal{M}_{¥gamma t}$ and Lebesgue almost all $t¥in[0,T]$ . Furthermore, $S_{0T}(¥gamma)$ achieves its
minimu $m$

$¥mathit{0}$ only on $¥gamma¥in C_{0T}$ satisfying $¥dot{¥gamma}_{t}=¥overline{B}(¥gamma_{t})$ for all $t$ $¥in[0, T]$ . In $IJal^{¥wedge}ticular$

for any $¥delta>0$ there exist $c(¥delta)>0$ and $¥epsilon_{0}>0$ such thatfor all $¥epsilon<¥epsilon_{0}$ ,

(4.8) $m¥{y¥in ¥mathcal{W} : ¥rho ¥mathrm{o}T(Z_{x,y}^{¥overline{¥epsilon}},¥overline{Z}_{x})¥geq¥delta¥}¥leq¥exp(-¥frac{c(¥delta)}{¥epsilon})$

where $¥overline{Z}_{x}=¥gamma^{u}$ is the unique solution of (4.5) which is anotherfonn of (3.12).
Emloying the machinery of [21] we obtain a similar result for the discrete time

set where $F_{x}=¥Phi(X^{ },¥cdot)$ in (1.8) are $C^{2}$ expanding endomorphisms or Axiom A
diffeomorphisms in a vicinity of a hyperbolic attractor.

Next, let $V¥subset X$ be connected open set and set $¥tau_{x,y}^{¥overline{¥epsilon}}(V)=¥inf¥{t¥geq 0$ : $ Z_{x,y}^{¥overline{¥mathrm{e}}}(t)¥not¥in$

$V¥}$ where we take $¥tau_{x,y}^{¥epsilon}(V)=¥infty$ if $X_{x,y}^{¥Xi}(t)¥in V$ for all $t$ $¥geq 0$ .

4.2. Corollary. Under the conditions ofTheorem 4.1 for any T $>0$ and x $¥in V$,

(4.9) $¥lim_{¥epsilon¥rightarrow 0}¥epsilon¥log m¥{y¥in ¥mathcal{W} : ¥tau_{x,y}^{¥xi ¥mathrm{i}}(V)<T¥}$

$=-¥inf¥{S_{0t}(¥gamma) : ¥gamma¥in C_{0T}, t ¥in[0, T], ¥gamma_{0}=x, ¥gamma_{t}¥neq V¥}$ .

Next, we will study exponentially long in $ 1/¥epsilon$ time behavior of $Z^{¥Xi}$ under certain
assumptions on the averaged motion $¥overline{Z}_{x}$ . The arguments here rely on Theorem 4. 1
and they follow the strategy of [13] and [18] but the fully coupled case is more
involved though its main difficulties lie already in the proof of Theorem 4.1. Let
$V¥subset ¥mathbb{R}^{d}$ be a connected open set with a compact closure $¥overline{V}$ . Put

$R_{V}(x, z)=¥inf¥{S_{0,T}(¥gamma) : T¥geq 0_{¥}}¥gamma¥in C_{0,T}, ¥gamma¥subset V, ¥gamma_{0}=x, ¥gamma_{T}=z¥}$ .

Let $¥overline{F}^{t}x=¥overline{Z}_{x}(t)=¥overline{X}_{x}(t/¥epsilon)$ be the flow determined by the averaged system (1.5)
with $¥overline{B}(x)=¥overline{B}_{¥mu_{x}^{¥mathrm{SRB}}}(x)$ and assume that

(4.10) $¥overline{F}^{t}¥overline{V}¥subset V$ for all $t$ $>0$ .

