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APPROXIMATION FOR RECONSTRUCTION OF HOMOGENEOUS
OBJECTS IN THE PLANE FROM THEIR TWO PROJECTIONS

TAKASHI TAKIGUCHI

ABSTRACT. In this article, we discuss problems in the reconstruction of the plane sets
from their two projections. We first study the reconstruction from the orthogonal pro
jections. We prove that if the orthogonal projections of a plane set $F$ are close to those
of some set $G$ which is uniquely determined from their orthogonal projections, then the
set $F$ itself is close to the uniquely determined set $G$ . In this case, an algorithm for
constructing approximate solutions is given. We also mention the reconstruction from
two projections which are not necessarily orthogonal.

1. INTRODUCTION

We discuss reconstruction of measurable plane sets from their two projections. Let
$F\subset \mathrm{R}^{2}$ be a measurable plane set such that $\lambda_{2}(F)<\infty$ , where $\lambda_{1}$. is the Lebesgue
measure on $\mathrm{R}\dot{i}$ . Let $f(x, y)$ be the characteristic function of $F$ . Define the horizontal and
the vertical projections of $F$ (or equivalently of $f$ ) as

(1) $PF(y):= \int_{-\infty}^{\infty}f(x, y)$ dx

and

(2) $QF$ (x) $:= \int_{-\infty}^{\infty}f(x, y)$ dy,

respectively. The reconstruction problem of measurable plane sets from their orthogonal
projections is as follows:

Problem 1.1. Given two non-negative, integrable functions $f_{1}$ and $f_{2}$ , find a measurable
plane set F such that PF $=f1$ and QF $=f_{2}$ almost everywhere.

This problem was first studied by $\mathrm{G}.\mathrm{G}$ . Lorentz [5] in 1949. He proved that the answers
to Problem 1.1 are classified into three cases; the pair $(f_{1}, f_{2})$ determines a unique set,
sets non-uniquely or no set, respectively. In 1988, A. Kuba and A. Volcic [3] gave $\mathrm{a}$

reconstruction formula for the uniquely determined sets. They also studied the structure
of non-uniquely determined sets (cf. [4]). In 1998, L. Huang and T. Takiguchi [1] proved
that the class of uniquely determined bounded sets are stable, applying which they also
gave an algorithm to construct approximate sets for the uniquely determined ones from
their orthogonal projections possibly containing noise and error.

In practical applications, however, it hardly happens that the set to be reconstructed
is a priori known to be uniquely determined. If the projections contain no error, it is
possible to judge whether the pair determines a set uniquely or not. In practice, however,
it is impossible to obtain the projections without noise and error. Therefore the best we
can hope is to construct an approximate set to the original one from a pair of orthogonal
projections with noise and error. In this article, we discuss this problem. More concretely,
we study the following problems.
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Problem 1.2.
(i): Give a sufficient condition for a non-uniquely determined set $F$ , by which we

can approimately reconstruct it from its projections possibly containing noise.
(ii): Give an algorithm to approximate such non-unique sets.

Since we may assume the existence of solutions in practical applications, what we have
to study is the approximation of non-unique solutions. If Problem 1.2 is solved, then we
can approximately reconstruct the sets satisfying the sufficient condition mentioned in
Problem 1.2, (i) from their orthogonal projections possibly containing noise and error.

In the second section, we review some known results on Problem 1.1 which are closely
related to our main purpose. In Section 3, we give a characterization of non-uniquely
determined sets having the same projections. Applying the characterization, we give an
answer to Problem 1.2, which is one of our main purpose in this article. In the final
section, we make concluding remarks and mention some problems left to be solved for
further development, among which we mention the reconstruction from two projections
which are necessarily not orthogonal. Throughout this article, unless mentioned otherwise,
all discussions are made up to sets of measure zero.

2. KNOWN RESULTS ON PROBLEM 1. 1

In this section, we review known results on Problem 1.1 which are closely related to our
theme in this article. In 1949, $\mathrm{G}.\mathrm{G}$ . Lorentz proved that the answers to the problem are
classified into three cases. He gave a characterization of each case in terms of projection
functions. For introduction of his result, let us prepare some definitions.

