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Abstract

Two scenarios leading to chaos and turbulence in high symmetric flow are de
scribed. Exploiting the symmetries and the divergence free condition the number of
degrees of freedom, and thereby the computational effort, is reduced by a factor of
about 300 compared to general direct simulation of fluid flow. This allows for bifur-
cation analysis at the transition points. At the first transition a sequence of torus
doublings leads to temporal chaos, but the flow doesn’t become turbulent. At lower
viscosity the Ruelle Takens scenario is followed and we are at the onset of turbulence.
Some differences between these transitions are discussed in the light of bifurcation
theory of invariant tori.

1 Introduction

Direct numerical simulation of flows at high Reynolds number requires solving large sys-
tems of differential equations. For the solutions to be realistic the smallest resolved spatial
scale should be of the same order as the typical size of the smallest vortices, a few times
Kolmogorov’s dissipation scale. As the total number of degrees of freedom scales as the
cube of the ratio of the largest to the smallest resolved scale the limitations of memory size
and computation time are soon met. One way around this problem is to impose spatial
symmetries on the solutions.

In the absence of boundaries the incompressible Navier-Stokes equations axe invariant
under translations $(\mathbb{R}^{3})$ , rotations (SO(3)) and reflections $(\mathbb{Z}_{2}^{3})$ . In Kida (1985) a subgroup
of symmetries consisting of three finite rotations and three reflections is imposed on the
solutions in a periodic box. In terms of finite truncations in Fourier space his reduces the
number of independent modes by a factor of about 200. The resulting flow displays fully
developed turbulence for low viscosity, whereas only a few hundred degrees of freedom are
necessary to capture spatial scales small enough for reliable simulation. High symmetric
flow was subsequently used to explore the statistics of turbulent motion at moderate
Reynolds numbers (Kida & Murakami, 1989) and to find evidence for the Ruelle-Takens
(1971) scenario at the transition from regular to chaotic motion Kida et al. (1989).

In the latter paper a combination of forward time integration and power spectra was
used to study the transitions. Three-periodic motion was shown to occur as an intermedi-
ary state between quasi periodic and aperiodic motion. This was shown to happen at least
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twice. At high viscosity temporal chaos ensues but the velocity profile remains simple. At
lower viscosity vortices on small scales develop and turbulence sets in. In this work we will
take a closer look at the bifurcation scenarios leading to chaos and turbulence, focusing
on the differences between the transitions at high viscosity and low viscosity.

Using bifurcation analysis, Poincare sections and power spectra we show that at high
viscosity a sequence of torus doubling bifurcations leads to chaos. Beyond this transition
the behaviour alternates between periodic, quasi periodic and chaotic for small variations
of viscosity. Reducing viscosity further we find an interval with stable periodic motion and
then a second transition to chaos. Here, the Ruelle-Takens scenario is followed. Beyond
this transition point the flow starts to look turbulent as small scale vortices develop.
The behaviour near the transition points is discussed in the light of bifurcation theory of
invariant tori as presented in Broer et al. (1990).

2 The vorticity equation for high symmetric flow

Consider an incompressible fluid in a periodic box $0<x_{1}$ , $x_{2}$ , $x_{3}\leq 2\pi.$ In terms of the
Fourier representation of velocity and vorticity,

$\mathrm{v}=\mathrm{i}\sum_{\mathrm{k}}\tilde{\mathrm{v}}(\mathrm{k})\mathrm{e}^{\mathrm{j}\mathrm{k}}$

.,
$\omega$

$= \sum_{\mathrm{k}}\tilde{\omega}(\mathrm{k})\mathrm{e}^{\mathrm{i}\mathrm{k}}$

” (1)

we have

$3\tilde{\omega}_{1}$.(k) $=\epsilon_{\dot{l}jk}k_{j}k_{l}$ $v\overline kvl-\nu 7$ $2_{\tilde{\omega}_{i}}(\mathrm{k})$ $k_{i}\tilde{u}_{\dot{l}}=0$ $\tilde{\omega}_{\dot{l}}(\mathrm{k})$ $=$ -\epsilon ijk $k_{j}\tilde{v}*(\mathrm{k})$ (2)

where $\nu$ is the kinematic viscosity and the tilde denotes the Fourier transform. In terms
of the standard norm energy and enstrophy are given by

$E= \frac{1}{2}||\mathrm{v}||^{2}$ $Q$ $= \frac{1}{2}||\omega||^{2}$ (3)

respectively.
Now consider the following discrete symmetry operations: Si, reflections in the planes

