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On a subclass of n-starlike functions

Mugur Acu!, Shigeyoshi Owa’

ABSTRACT. In 1999, S. Kanas and F. Ronning introduced the classes of functions starlike
and convex, which are normalized whit f(w) = f'(w)—1 = 0 and w is a fixed point in U. In [1] the
authors introduced the classes of functions close to convex and a=convex, which are normalized
in the same way. All this definitions are somewhat similar to the ones for the uniformly type
functions and is easy to see that for w = 0 are obtained the well-known classes of starlike,
convex, close to convex and a-convex functions. In this paper we continue the investigation of

the univalent functions normalized with f(w) = f'(w) — 1 = 0, where w is a fixed point in U.
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1 Introduction

Let H(U7) be the set of functions which are regular in the unit disc U = {z € C: |z| < 1},
A={feHU): f0)=f(0)—1=0}and S={f € A: fis univalent in U}.
We recall here the definitions of the well - known classes of starlike and convex func-

tions:

. R0 eu)
S {feA.Ref(z) >0, zeUy,

S":{feA:Re(i+ff,—(z)> >0, zeU}
F'(2)
Let w be a fixed point in U and A(w) = {f e H({U) : f(w) = f'(w) -1 =0}.
In [3] S. Kanas and F. Ronning introdiced the following classes:
S(w) = {f € A(w): f is univalent in U}

ST(w) =S (w) = {fES(w) :Re&?%ﬁzl>0 , zEU}

CV(w)=8(w) = {f € S(w):1 +Re£—z—_—-%(g—,lz—)~ >0, z€ U}.

It is obvious that exists a natural ” Alexander relation” between the classes S*(w) and
Se(w):
g € S°(w) if and only if f(z) = (2 — w)g'(2) € §"(w).



Let denote with P(w) the class of all functions p(z) = 1 + Z B, - (2 — w)" that are

regular in U and satisfy p(w) =1 and Re p(z) >0 for 2z € U.

2 Preliminary results
If is easy to see that a function f(.) € A(w) have the series expansions:
f(2) = (z — w) + ag(z — w)? + ...

In [8] J. K. Wald gives the sharp bounds for the coefficients B, of the function p €
P(w):

Teorema 2.1 Ifp(z) € P(w), p(z) =1+ ZB" (2 — w)", then

n=1

(1) |Bn| <

(1+d)?1 2 where d = |w| and n > 1.

Using the above result, S. Kanas and F. Ronning obtain in [3]:

Teorema 2.2 Let f € S*(w) and f(z) = (2 — w) + by(z — w)? 4 ... Then

2 3+d
(9) Ibzl < dz ) lb3l < (1 +d2)2 ’
) 2 (2+d)(3+4d) 1 (2+d)(3+d)(3d+5)
|b4] < 3 A=dp bs| < g (1= @)

where d = |w|.

Remark 2.1 It 4s clear that the above theorem also provides bounds for the coefficients
of functions in S°(w), due to the relation between S°(w) and S*(w).
In [1] are also defined the following sets:

D(w) = {z €U: Re|Z| <lendRe [(z f(;;gl”)_ Z)] > o} forw # 0and D(0) = U;

s{w) ={f : D(w) = C} N S(w); s*(w) = S*(w) N s(w)

where w is a fixed point in U.
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The authors consider the integral operator L, : A(w) — A(w) defined by

-/F(t)-(t—w)“"ldt, ZER, a>0.

w

1+a
(2 —w)e

(3) f(z) = LoF(z) =

The next theorem is results of the so called ”admissible functions method” introduced
by P. T. Mocanu and S. S. Miller ( see [3], [4], [5])-

Teorema 2.3 Let h conver in U and Re[Bh(z) + ] > 0, z € U. Ifp € H({U) with
p(0) = h(0) and p satisfied the Briot - Bouguet differential subordination

< h(z) , then p(z) < h(z).

3 Main results

Definition 3.1 Let w be a fized point in U, n € N. We denote by D}, the differential
operator:
Dy : A(w) — A(w) with:

Dy f(z) = f(2)
D, f(z) = Duf(2) = (z — w) - f'(2)
D, f(2) = Dy (D37 1(2)) -

o0

Remark 3.1 For f € A(w), f(w) = (z—-w)+ Zaj (2 — w), we have
=2
Dyf(s)=(z=w)+)_i" 05 (z ~w).
=2

It easy to see that if we take w = 0 we obtain the Sdldgean differential operator (see [7]).

Definition 3.2 Let w be a fized point in U, n € N and f € S{w). We say that f is a

n-w-starltke functions if
D)
Re X~ 7
D3 f(z)
We denote the cluss of all this functions by Sk(w).

>0,zeU.
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Remark 3.2 1. Sj(w) = 8*(w) and S§(0) = S;, where S} is the class of n-starlike
functions introduced by Sdldgean in [7].