Definition 2.1. For non-negative, integrable functions $f_{1}(y)$ and $f_{2}(x)$ , define the pr0-
jection of $f_{1}$ by
(3) $f_{12}(x):=\lambda_{1}(\{y|f_{1}(y)\geq x\})$

for x $\geq 0$ and the projection of $f_{2}$ by

(4) $\mathrm{f}_{21}(y):=\lambda_{1}(\{x|f_{2}(x)\geq y\})$

for $y\geq 0.$ Similarly, the functions /121 and /212 are defined respectively as
(5) $f_{121}(y):=$ $\mathrm{X}_{1}$ $(\{x|f_{12}(x)\geq y\})$ ,

(6) $f_{212}(x):=\lambda_{1}(\{y|f_{21}(y)\geq x\})$ .
The functions $/12,$ $/21,$ /121 and $\mathrm{f}_{212}$ thus defined are clearly non-negative, non-increasing

and integrable.

Definition 2.2. (cf. [6]) A measurable function $f_{r}(x)$ is called a rearrangement of $f(x)$ if

(7) $\lambda_{1}(\{x|f(x)\geq y\})=$ $\mathrm{X}_{1}(\{x|f_{r}(x)\geq y\})$

for all $y$ .
The functions $f121$ and $f_{212}$ are rearrangements of $f_{1}$ and $f_{2}$ , respectively.

Definition 2.3. (cf. [6]) For a measurable function $f$ , let
$f^{*}(y):=\lambda_{1}(\{x|f(x)\geq y\})$

(8)
$f^{**}(x):= \mathrm{e}\mathrm{s}\mathrm{s}.\sup\{y|f_{x}(y)\geq x\}$ .

We call $f^{**}(x)$ the decreasing rearrangement of $f(x)$
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We can then show that $fi_{21}$ and $f_{212}$ are the decreasing rearrangement of $f_{1}$ and $f_{2}$ ,
respectively. $\mathrm{G}.\mathrm{G}$ . Lorentz’s result is as follows:

Theorem 2.1. Let $f_{1}(y)$ and $f_{2}(x)$ be non-negative, integrable functions such that

(9) $\int_{-\infty}^{\infty}f_{1}(y)dy=\int_{-\infty}^{\infty}f_{2}(x)$ dx.

(i) The unique case.
There exists a unique set in $\mathbb{R}^{2}$ which has $(f_{1}, f_{2})$ as projections if and only if

(10) $\int_{0}^{c}f_{12}(x)dx=l^{c}f_{212}(x)$ dx, for any $c>0.$

(ii) Tie non-unique case.
There exist plural sets having $(f_{1}, f_{2})$ as projections if and only if

(11) $\int_{0}^{\mathrm{c}}f_{12}(x)dx\geq\int_{0}^{\mathrm{c}}f_{212}(x)$dx, for any $c>0,$

and there is a $c>0$ for which the strict inequality holds.

(iii) The inconsistent case.
There exists no set having $(f_{1}, f_{2})$ as projections if and only if

(12) $\int_{0}^{\mathrm{c}}$ fi2 $(x)dx$ $< \int_{0}^{c}f_{212}$ (x)dx, for some c $>0.$

For the unique case, A. Kuba and A. Volcic [3] gave a reconstruction formula in 1988.

Theorem 2.2. If a measurable set F is uniquely determined by a pair of its projections
$(f_{1}, f_{2})$ , then

(13) $F=\{(x, y)|f_{1}(x)\geq f_{12}(f_{1}(y))\}$

up to a set of measure zero.

In the same paper [3], they also gave a characterization of non-uniquely determined
sets. For a measurable set $P\subset \mathbb{R}^{2}$ , define the horizontal and the vertical translations of
$P$ by

$P_{(s,0)}:=\{(x, y)|(x-s, y)\in P\}$ ,
(14)

$P_{(0,t)}:=\{(x, y)|(x, y-t)\in P\}$ .
A plane set $F$ is called to have $(P, P^{12};P^{1}, P^{2})$ as a switching component if there exist
four sets $P$, $P^{1}$ , $P^{2}$ , $P^{12}$ (of positive measure) and two real numbers $s$ , $t$ $\neq 0$ such that

(15) $P^{1}=7’ s$ ,0), $P^{2}=P_{(0,t)}$ , $P^{12}=$ 7’(s,t)

and that
(16) $(P\cup P^{12})\subseteq F,$ $(P^{1}\cup P^{2})\cap F=\emptyset$ .

Let a set $F$ have $(f_{1}, f_{2})$ as projections and $(P, P^{12};P^{1}, P^{2})$ as a switching component.
By to sitch the switching components $(P, P^{12};P^{1}, P^{2})$ in $F$ , we mean the procedure of
making another set $\tilde{F}:=(F\cup P^{1}\cup P^{2})\backslash (P\cup P^{12})$ which has the same projections as $F$ .