$\mathrm{Z}$ given by $x_{i}=\pi$ and $R_{\dot{4}}$ , rotations over $\pi/2$ radiants about the lines $l_{i}$ : $Cj$
$=\pi/2\mathrm{f}\mathrm{o}\mathrm{r}j\neq i.$

The periodic domain with planes of reflection axes of rotation is shown in figure (1).
Suppose the $x$-component of the velocity field is given in the box $[0, \pi/2]$ $\mathrm{x}[0, \pi/2]\mathrm{x}[0,\pi/2]$ .
Applying the symmetry operation $R_{2}\circ R_{3}$ yields the $y$-component and $(R_{2}\circ R_{3})^{-1}$ the
$\mathrm{z}$-component in that box. Subsequently $R_{1}$ , $R_{1}^{2}$ , $R_{1}^{3}$ , $R_{2}^{2}$ , $R_{2}^{3}$ , $R_{3}^{3}$ and $R_{1}^{2}\circ R_{3}$ yield the
velocity field on the box $[0, \pi]$ $\mathrm{x}[0,\pi]\cross[0,\pi]$ and finally the reflections $S_{1}$ , $S_{2}$ , $S_{2}\circ S_{1}$ , $S_{3}$ ,
$S_{1}\mathrm{o}S_{3}$ , $S_{2}\circ S_{3}$ and $S_{1}\circ S_{2}\circ S_{3}$ fill up the whole periodic domain. Thus only one out of
three components in a volume fraction $1/4^{3}$ determines the whole flow, which reduces the
computational effort by a factor 192. The divergence free condition is more conveniently
handled in Fourier space.

Symmetry operations $S_{}$ and $R_{i}$ introduce linear relations between the Fourier comp0-

nents of vorticity. First of all we have

$\tilde{\omega}_{1}(k_{1}, k_{2}, k_{3})=\tilde{\omega}_{2}(k_{3}, k_{1}, k_{2})=\tilde{\omega}_{3}(k_{2}, k_{3}, k_{1})$ (4)
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Figure 1: Left: the domain $[0, \pi]$ $\mathrm{x}[0,\pi]\mathrm{x}[0, \pi]$ with the axes of rotation $l_{1,2}$,s drawn in. Right:
the domain $[0, 2\pi]$ $\mathrm{x}[0,2\pi]\mathrm{x}[0,2\pi]$ with the planes of reflection $V_{1,2,3}$ drawn in. If one component
of the vorticity field is specified in the box delimited by the dotted line, the full field on the periodic
domain follows from symmetry.

so that we may consider only one component. This scalar function is even or odd in its
arguments :

$\tilde{\omega}1(k_{1}, k_{2}, k_{3})=\tilde{\omega}1(-k_{1}, k_{2}, \mathrm{c}_{3})=-\tilde{\omega})(k_{1}, -k_{2}, k_{3})=-\tilde{\omega}1(k_{1}, k_{2}, -k_{3})$ (5)

and finally we have

$\tilde{\omega}_{1}(k_{1}, k_{2}, k_{3})=\{$

$-\tilde{\omega}_{1}(k_{1}, k_{3}, k_{2})$ for $k_{1}$ and $k_{2}$ and $k_{3}$ even,
$\tilde{\omega}_{1}(k_{1}, k_{3}, k_{2})$ for $k_{1}$ and $k_{2}$ and $k_{3}$ odd,
0otherwise.

(6)

We consider a cubic truncation, i.e. $|k1,2,3|\leq N.$ Relations $(4)-(6)$ reduce the number of
independent Fourier modes of vorticity by a factor of 192 in the leading order, that is $N^{3}$ .
There is, however one more linear relation which allows for further reduction, namely the
divergence free condition for vorticity. With the aid of relation (4) it reads

$k_{1}\tilde{\omega}_{1}(k_{1}, k_{2}, k_{3})+k_{2}\tilde{\omega}_{1}(k_{2}, k_{3}, k_{1})+k_{3}\tilde{\omega}_{1}(k3, k_{1}, k_{2})=0$ (7)

Taking maximal advantage of relations $(4)-(7)$ we consider only Fourier components of $\omega_{1}$

in the fundamental domain $\{\mathrm{k}\in l^{3}|k_{3}>k_{2}, k_{3}\geq k_{1}, k_{1}\geq 0, k_{2}>0, k_{3}\leq N\}$ . A sketch
of this domain is shown in figure (2). The number of independent modes is reduced by a
factor of 288 in the leading order. These components satisfy the following equation