2. If f(2) € Sy(w) and we denote D}, f(z) = g(z), we obtain g(2) € S*(w).

8. Using the class s(w), we obtain s;,(w) = Sg(w) N s(w).

Teorema 3.1 Let w be a fired point in U and n € N. If f(2) € s, (w) then f(2) €
(w). This means

*
kel

Sna1(w) C s7(w).
n+2f( )

Procf. From f(z) € s}, {(w) we have ReD n 1 f () >0,z€eU.
= D ()
We denote p(z) = Ok where p(0) =1 and p(z) € H(U).
We obtain: v
Di**f(z) _ Duw (Dy*'f(2)) _
DiHif(z) — Du(D3f(2))
_ (—w)(DHe) _ (D)

z=w)(Daf(2)) ~ (Dpf(2)
P(z) = (Dg+f(2))' - (Dpf(2)) = (Dgz“f(Z)) - (Daf(z)
(D3 f(2))
_ (D) (Daf®) (2) - (Daf(z)
(D3f(2)  Duf(2) Dy*f(2)

Thus we have:

) () = PR (z=w) - (DRf(2)) . (z=w) - (DBf(2) _
( )P ) (D3 f(2)) D3 f(z) p(z) Drf(z)

(s = w)-p() = LIy b

(Dzf(2))
and
Dz ) _ L
Dzr)) T T e
D2 f(z) . 1 _ ; 142
i‘om ReD,’},“f(z) > 0 we obtain p(2) + e (z—w)-p(2) < —
p(z) + lzp'(Z) < ii—’j = h(z), with h(0) =
o PG) i

From hypothesis we have Re I: o -h(z)} > 0, and thus from Theorem 2.3 we

obtain p(z) < h(z) or Rep(z) > 0. This means f € si(w).
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Remark 3.3 From Theorem 3.1 we obtain s%(w) C sj(w) € S*(w), n € N.

Teorema 3.2 If F(z) € s;(w) then f(z) = L F(z) € S;(w), where L, is the integral
operator defined by (3).

Proof. From (3) we obtain
(1+a) F(z) =a- f(2) + (- w)- £(2).
By means of the application of the operator D™*! we obtain
(L+a)- D' F(2) = a- D* f(2) + D (2 — w) - f'(2)]

or
(14a) - DIFF(z) = a- DEF f(2) + D2 f(2).

Similarly, by means of the application of the operator D] we obtain

(1+a)- DLF(2) = a- DLf(z) + DLP(2).

Thus
‘ | Dyf(z) DEfG) | DRtE)
Di¥F(z) _ Dyflf(z) Dij(s) ' Dif(z)
DIF() Dy
D3 f(z)
Using the notation De(z) = p(z), with p(0) = 1, we have
D f(:) ? K
(z—w)-p(s) _ Dgs(z) .
Wo  Dpife) MY
or Dn+2f( ) (,,__w)_pl(?)
D) PO T
Thus ( ()
‘ z—w)p'(z
gy 2 o+ ES
DnF(z) p(z)+a B
= p(a) + —— 2L
wp(z) + 1 w
Sz Tz
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DitF(z) 14z _

From F(z) € s}(w) we obtain Do () ST = h(z) or
ap' (2
pe) + —— 2 g
; wh(2) + —

1
From hypothesis we have Re { - h(z) + —-9-7,7} > 0 and from Theorem 2.3 we
1—— 1-—-

A~

Drtif(y |
obtain p(z) < h(z) or Re {?“’r—?f(—%l} >0,z € U. This means f(z) = L, F(z) € Si{w).
Remark 3.4 If we consider w = 0 in Theorem 3.2 we obtain that the integral operator
defined by (3) preserve the class of n=starlike functions, and if we consider w = 0 and
n = 0 in the above Theorem we obtain that the integral operator defined by (3) preserve

the well-knoun class of starlike functions.

Teorema 3.3 Let w be a fizred point in U and f € S, (w) with f(z) = (z — w) + Za-j (z—w).
j=2

Then we have:
1
laa| < I l=d)
las| < _Ei’_‘f__a_ ;
3n. (1 - d2)
(24+d)(3+d) |
22n=1.3.(1 —d2)*’
2 +d)(3+d)(3d 4+ 5)
5.6 (1— @)}

lag| £

las| <

where d = |w|.

Proof. From Remark 3.2 for f € S} (w) we obtain

(4) D f(z) = g(z) € §"(w).
hod »
If we consider g(z) = (z — w) + Z b; - (z — w)’ , using Remark 3.1, from (4) we obtain
=2

iea;=b;,5=23, ...

1
Thus we have a; = — - b;, j =2,3, ..., and from the estimates (2) we get the result.
In
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