Theorem 2.3. (cf. [3]) A measurable plane set having a finite measure is non-uniquely
determined by its projections if and only if it has a switching component.
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In 1998, L. Huang and the author proved the stability in the class of uniquely determined
bounded sets.

Theorem 2.4. (cf. [1]) Let $f_{1}$ , $f_{2}$ , !/1 and $g_{2}$ be non-negative, essentially bounded inte-
grable functions. Assume that the pairs of projections, $(fi, f_{2})$ and $(g_{1}, g_{2})$ , uniquely de-
termine measurable plane sets $F$ and $G$ (with characteristic functions $f$ ( $x$ , et) and $g(x,$ $y)$ ),
respectively. Then we have

(17) $||f$ -g $|| \mathrm{Z}^{1}(1\mathrm{R}^{2})\leq C\cdot\max\{||f_{1}-g_{1} ||L"(1\mathrm{R}), ||f_{2}-g_{2}||_{L^{\infty}(1\mathrm{R})}\}’$.
where

$C= \max\{9(||f_{1}||_{L^{\infty}(\mathrm{R})}+||g_{1} ||L\infty(\mathrm{X}))$ $+3(||f_{2}||_{L(\mathrm{R})}\infty+||g_{2} ||L\infty(\mathrm{X}))$ ,

(18) 9 $(||f_{2}||_{L\infty(\mathrm{R})}+||g_{2}||L-(\mathrm{X}))$ $+3(||f_{1}||_{L\infty(\mathrm{R})}+||g1||L"(\mathrm{X}))$ ,
6( $||f_{1}||_{L^{\infty}(1\mathrm{R})}+||g_{1}$ $||L"(\mathrm{t})$ $+||f_{2}$ $||_{L}$”(x) $+||g_{2}$ $||L"(\mathrm{i})$ ) $\}$ .

In the same paper, they also gave an algorithm to construct an approximate solution
to Problem 1.1 from their orthogonal projections, in the case where the set to be re-
constructed is a priori known to be uniquely determined. Let us review their algorithm.
Their idea will be applied to construct an approximate solution for non-unique sets in the
fourth section, which is one of the main purposes in this article.

First, consider the case where the set $F$ to be reconstructed is a direct sum of finite
rectangles whose sides are parallel to the x- and y- axes. Let $f$ have $(f_{1}, f_{2})$ as projections
and

$F_{x}:=\{(x, y)|0<y<f_{2}(x)\}$ ,
(19) $F_{y}:=\{(x, y)|0<x<f_{1}(y)\}$ ,

$F_{yxy}:=$ $\{(x, y)|0<y<f_{212}(x)\}$ .

The sets Fx, $F_{y}$ and $F_{yxy}$ are direct sums of finite rectangles. Let

(20) $F_{yxy}=F_{yxy}^{1}\oplus\cdots\oplus F_{yxy}^{N}$ ,

where

(21) $F_{yxy}^{\dot{*}}=[x_{yxy}^{i}, x_{yoxy}^{i}+h^{i})\mathrm{x}[!\mathit{1}_{xy}, y\mathit{1}_{xy}+k^{i})$ , $i=1,2$ , $\cdot\cdot$ 1, $N$,

where $k^{1}\geq k^{2}\geq$ . . . $\geq k^{N}$ and $y_{yxy}’.=0$ for any $i=1,2$ , $\cdot$ . , $N$ . In the simple case where
for $F_{yxy}^{i}$ , there exist rectangles

$F_{x}^{1}$

.
$=[xi, x_{x}^{i}+h^{\dot{1}})$ $\mathrm{x}[y_{yxy}^{\dot{1}}, y_{yxy}^{i}+k^{j})\subset F_{x}$

(22)
$F_{y}^{*}=[x_{yxy}^{i}, x_{yxy}^{i}+h^{i})\mathrm{x}[y_{y}^{i}, y_{y}^{j}+k^{:})\subset F_{y}$

such that $F_{yxy}^{\dot{1}}$ , $F_{x}^{i}$ and $F_{y}^{1}$

.
are congruent. In this case the counterpart in $F$ is reconstructed

as
(23) $F^{i}=[x_{x}^{\dot{*}}, x_{x}^{i}+h^{i})$ $\mathrm{x}[y_{y}^{j}, y_{y}^{i}+k^{i})$ .