Suppose that the $¥omega-$limit set of the flow $¥overline{F}^{t}$ in $V$ is contained in a disjoint union
of a finite number of compacts $K_{1},$

$¥ldots,$
$K_{l}¥subset V$ such that $x_{,}z¥in K_{i}$ if and only if
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$R(x, z)=R(z, x)=0$ . Among these compacts we specify the attractors $I¥mathrm{f}_{1}$ , $¥ldots$ , $K_{k}$

of the flow $¥overline{F}^{t}$ which are characterized by the property that $R(x_{,}z)>0$ for any
$x¥in K_{J}$ and $z¥not¥in K_{j}$ , $j=1$ , $¥ldots$ , $h^{¥prime}$ . Suppose that transitions between each pair $K_{i}$

and $K_{j}$ are possible in the sense that there exist $T>0$ and $¥gamma¥in C_{0T}$ , $¥gamma¥subset V$

such that $¥gamma_{0}¥in K_{i}$ , $¥gamma_{T}¥in K_{j}$ , and $¥dot{¥gamma}_{t}=¥overline{B}_{¥nu t}(¥gamma_{t})$ for some $¥iota/_{t}¥in¥Lambda 4_{¥Lambda}^{f}$ and almost all
$t$ $¥in[0, T]$ . In this case $R_{ij}=$ $ R(x, z)<¥infty$ for all $x¥in K_{l}$ , $z¥in K_{j}$ , $i,j$ $=1$ , $¥ldots$ , $k$

and these numbers describe transitions between the compacts $K_{i}$ , $i=1$ , $¥ldots$ , $k$ in the
following way (introduced in [13]). Set $L=¥{1, ¥ldots, k¥}$ . Given $i¥in L¥cup¥{*¥}$ , a graph
consisting of arrows $(m¥rightarrow n)(m¥neq i, m, n¥in L, n¥neq m)$ is called an $i$ -graph if
every point $m¥neq i$ is the origin of exactly one arrow and the graph has no circles.
Let I $i(Q)$ be the set of all $i$-graphs over $O$. $¥subset L¥cup¥{*¥}$ . Denote by $V_{i}$ the domains
of attraction of $K_{i}$ , $i=1$ , $¥ldots$ , $k$ and choose

$¥delta<¥min¥{¥mathrm{dist}(V_{i}, K_{j}) : i,j =1_{ },¥ldots, k, i¥neq j¥}$ .

Put $¥tau_{x,y}^{¥Xi}(i_{3}Q)=¥inf$ { $t$ : dist($X_{x,y}^{¥overline{c}}(t)$ , $¥bigcup_{j¥in L¥backslash Q}K_{J})<¥delta$ } where $x¥in V_{i}$ . Relying on
Theorem 4.1 and employing the machinery of [18] enhanced for the fully coupled
case it is possible to derive the following result.

4.3. Theorem. Fix an arbitrary $Q¥subset L$. Set $R_{¥mathrm{z}*}=¥min_{j¥not¥in Q}R_{ij}$ and assume that this
minimum is achieved only at one point $j_{Q}(i)¥not¥in Q$ . Let $¥gamma^{*}be$ the unique $*-$graphfor
which

(4.11)
$¥min_{¥gamma¥in¥Gamma_{*}(Q¥cup¥{*¥})}¥sum_{(¥tau n¥rightarrow n)¥in¥gamma}R_{mn}=¥sum_{(m¥rightarrow n)¥in¥gamma^{¥mathrm{z}}}R_{pnn}<¥infty$

.

Thenfor any $x¥in V_{i}$ , $i¥in Q$,

(4. i2) $¥lim_{¥epsilon¥rightarrow 0}m¥{y¥in ¥mathcal{W} : ^{X^{¥zeta}(¥tau;,(i, Q))}x,yy¥not¥in V_{JQ(k)}¥}=0$ ,

where $k$ is such that the arrow $(k ¥rightarrow*)$ is the last in the path going from $i$ $to*in$

$the*-$graph 7*. If $Q=¥{i¥}$ then $j=j_{Q}(i)$ satisfies $R_{ij}=¥min_{l¥in L¥backslash ¥{i¥}}R_{il}$ and

(4.13) $¥epsilon¥lim_{¥prec 0}¥epsilon¥log¥int_{¥mathcal{W}}¥tau_{x,y}^{¥epsilon}(i, Q)dm(y)=E_{j}$ ,

(4.14) $¥lim_{¥epsilon¥rightarrow 0}(m(¥mathcal{W}))^{-1}m¥{y¥in ¥mathcal{W}:e^{¥epsilon^{-1}(R_{t¥mathrm{j}}-¥alpha)}<¥tau_{x,y}^{¥overline{¥epsilon}}(i, Q)<e^{¥overline{¥mathrm{g}}}-1(R_{¥dot{¥nu}¥mathrm{j}}+¥alpha)¥}=1$

for any $¥alpha>0$ .