$\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\omega}_{1}(k_{1}, k_{2}, k_{3})=k_{2}k_{3}(\tilde{S}(k_{3}, k_{1}, k_{2})-\tilde{S}(k_{2}, k_{3}, k_{1}))+k_{1}k_{2}\tilde{T}(k_{2}, k_{3}, \mathrm{c}_{1})$

$-k_{3}k_{1}\tilde{T}(k_{3}, k_{1}, k_{2})+(k_{2}^{2}-k_{3}^{2})\tilde{T}(k_{1}, k_{2}, k_{3})$ $-\nu k^{2}c\tilde{\omega}_{1}(k_{1}, k_{2}, k_{3})$ (8)

where $\tilde{S}$ and $\tilde{T}$ are the Fourier transforms of

$S(x_{1},x_{2}, x_{3})=$ $()1(x_{1},x_{2},x_{3})^{2}$ $T(x_{1}, x_{2},x_{3})=$ vl $(x_{2}, x_{3},x_{1})v_{1}(x_{3}, x_{1}, x_{2})$ (9)
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Figure 2: Wave vectors corresponding to independent amplitudes $\tilde{\omega}_{1}(\mathrm{k})$ . Shown are the first four
levels in $k_{3}$ , starting at the smallest wave vector $\mathrm{k}=(1,1,3)$ . Solid: odd sub lattice. Open: even
sub lattice.

and
$k^{2}\tilde{v}_{1}=k_{2}\tilde{\omega}_{1}(k_{3}, k_{1}, k_{2})-k_{3}\tilde{\omega}_{1}(k_{2}, k_{3}, k_{1})$ (10)

Energy in supplied by fixing the low order odd mode $\tilde{\omega}1(1,1,3)=-3/8$ . Thus we obtain
a family of dynamical systems with one parameter, $\nu$ , and a number of degrees of ffeedom
given by

$n(N)=\{)$ $\frac{2}{\frac{32}{3}}(+(\frac{\frac 2N)^{3}N-1}{2})^{3}\frac{1}{+2}(\frac{N}{2(})\frac{7}{\%}\frac{N}{2-}\frac{3}{2}\frac{N-12-}{2})\frac{1}{6}(\frac{N-1}{2})$

if $N$ is odd
if $N$ is even (11)

3 Numerical considerations

In performing time integrations we avoid the use of the pseudo spectral method commonly
employed for three dimensional simulations. Due to the reduction of the number of degrees
of freedom the direct method is not much slower and yields a simple, transparent code
and easy access to the Jacobian for integration of the linearised system. The code is
composed of two parts. First, all nonlinear interaction coefficients are computed for a given
truncation level $N$ . This is done by looping over all resonant triads for a given Fourier
component and mapping all resonant modes onto the fundamental domain by symmetries
$(4)-(6)$ and relation (7). This process takes up to a few minutes for truncation levels up
to $N=21,$ the highest resolution considered in Kida et al. (1989). After that a seventh
to eighth order Runge-Kutta-Felbergh scheme with step size adjustment is employed for
integration. The use of a high order method might seem odd for such large systems but
as it turns out that the step size adjustment more than makes up for the larger number
of evaluations of the vector field, 13 compared to 4 for fourth-0rder Runge-Kutta.

The following experiment was done to check this. If we do not fix $\overline{\omega}1$ (1, 1, 3) in time
and set $\nu=0$ kinetic energy $E$ is conserved. The fourth-0rder and high order Runge
Kutta method were employed to integrate the conservative system over an interval $\Delta t$

much larger than the typical time scale of factuations, which is $\mathrm{O}(1)$ . The error tolerance
for the energy conservation was fixed to $\kappa\sim$ . For the high order method this is done by

specifying the local error tolerance, for $\mathrm{t}\mathrm{h}.arrow\underline{!}\gamma \mathrm{w}$ order method by choosing a small enough
step size. For realistic 0(1) levels of the energy, $\Delta t\approx 10^{3}$ a $\mathrm{d}$ $\epsilon=10^{-9}$ it is found that
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Figure 3: Band-averaged enstrophy spectra near the transitions to chaos (see section (4)). Ob
tained from an integration of $10^{3}$ time units, $\log$-linear scale in normalised units. Left: at the first
transition, $\mathrm{I}\mathrm{I}arrow \mathrm{I}\mathrm{I}\mathrm{I}$ in figure (4). Right: at the second transition, $\mathrm{V}arrow \mathrm{V}\mathrm{I}$ .

the average step size of the high order method is about ten times the required step size
of the low order method. As many of the results presented here are based on rather long
time integrations it important to keep the error tolerance low. The seventh to eighth order
long -Kutta-Felbergh scheme has been shown to be extremely reliable, see for instance
Tuwankotta & Quispel (2003), where this scheme is shown to be as accurate as, albeit
slower than, problem-specific symplectic methods in a nearly integrable problem.