In the general case where there may exist several rectangles

(24) $F_{x^{1}}^{\dot{*}}$ , $\cdots,\dot{P}_{x}^{m}$ in the strip $y_{yxy}^{\dot{*}}\leq l$ $<y_{yxy}^{i}+k^{:}$

and

(25) $F_{y^{1}}^{i}$ , $\cdot\cdot$ , $F_{y^{n}}^{\dot{1}}$ in the strip $x_{yxy}^{i}\leq x<x_{yxy}^{}+h^{i}$ ,
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wIlere
$F_{x}^{i_{\alpha}}=[x_{x}^{i_{\alpha}}, x_{x}^{i_{\alpha}}+h^{i_{\alpha}})\mathrm{x}[y_{yxy}^{1}, y_{yxy}^{i}+k^{i})$ ,

(27)
$F_{y}^{j_{\beta}}=[x_{yxy}^{i}, x_{yxy}^{i}+h^{t})\mathrm{x}[f$)y’, $y_{y}^{i}’+k^{i_{\beta}}$ ),

such that $F_{x^{a}}^{i}\cap F_{x}^{i_{\beta}}=F_{y}^{i_{\alpha}}\cap F_{y}^{i_{\beta}}=$ $1$ for $\alpha\neq\beta$ and

(27) $h^{i_{1}}+\cdot$ . . $+h^{i_{m}}=h,$ $k^{i_{1}}+\cdot$ . . $+k”$ $=k.$

In this case, the counterpart of $F_{x^{a}}^{\dot{*}}$ and $F_{y}^{i_{\beta}}$ in $F$ is reconstructed as

(28) $F_{x}^{i_{\alpha.\beta}}=[x_{x}^{\dot{*}_{\alpha}}, x_{x}^{i_{\alpha}}+h^{i_{\alpha}})\mathrm{x}[y_{y}^{i\rho}, 1\mathrm{v}’+k^{i_{\beta}})$

and the counterpart of $F_{yxy}^{\dot{1}}$ in $F$ is reconstructed as

(29)
$F^{i}= \sum_{\alpha,\beta}F_{x}^{\prime_{\alpha,\beta}}$

.
.

Thus

(30) $F= \sum_{i=1}^{N}F^{\dot{*}}$

is the set to be reconstructed.

In the general case where $F$ is not a direct sum of rectangles, we have only to approxi-
mate $f_{1}$ , $f_{2}$ and /212 by suitable step functions. For more detail, confer [1].

Note that this algorithm is able to be applied to a pair of orthogonal projections with
noise and error if the pairs are a priori known to determine a set uniquely.
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3. AN ANSWER TO PROBLEM 1.2

In this section, we first give a characterization of non-uniquely determined sets which
have the same projections. Applying this characterization, we will give an answer to
Problem 1.2.

Proposition 3.1. Assume that a pair ofprojections $(f_{1}, f_{2})$ determines sets non-uniquely.
Take a set $F$ whose projections are $(f_{1}, f_{2})$ . Then any set having $(f_{1}, f_{2})$ as projections is
obtained by switching the switching components in $F$ countable times.

For the proof of this proposition, confer [7]. Let us prove that a non-uniquely determined
set is approximately reconstructed if their projections are close to those of a uniquely
determined set. This is one of our main purposes in this article.

Theorem 3.1. Assume that the non-unique pair $(f1, f_{2})$ of projections, $f1$ , $f_{2}\in L^{1}\cap$

$L^{\infty}(\mathrm{R})$ , satisfies

(31) $||f_{12}-f_{212}||_{L^{1}(\mathrm{R})}<\epsilon$ .

Then there eists a uniquely determined set $G$ such that

(32) A2 $(G \ominus F)<2\epsilon\min\{||f_{1}||_{L(\mathrm{R})}\infty, ||f_{2}||L"(\mathrm{X})\}$ ,

for any set $F$ having $(f_{1}, f_{2})$ as orthogonal projections.

The pair $(f_{1}, f_{2})$ determines a plane set uniquely if and only if /12 $\equiv f_{212}$ almost
everywhere. Therefore we call that the pair $(f_{1}, f_{2})$ is close to a uniquely determined one
when the inequality (31) holds for a small $\epsilon$ $>0.$

Let us show the sketch of the proof of Theorem 3.1. Let

$\hat{g}$212(x) $:= \min\{f_{12}(x), f_{212}(x)\}$ ,
(33)

$G_{yxy}:=$ $\{(x, y)|0<y< g_{212}(x)\}$ .