Again, a discrete time version of this result with expanding or Axiom A maps $F_{x}$

can be derived using the technique of [21].
Observe, that rare transitions between attractors of the averaged system were

discussed in the framework of climate models in [11] and [15]. Time estimates
for such transitions given in Theorem 4.3 play an important role in the stochastic
resonance setup which we consider in the next section.
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5. STOCHASTIC RESONANCE

Next, we will describe certain stochastic resonance type phenomenon where the
slowest motion $W^{¥mathrm{g}¥delta}$, in (1.2) becomes periodic. The scheme of this construction
was suggested by M.Freidlin (cf. [12]) and the corresponding proofs are supposed
to appear in our joint paper.

Set $¥tilde{W}^{¥epsilon,¥delta}(t)=W^{¥epsilon,¥delta}(¥frac{t}{¥delta¥epsilon}),¥tilde{X}^{¥overline{¥epsilon},¥delta}(t)=X^{¥overline{¥mathrm{e}},¥delta}(¥frac{t}{¥delta¥epsilon}),¥overline{Y}^{¥Xi,¥delta}(t)=Y^{5},¥delta(¥frac{t}{¥delta_{¥Xi}})$ , and pass from
(1.2) to the equations in the new time

$¥frac{d¥tilde{W}^{¥delta,¥epsilon}(t)}{dt}=A(¥tilde{W}^{¥delta,¥Leftrightarrow}¥sim(t),¥tilde{X}^{¥delta,¥epsilon}(t),¥tilde{¥mathrm{Y}}^{¥delta,¥overline{e}}(t))$

(5.1) $¥frac{d¥tilde{¥lambda^{¥prime¥delta,¥mathrm{e}}}(t)}{dt}=$ a $-1B(¥tilde{W}^{¥delta,¥overline{¥Leftrightarrow}}(t),¥tilde{X}^{¥delta,¥overline{¥epsilon}}(t),¥tilde{Y}^{¥delta,¥in}(t))$

$¥frac{d¥overline{Y}^{¥delta,¥epsilon}(t)}{dt}=(¥delta¥epsilon)^{-1}b(¥tilde{W}^{¥delta,¥epsilon}(t)¥}¥tilde{X}^{¥mathit{5},¥overline{¥Leftrightarrow}}(t),¥tilde{Y}^{¥delta,¥epsilon}(t))$ ,

Assume that the equation (1.2) satisfy the assumptions similar to Assumptions
3.2 and 3.3 (with $¥mathbb{R}^{l}¥mathrm{x}¥mathbb{R}^{d}$ in place of $¥mathbb{R}^{d}$ ), in particular, that $F_{w,¥pi}^{t}y=Y_{w,x,y}^{0,0}(t)$ bave
a $C^{2}$ dependence on $w$ , $x$ , for all $w$ , $x$ they are Axiom A flows in a neighborhood $¥mathcal{W}$

which contains a basic hyperbolic attractor $¥Lambda_{w,x}$ for $F_{w,x}^{t}$ and3$¥mathcal{W}$ itself is contained
in the basin of $¥Lambda_{w,x}$ . Set

(5.2) $¥overline{B}_{w}(x)=¥overline{B}(w, x)=¥int B(w, x_{,}y)d^{¥mathrm{SRB}}¥mu_{w,x}(y)$

where $¥mu_{w,x}^{¥mathrm{SRB}}$ is the SRB measure for $F_{w,x}^{t}$ and let $¥overline{X}^{(w)}$ be the solution of the averaged
equation

(5.3) $¥frac{d¥overline{X}^{(w)}(t)}{dt}=¥overline{B}_{w}(¥overline{X}^{(w)}(t))$ .