Below simulations are performed with a viscosity in the range $0.004<\nu<0.01$ and
the truncation level fixed to $N=15.$ We computed the energy and the enstrophy, as well
as Taylor’s micr0-scale Reynolds number, $R_{\lambda}$ , and Kolmogorov’s dissipation length scale,
$\eta$ , defined by

$R_{\lambda}= \sqrt{\frac{10}{3}}\frac{E}{\nu\sqrt{Q}}$ $\eta=\sqrt[4]{\frac{\nu^{2}}{2Q}}$ (12)

As a rule of thumb the ratio $\eta||k||_{\max}$ has to be $0(1)$ for the truncation error to be
negligible. In the viscosity range explored here it varies in the range $1.3>\eta||k||_{\max}>$ 0.63.
To make sure the truncation level is high enough to describe the transitions to chaos, the
focus of this research, we computed the band-averaged enstrophy spectra at the transition
points, they are shown in figure (3). At the small scales an exponential decay is visible,
indicating that our numerical results are reliable. The time average micr0-scale Reynolds
number varies from $R_{\lambda}\approx 55$ to $R_{\lambda}\approx 27,$ indicating that on the lower end of the viscosity
scale we are at the onset of turbulence.

In addition to time integration we applied numerical bifurcation analysis to this system.
For this end we use the software package AUTO (Doedel et $\mathrm{o}\mathrm{Z}.$ , 1986). This software is not
designed to handle large systems and a scaling needs to be introduced for computation of
the determinant of the Jacobian (Doedel, 2003).
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Figure 4: Limit point diagram in the range $0.01>\nu>$ 0.004. Visible is the transition $\mathrm{I}arrow \mathrm{I}\mathrm{I}$ from
periodic to quasi periodic, $\mathrm{I}\mathrm{I}arrow \mathrm{I}\mathrm{I}\mathrm{I}$ to chaotic, $\mathrm{I}\mathrm{I}\mathrm{I}arrow \mathrm{I}\mathrm{V}$ back to periodic, $\mathrm{I}\mathrm{V}arrow \mathrm{V}$ to quasi periodic
and $\mathrm{V}arrow \mathrm{V}\mathrm{I}$ to $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{b}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}$ . In region $\mathrm{m}$ the behaviour alternates between chaotic and two
or three periodic while the spatial structure of the flow remains simple.

4 Transitions to chaos and turbulence

The focus of the present paper is the transition from regular to chaotic and turbulent
behaviour for decreasing viscosity. In Kida et al. (1989) two and three periodic motion
was found which implies that the Ruelle-Takens scenario is followed. It was also shown
that, after an initial transition to temporal chaos regular (periodic) motion sets in. $\mathrm{A}\mathrm{f}rightarrow$

ter a second transition the spatial behaviour becomes more complicated and turbulence
develops. That work was mainly based on forward time integration, power spectra and
measurement of the micro scale Reynolds number. In addition to these instruments we
employ bifurcation analysis to take a closer look at the transitions.

For large viscosity an equilibrium state is the global attractor for this system. At /83

0.0113 a Hopf bifurcation occurs in which a stable periodic orbit is created. To get a first
impression of the transitions from periodicity to chaotic and turbulent motion we computed
a limit point diagram in the range $0.01>\nu>$ 0.004 of the Poincare map on the plane given
by $\tilde{\omega}(0,2,4)=$ 0.005. The integration time was $\Delta t=1000$ for each parameter value, after
a transient time of 100 time units, using the last point at the previous viscosity as initial
value. The limit point diagram is shown in figure (4). Two parameter ranges with periodic
behaviour can be seen: one for $\nu>$ 0.0105 and one around $\nu=$ 0.0068. A continuation
of these periodic orbits in parameter $\nu$ is shown in figure (5). The branch which is stable
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Figure 5: Continuation of two branches of periodic solutions, one created in Hopf bifurcation $\mathrm{H}$

and one not connected to a branch of equilibria. Period versus viscosity. Thick lines denote stable
orbits, thin lines unstable orbits. SN denotes a saddle node bifurcation and NS a Neimark-Sacker
(torus) bifurcation.