The essential idea for the proof is to construct the pair of functions $(g_{1}, g_{2})$ such that

(34) $||f_{:}$ $-g_{\dot{*}}||_{L^{1}(\mathrm{R})}<\epsilon$ , for $i=1,2$

and that

$(35)$ $g12$ $\equiv/212$ $\equiv\hat{g}$212.
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By definition, the pair $(g_{1}, g_{2})$ determines the set $G$ uniquely. The set $G$ is proved to
satisfy (32). For more detail, confer [7].

The following theorem follows from Theorem 3.1.

Theorem 3.2. Assume that two sets $F_{1}$ and $F_{2}$ have the same projections $(f_{1}, f_{2})$ which
are non-unique and satisfy (31). Then there holds

(36) $\lambda_{2}(F_{1}\ominus F_{2})\leq 4\epsilon$ $\min\{ ||f_{1}||_{L^{\infty}(\mathbb{R})}, ||f_{2}||L"(\mathrm{X})\}$ .

By virtue of Theorems 3.1 and 3.2, we obtain an answer to Problem 1.2.

Theorem 3.3. (an answer to Problem 1.2)
In order to approximately reconstruct non-unique sets whose projections satisfy (31), we
have only to approximate $G$ defined in the proof of Theorem 3.1. Since $G$ is uniquely
determined, we can apply the method by Huang-Takiguchi to construct approximate sets
for uniquely determined $seb$ from their projections, as we have mentioned in the second
section.
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4. cONCLUSIONS AND OPEN PROBLEMS

Let us conclude conclusions.

Conclusion 4.1.

(i): We have proved that we can approimately reconstruct the sets whose orthogonal
projections are close to those of the uniquely determined ones.

(ii): In practical applications, we may assume the existence of solutions. Therefore
even if we obtain inconsistent projections by the effect of noise, the construction of
approximate solution is possible by approximating $G$ in the proof of Theorem 13.

(iii): As a method to approimate G, we can apply an algorithm by Huang-Takiguchi
as we mentioned above.

(iv): The results in this article do not require a priori information on the set itself
Only projections possibly with noise are required.

In view of these, our work made the study of Problem 1.1 more practical. However,
our results are still not sufficiently satisfactory, since they cover only the limited cases.

In the rest of this article, we discuss what are to be studied for further developments.
If we consider orthogonal projections, there are many sets which are neither uniquely
determined, nor approximated by a uniquely determined set. Consider, for instance, the
set

(37) $F:=\{(x,$y)|y $<x<y+1,0<y<1\}$ .

..

Though this set is a typical example of non-uniquely determined ones, we can recon-
struct this set uniquely from its two projections if we rotate the y- axis by -7r/4. In order
to explain this example, let us prepare some definitions.
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Definition 4.1. For $-\mathrm{t}\mathrm{t}/2$ $<\alpha$ , $\beta<\pi f2$ $(\alpha<\pi/2+ \mathrm{f}1)$ , let

$7_{1}^{(\alpha,\beta)}(y’):= \int_{-\infty}^{\infty}7$ $(-y’\sin\beta \mathit{1} t\cos\alpha, y’\sin\beta+t\sin\alpha)$ dt,

(38)
$f_{2}^{(\alpha}$

’a)
$(x’):= \int_{-\infty}^{\infty}f(x’\cos\alpha-t\cos\beta, x’\sin\alpha+t\sin a)dt$,

where $x’=(x’, \alpha)$ , $y’=$ $(y’, \pi/2+ \beta)$ in the polar coordinate.

Definition 4.2. For $f_{1}^{(\alpha,\beta)}$ , $f_{2}^{(\alpha,\beta)}$ defined in Definition 4.1, we define the projections of
them by

$71_{2}^{\alpha,@)}(x):=\lambda_{1}(\{y|f_{1}^{(\alpha,\beta)}(y)\mathit{2}x\})$ ,
$f_{21}^{(\alpha}’$

”) $(y):=\lambda_{1}(\{x|f_{2}^{(\alpha,\beta)}(x)\geq y\})$ ,
(39)

$f_{12}^{(\alpha}\mathrm{i}^{\beta)}(y):=\lambda_{1}(\{x|f_{12}^{(\alpha,\beta)}(x)\geq y\})$ ,
$f_{212}^{(\alpha,\beta)}(x):=\lambda_{1}(\{y|f_{21}^{(\alpha,\beta)}(y)2x\})$.