First, we apply averaging and large deviations estimates in averaging from the previ-
ous section to two last equations in (5.1) freezing the slowest variable $w(¥mathrm{i}.¥mathrm{e}$ . taking
for a moment $¥delta=0$). Namely, set $¥hat{X}(t)=X_{w,x,y}^{5,0}(t/¥hat{¥epsilon})$ and $¥hat{Y}(t)=Y_{w,x,y}^{¥overline{¥epsilon},0}(t/¥epsilon)$ so
that

(5.4) $¥frac{d¥hat{X}^{¥prime}(t¥}}{dt}=B(w,¥hat{X}(t)¥}¥hat{Y}(t))$

$¥frac{d¥hat{¥mathrm{Y}}(t)}{dt}=¥epsilon^{-1}b(w,¥hat{X}(t),¥hat{Y}(t))¥wedge$

Suppose that $l$ $=1$ , $d=2(¥mathrm{i}.¥mathrm{e}.$
$W^{¥Xi¥delta}$, is one dimensional and $X^{¥xi ¥mathrm{i}¥delta}$, is two dimen-

sional) and that the solution $X^{(w)}(¥neq)$ of (5.3) has the limit set consisting of two
attracting points $K_{1}^{w}$ and $K_{1}^{w}$ and a separatrix (separating between their basins). Let
$S_{0T}^{w}(¥gamma^{l})$ , $¥gamma¥subset ¥mathbb{R}^{d}$ be the large deviations rate functional for the system (5.4) defined
in the previous section (see (4.4) and set for $i_{7}j=1_{7}2$ ,

(5.5) $R_{ij}(w)=¥inf¥{S_{0T}^{w}(¥gamma) : ¥gamma¥in C_{0T}, ¥gamma_{0}=K_{i}^{w}, ¥gamma_{T}=K_{j}^{w}, T¥geq 0¥}$
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(cf. with $R_{ij}$ in Theorem 4.3). Put $x_{i}=K_{i}^{w}$ ,

(5.6) $¥overline{B}_{i}(w)=¥int B(w, x_{i}, y)d^{¥mathrm{SRB}}¥mu_{w,x_{i}}(y)$

and assume that for all $w$ ,

(5.7) $¥overline{B}_{1}(w)<0$ and $¥overline{B}_{2}(w)>0$

which means that $W_{w,aj}^{¥Xi,¥delta},(yt)$ decreases (increases) while $X_{w,x_{)}y}^{¥Xi¥delta},(t)$ stays close to $K_{1}^{w}$

(to $K_{2}^{w}$ ) for “most” $y$ ’s with respect to $¥mu_{w,x}^{¥mathrm{SRB}}$ and also with respect to the Riemamnian
volume on $M$ restricted to 1V.

The proof of the following statement is not written yet with all details and so it is
called here an assertion rather than a theorem.

5.1. Assertion. Suppose that there exist strictly increasing and decreasingfunctions
$w_{-}(r)$ and $w_{+}(r)$ , respectively, so that

$R_{12}(w_{-}(r))=R_{21}(w_{+}(r))=r$

and $w_{-}(¥lambda)=w_{+}(¥lambda)=w^{*}for$ so}ne $¥lambda>$ Owhile $w_{-}(r)<w^{*}<w_{+}(r)$ for r $<¥lambda$ .
Assume that $¥delta¥rightarrow 0$ and $¥epsilon¥rightarrow 0$ in such a way that

(5.8) $¥lim_{¥epsilon,¥delta¥rightarrow 0}¥delta¥epsilon¥ln¥epsilon^{-1}=¥rho<¥Lambda$ .

Thenfor any w,x there $¥mathrm{e}_{¥dot{¥tilde{¥mathrm{A}}}^{P}}$ists $t_{0}>0$ so that the slowest motion $W_{w,x,y}^{¥epsilon,¥delta}(t+t_{0})$ , t $¥geq$

$0$ converges weakly (as $¥epsilon$ , $¥delta¥rightarrow 0$ so that (5.8) holds true) as a random process
on the probability space $(M^{SRB}, ¥mu_{w,x})$ (or on $(¥mathcal{W}, m_{¥mathcal{W}})$ where $m_{¥mathcal{W}}$ is the normalized
Riemannian volume on $¥mathcal{W}$) to a periodic function $¥Psi(t)$ , $¥Psi(t+T)=¥Psi(t)$ with