around $\nu=$ 0.0068 does not bifurcate from an equilibrium. Both branches become unstable
in a Neimark-Sacker, or Torus bifurcation. Directly beyond these bifurcation points we
expect the behaviour to be quasi periodic, and indeed invariant circles appear in the
Poincare section, figure (4). The transitions which occur near bifurcation points NSi and
$\mathrm{N}\mathrm{S}_{2}$ are different and lead to different behaviour. In the following sections we will describe
the breakdown of the invariant tori in more detail.

4.1 The first transition to chaos: torus doubling bifurcations
As can be seen in figure (4) quasi periodic motion persists over a large parameter range to
the left of bifurcation point $\mathrm{N}\mathrm{S}_{1}$ . Theoretically we can expect the quasi periodic behaviour
to persist on a ffactal domain in parameter space, as proven in Broer et al. (1990)(part
$\mathrm{I})$ . Therefore we might see many transitions. Indeed, to the left of $\mathrm{N}\mathrm{S}_{1}$ we find periodic
(phase-locked) motion, $3arrow \mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}$ motion (as reported on in Kida et al. (1989)) and chaos.
Transitions between these regimes can be related to bifurcations of phase locked orbits, as
shown in Broer et al. (1998), or rather to bifurcations of the torus itself. In Broer et al.
(1990) (part $\mathrm{I}\mathrm{I}$) a partial theory of bifurcating tori is developed. In particular quasi periodic
saddle-node, period doubling and Hopf bifurcations are shown to occur generically if one
parameter is varied. The quasi periodic Hopf bifurcation corresponds to a transition to
3-periodic motion, whereas the quasi periodic periodic doubling (or torus doubling) results
either in two new, disjunct tori or in one new torus with one period doubled. The latter
bifurcation shows up in our system.

The first transition ffom quasi periodic to chaotic is shown in figure (6). The torus
doubles at least three times before a chaotic attractor shows up. Cascades of torus dou-
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Figure 6: Poincare sections near bifurcation point $\mathrm{N}\mathrm{S}\mathrm{i}$ . Integration time for each picture was
$\mathrm{O}(10^{3})$ . Prom a to $\mathrm{d}$ the invariant torus doubles three times whereas the motion remains quasi
periodic. At $\nu=$ 0.00834, picture $\mathrm{e}$ , the motion has become chaotic. Reducing the viscosity further
the torus reappears. In picture $\mathrm{f}$ it seems to be near breakdown.
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Figure 7: Energy spectrum obtained from an integration with $\nu=$ 0.00834 and $\Delta t=4\cdot$ $10^{3}$ .
On the left: low frequency domain with fundamental ffequency $\omega_{2}$ and harmonics $\omega_{2}/2^{k}$ . On the
right: high frequency domain with fundamental frequency $\omega_{1}$ and some combination peaks.

blings were reported on long before the normal form theory was developed, e.g. Kaneko
(1983); Franceschini (1983); Anishenko (1990). In spite of attempts to develop scaling
and normal form theory, as in Kaneko (1984); Arneodo et al. (1983), those studies were
mainly phenomenological and led to the conjecture that, in contrast to doubling cascades
of periodic orbits, only a finite number of torus doubling can occur before the torus is
destroyed and chaos ensues.

In figure (7) the period doubling the energy power spectrum is shown at parameter
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Figure 8: Poincare sections near bifurcation point $\mathrm{N}\mathrm{S}_{2}$ . Integration time for each picture was
$\mathrm{O}(10^{3})$ . From a to $\mathrm{b}$ we see the invariant circle double once but in $\mathrm{c}$ a third fundamental ffequency
has appeared in a quasi periodic Hopf bifurcation. In picture $\mathrm{d}$ the three periodic motion has
broken down and chaos is observed. Note, that the scales have been adjusted.

value $\nu=$ 0.00836, corresponding to Poincar\’e section $(6\mathrm{d})$ . Frequency $\omega_{1}$ lies close to the
period of the orbit that is stable for $\nu>$ 0.0105. In the low frequency range the other
fundamental frequency, $\omega_{2}$ is shown. The peaks at $\omega_{2}/2^{k}$ for $k=1,2,3$ are due to the
repeated period doubling. These harmonics also show up in combination peaks, as shown
around $\omega_{1}$ .