Definition 4.3.
$\int_{-\infty}^{\infty}f^{(\alpha,\beta)}(x’)\overline{dx’}:=\int_{-\infty}^{\infty}f^{(\alpha}$

”)
$(\mathrm{t})\cos(\beta-\alpha)$dt,

(40)
$\int_{-\infty}^{\infty}f^{(\alpha,\beta)}(y’)\overline{dy’}:=\int_{-\infty}^{\infty}f^{(\alpha,\beta)}(t)\cos(\alpha-\beta)$ dt.
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For these rotated axes, we obtain the following modification of the theorem by $\mathrm{G}.\mathrm{G}$ .
Lorentz.

Theorem 4.1. Let $f_{1}^{(\alpha,\beta)}(y’)$ and $f_{2}^{(\alpha,\beta)}(x’)$ be non-negative, integrable functions such that

(41) $\int_{-\infty}^{\infty}f_{1}^{(\alpha,\beta)}(y’)\overline{dy’}=\int_{-\infty}^{\infty}f_{2}^{(\alpha}$
’ ’)

$(x’)\overline{dx}’$ .

(i) The unique case.
There exists a unique set in $\mathrm{R}^{2}$ which has $(f_{1}, \mathrm{j}_{2})$ as projections if and only if

(42) $\int_{0}^{c}f_{12}^{(\alpha}$

’f’)
$(x’) \hat{dx}’=\int_{0}^{c}f_{212}^{(\alpha,\beta)}(x’)\overline{dx}’$ , for any $c>0.$

(ii) Tie non-unique case.
There exist plural sets having $(f_{1}^{(\alpha,\beta)}, f_{2}^{(\alpha,\beta)})$ as projections if and only if

(43) $\int_{0}^{c}f_{12}^{(\alpha}$

’f’)
$(x’) \overline{dx’}\geq\int_{0}^{c}f_{212}^{(\alpha,\beta)}(x’)\overline{dx}’$, for any $c>0,$

and there is a $c>0$ for which the strict inequality holds.
(iii) The inconsistent case.
There exists no set having ( $f_{1}^{(\alpha,\beta)}$ , $f_{2}^{(\alpha}$

’fj)
$)$ as projections if and only if

(44) $\int_{0}^{c}f_{12}^{(\alpha,\beta)}(x’)\overline{dx’}<\int_{0}^{e}f_{212}^{(\alpha,\beta)}(x’)\overline{dx’}$ , for some $c>0.$

Let us go back to the example (37). The pair of projections of $F$ which makes $F$ uniquely
determined is of course not orthogonal. The first problem we pose is the following.

Problem 4.1. For any non-unique set $F$ , do there eist directions $\alpha$ and 4 such that
rotating the $x$ - $wis$ by $\alpha$ and rotating the $y$ -axis by $\beta$ make $F$ uniquely reconstructed from
the projections to the rotated axes

The author expects that this problem is affirmatively solved. Even if the answer to
Problem 4.1 is not true, there are sets, like the one defined by (37), which are made to
be uniquely determined by rotating the axes. For practical applications, we have to find
such angles a and 4 only from the projections $(f_{1}, f_{2})$ , not from $F$ itself, which is our
next problem to pose.

Problem 4.2. Assume that for a non-unique set $F$, do there exist such angles $\alpha$ and $\beta$

that rotating the $x$ -axi8 by $\alpha$ and rotating the $y$ -axis by $\beta$ make $F$ uniquely reconstructed
from the projections to the rotated azes ? If they do exist, find such angles $\alpha$ and $\beta$ frorn
the orthogonal projections $(fi, f_{2})$ and some additional projections.

The orthogonal projections $(f_{1}, f_{2})$ are trivially not sufficient to determine the angles
$\alpha$ and $\beta$ . Hence some additional information will be necessary. We note that we do not
have to obtain the exact values of $\alpha$ and 4 for practical applications. Their approximate
values are sufficient.

If the Problems 4.1 and 4.2 are solved, construction of approximate solutions is possible
since we can modify an algorithm by Huang-Takiguchi.

Theorem 4.2. An algorithm by Huang-Takiguchi mentioned in the second section works
in the framework of rotated axes.

In this theorem, we approximate sets by parallelograms, not by rectangles. The essential
idea is the same as in the case of orthogonal projections.
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