$ T=T(¥rho)=¥int_{w_{-}(¥rho)}^{w_{+}(¥rho)}¥frac{dw}{|¥overline{B}_{1}(w)|}+¥int_{w_{-}(¥rho)}^{w_{+}(¥rho)}¥frac{dw}{|¥overline{B}_{2}(w)|}.¥cdot$

A heuristic explanation of this result is the following. When the intermediate
motion $¥overline{X}^{¥epsilon,¥delta}$ is close to $K_{1}^{w}$ the slowest motion $W^{¥mathrm{s},¥delta}$ decreases until $w=w_{-}(¥rho)$

where $R_{12}(w)=p$. In view of (4.14) and the scaling (5.8) between $¥epsilon$ and $¥delta$ , a
moment later 712(w) becomes less than $¥rho$ and $¥tilde{X}^{¥epsilon,¥rho}$ jumps immediately close to
$K_{2}^{w}$ . There $¥overline{B}_{2}(w)>0$ , and so $W^{¥dot{¥circ},¥delta}$ starts to grow until it reaches $w$ $=w_{+}(¥rho)$

where $ R_{21}(w)=¥rho$ . A moment later $R_{21}(w)$ becomes smaller than $¥rho$ and in view
of (4.14) $J¥tilde{¥mathrm{Y}}^{¥Xi,¥delta}$ jumps immediately close to $K_{1}^{w}$ . This leads to a close to periodic
behavior of $W^{¥overline{e},¥delta}$ .

6. LIMIT THEOREMS

In this section we return to the system (1.1) under Assumptions 3.2 and 3.3 and
will discuss imit theorems type results such as a Gaussian and a diffusion approx-
imations of the slow motion and moderate deviations for the error in averaging.
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These results have been proved for the uncoupled case but in the fully coupled case
they mostly remain as conjectures.

It follows from [19] that under Assumptions 3.2 and 3.3 for each $x¥in ¥mathbb{R}^{d}$ and
$i$ , $j=1$ , $¥ldots$ , $d$ the limit

(6.1) a $ij(x)=¥lim_{t¥rightarrow ¥mathrm{oo}}¥frac{1}{t}¥int_{¥mathrm{A}_{¥alpha}}d¥mu_{x}^{¥mathrm{S}¥mathrm{R}¥mathrm{B}}(y)(¥int_{0}^{t}(B_{i}(x_{3}F_{x}^{u}y)-¥overline{B}_{i}(x))$ du

$¥int_{0}^{t}(B_{j}(x, F_{x}^{v}y)-¥overline{B}_{j}(x))dv)$

exists and the matrix $a(x)=(a_{¥mathrm{t}j}(x))_{¥iota,j=1,¥ldots,d}$ is nonnegative definite. More-
over, combining [19] and [10] we conclude that $a(x)$ is $C^{2}$ in $x$ and there ex-
ists a Lipschitz continuous symmetric matrix $¥sigma(x)$ such that $¥sigma^{2}(x)=a(x)$ (cf.
[22] $)$ . Set $Z;$ ,$y(t)=X;$,$y(t/¥epsilon)$ and $¥overline{Z}_{x}(t)=¥overline{X}_{x}^{¥epsilon}(t/¥epsilon)$ where $¥overline{X}^{¥Xi}$ satisfies (1.5) with
$¥overline{B}(x)=¥int B(x, y)d¥mu_{x}(¥mathrm{S}^{¥tau}¥mathrm{R}¥mathrm{B}y)$ and notice that $¥overline{Z}$ does not depend on $¥epsilon$ . For each fixed
$x$ define the stochastic process

(6.2) $¥xi_{x}^{¥overline{c}}(t, y)=¥epsilon^{-1/2}(Z_{x,y}^{¥epsilon}(t)-¥overline{Z}_{x}(t)),$ $t¥in[0, T]_{7}y$ $¥in ¥mathcal{W}$

on the probability space $(¥mathcal{W}_{,}m_{¥mathcal{W}})$ with $¥mathcal{W}$ introduced in Assumption 3.2 and mW
being the normalized Riemannian volume there.