4.2 The second transition to chaos: quasi periodic Hopf bifurcation

Stable quasi periodic motion is again found beyond bifurcation point $\mathrm{N}\mathrm{S}_{2}$ (see figure (5)).
The corresponding invariant circle of the Poincare map is shown in figure (8a). If we
decrease the viscosity we first observe a torus doubling as described above. The double
invariant circle is shown in figure (8b). However, subsequent doubling bifurcations are not
found. Instead for slightly lower viscosity we find three periodic motion. A quasi periodic
Hopf bifurcation has occurred and a third fundamental ffequency has been created. The
three dimensional torus shows up in the Poincar\’e section as a thick invariant circle, see
figure $(8)\mathrm{c}$ . As was shown by Ruelle & Takens (1971) the three periodic motion is unstable
to perturbations and if we decrease viscosity further a chaotic attractor shows up $(8\mathrm{d})$ .
Thus, the second transition to chaos follows a scenario different from the first one.

The energy spectrum for three periodic motion is shown in figure (9). The first fun-
damental frequency, $\omega_{1}$ , is again related to the period of the orbit from which the torus
bifurcates. The second fundamental frequency, $\omega_{2}$ , has an associated peak, albeit rather
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Figure 9: Energy spectrum obtained ffom an integration with $\nu=$ 0.00834 and $\Delta t=4\cdot$ $10^{3}$ .
O $\mathrm{n}$ the left: low frequency domain with fundamental frequency $\omega_{2}$ and harmonics $i_{2/2^{k}}$ . On the
right: high frequency domain with fundamental frequency $\omega_{1}$ and some combination peaks.

weak, at $\omega_{2}/2$ due to the doubling bifurcation. The third fundamental frequency, $\omega 3$ , is
fairly small but we can see its harmonics. On the right hand side an enlargement around
$\omega_{1}$ is shown. The system is near 1 :11 resonance so that the peaks at $11\omega_{2}$ and $\omega_{1}$ almost
coincide. Combination peaks with the third fundamental frequency are shown around $\omega_{1}$

and $12\omega_{2}$ .

5 Conclusion
Taking full advantage of the symmetries and divergence ffee condition we have simulated
high symmetric flow at micro scale Reynolds numbers in the range $R_{\lambda}\approx 27-55$ . As
reported in Kida et al. (1989), we see intervals with stable periodic motion in this range,
followed by a transition to quasi periodic and, subsequently, chaotic motion for decreasing
viscosity. By the use of bifurcation analysis, Poincare sections and power spectra we have
shown that these transitions are different in nature. The first transition to chaos is due to
a sequence of torus doubling bifurcations. The theory of such cascades is as yet incomplete
and scaling laws similar to those for doubling cascades of periodic orbits haven not been
derived. The impression ffom numerical simulations and experiments is that only a finite
number of torus doublings can occur before chaos ensues (Arn\’eodo et al., 1983; Anishenko,

1990). In our system we observe three doublings, but further integrations might reveal
more doubling bifurcations, which would contribute to the formulation of scaling laws.

If we decrease viscosity beyond the first transition point we find an interval in pa-
rameter space with many transition between periodic, quasi periodic and chaotic motion.
This is in agreement with the theory formulated by Broer et al. (1990), which says that
quasi periodic motion will be stable on a fractal set in parameter space. In this region the
spatial structure of the flow remains simple and only large scale vortices arise.

The second transition is shown to follow the Ruelle-Taken (1971) scenario, periodic $arrow$?

tw0-periodic $arrow$ three periodic $arrow$? chaotic. Poincar\’e sections show that a chaotic attractor is
created which is large compared to the three dimensional torus destroyed in the transition
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process. This attractor persists for decreasing viscosity as the micro scale Reynolds number
exceeds 50 and turbulent motion sets in.

The difference in behaviour beyond the transition points through quasi periodic dou-
bling and quasi periodic Hopf bifurcations leads to the hypothesis that quasi periodic dou-
bling might induce temporal chaos but not turbulence, whereas the quasi periodic Hopf
bifurcation, introducing an extra fundamental frequency, can lead to turbulent motion.

In future work continuation of periodic orbits to low viscosity will be performed, hoping
to find periodic orbits embedded in the turbulent attractor.
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