6.1. Conjecture. For eachfixed x the process $4_{x}^{¥zeta}(t_{2}¥cdot)$ , t $¥in[0, $T] weakly converges
as $¥epsilon¥rightarrow 0$ to $a¥mathbb{R}^{d}$ -valued Gaussian Markov process $¥xi_{x}^{0}(t)$ on $(¥mathcal{W}, $m) satisfying the
equation

(6.3) $¥xi_{x}^{0}(t)=G_{x}^{0}(t)+¥int_{0}^{t}¥nabla¥overline{B}(¥overline{Z}_{x}(s))¥xi_{x}^{0}(s)ds$

where $(¥nabla¥overline{B}(x))_{ij}=¥frac{¥partial¥overline{B}_{i}(x)}{¥partial x_{¥mathrm{j}}}$ and $G_{x}^{0}(t)$ is a Gaussian process with independent in-
crements, zero expectation artd the covariance matrix $.¥int_{0}^{t}a(¥overline{Z}_{x}(s))ds$ .

In the uncoupled case this result was proved in [19] with $¥mu^{¥mathrm{SRB}}$ in place of the
Riemannian volume but it can be obtained for the latter, as well. In the probabilistic
setup when fast motions are nondegenerate diffusion processes in place of Axiom
A flows this result follows from [4], [5] and [6]. In the discrete time fully coupled
setup (1.8) (with $F_{x}=¥Phi(x, ¥cdot)$ being Axiom A diffeomorphisms or expanding trans-
formations) the corresponding counterpart of the assertion of Conjecture 6.1 can be
derived by a slight extension of arguments from [4] and [5]. In the continuous time
fully coupled setup the assertion is highly plausible but there are substantial techni-
cal difficulties to justify it rigorously.

Next we will discuss Hasselmann’ $¥mathrm{s}$ diffusion approximation of the time changed
slow motion $Z_{x,y}^{¥Xi}(t)$ which was suggested in [14].
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6.2. Conjecture. For each $¥epsilon>0$ and x there exists a Brownian motion $W(t)$ (de-
pending on $¥epsilon$ and x) defined ore the product probability space

(6.4) $(¥Omega, ¥mathcal{F}, P)=([0_{3}1],¥&, $Leb)x($¥mathcal{W}$ , Z3, $m_{¥mathcal{W}}$ )
(where 5 is the corresponding Borel $a$ -field) such that if. $S^{5}(t)=S_{¥mathrm{J};}^{¥overline{e}},(t)$ is the solu-
tion of the stochastic di ferential equation

(6.5) $dS^{5}(t)=¥overline{B}(S^{¥overline{c}}(t))dt+¥mathrm{v}¥overline{¥epsilon}¥sigma(S^{¥epsilon}(t))dW(t)$ , $S^{¥xi j}(0)=x$

and $Z_{iE}^{¥Xi},¥cdot(t)$ is extended to the product (6.4) in the trivial way so that it does not
depend on thefirstfactor then

(6.6) $E¥sup_{0¥leq t¥leq T}|Z;$ ,
$¥cdot(t)-S_{x}^{¥Xi}|^{2}¥leq C_{i,T}¥epsilon^{1+¥delta}$

for any sufficiently small $¥delta>0$ where $C_{¥delta,T}>0$ does not depend on $¥epsilon>0$ .

Observe, that the diffusion $¥mathit{3}^{¥Xi}$ provides a better approximation of the slow mo-
tion $Z^{¥overline{e}}$ than the averaged motion $¥overline{Z}$ but, in fact, Hasselmann suggested this approx-
irnation in [14] hoping to employ it in the study of rare transitions of $Z^{¥epsilon}$

$(¥mathrm{with}$

represented climate in his model) between attractors of $¥overline{Z}$ as described in Section 4.
Alas, it turns out that $Z^{¥Xi}$ and $S^{¥epsilon}$ have different large deviations rate functionals and
the latter cannot describe the former on exponentially large in $ 1/¥epsilon$ time intervals
(see [22] and [24]). This becomes especially clear if we observe that for each $t$ $>0$

the diffusion $S^{¥epsilon}(t)$ can be arbitrarily far away with a small but relevant for large de-
viations probability though $Z^{¥xi j}(t)$ cannot be farther away from the initial point than
$Lt$ with $L$ taken from (3.1). In the uncoupled case the above assertion was proved
in [24] (see also [22]). In the fully coupled probabilistic setup with fast motions
being nondegenerate diffusions the assertion of the last conjecture was proved in
[6]. Combining the machinery of [4], [5], and [6] this assertion can be derived also
in the fully coupled discrete time setup (with $F_{x}=¥Phi(x, ¥cdot)$ in (1.8) being Axiom
A diffeomorphisms or expanding transformations). Again, in the continuous time
fully coupled setup formulated above the assertion is highly plausible but its proof
is not known yet.

Finally, we will discuss moderate deviations. Namely, consider

(6.7) $4_{x,y}^{¥epsilon,¥kappa}(t)=¥epsilon^{;_{¥dot{¥mathrm{t}}}-1}(Z_{x,y}^{¥zeta}(t)-¥overline{Z}_{x}(t))$ .

The case $n$ $=1/2$ is considered in Conjecture 6.1. The study of the case $ri$ $=1$

leads to the large deviations setup. The intermediate case $1/2<¥kappa<1$ corresponds
to moderate deviations asymptotics. Assume that the matrix $a(z)$ defined by (6.1)
is invertible for all $z$ (it suffices to take $z$ with $|z|<LT$ where $L$ comes from
Assumption 3.3). Set

(6.8) $S_{0T}^{x}(¥gamma)=¥frac{1}{2}l^{T}(a(¥overline{Z}_{x}(t))^{-1}(¥dot{¥gamma}_{t}-¥nabla¥overline{B}(¥overline{Z}_{x}(t))¥gamma_{t}), (¥dot{¥gamma}_{t}-¥nabla¥overline{B}(¥overline{Z}_{x}(t))¥gamma_{t}))$
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(where ( $¥cdot$ , $¥cdot$ ) denotes the inner product) if $¥gamma_{t}$ is absolutely continuous in $t$ and we put
$ S_{0T}^{x}(¥gamma)=¥infty$ for other 7’s from the space $C_{0T}^{0}$ of continuous curves $¥gamma$ in $¥mathbb{R}^{d}$ defined
on $[0, T]$ with $¥gamma_{0}=0$ . For each $a¥geq 0$ set

$¥Gamma_{0T}^{a,x}=¥{¥gamma¥in C_{0T}^{0} $:$ S_{0T}^{x}(¥gamma)¥leq a¥}$

and let $¥rho_{0T}(¥gamma,¥varphi)=¥sup_{0¥leq t¥leq T}|¥gamma_{t}-¥varphi_{t}|$ .

6.3. Conjecture. For any $¥kappa¥in(1/2_{¥mathrm{J}}1)$ , $ a_{¥mathrm{J}}¥delta$ , $¥lambda>0$ , x $¥in ¥mathbb{R}^{d}$ and $¥gamma¥in C_{0T}^{0}$ (where
exists $¥epsilon_{0}>0$ such thatfor $¥epsilon<¥epsilon_{0}$ ,

(6.9) $m¥mathcal{W}¥{y:¥rho_{0T}(¥xi_{x,y}^{¥overline{e},¥kappa},¥gamma)¥leq¥delta¥}¥geq¥exp(-¥epsilon^{1- 2¥kappa}(S_{0T}^{x}(¥gamma)+¥lambda))$

and

(6.10) $m_{¥mathcal{W}}¥{y:¥rho_{0T}(¥xi_{x}^{¥overline{¥in}¥kappa}:_{y},¥Gamma_{0T}^{a,x})¥geq¥delta¥}¥leq¥exp(-¥epsilon^{1-2¥kappa}(a-¥lambda))$ .

In the uncoupled case this assertion was proved in [19]. In the fully coupled
discrete $¥mathrm{ti}$ me case for $¥kappa$ sufficiently close to 1/2 the assertion can be derived em-

ploying the Cramer type asymptotics from [4] and [5]. Again, in the fully coupled
continuous time case the assertion has not been justified rigorously as yet
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