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The Jacobian conjecture is along standing problem in algebraic geometry. The conjecture

was formulated by O. H. Keller in 1939 (see the excellent surveys by Bass-Connell-Wright[l]

and van den Essen[2] $)$ , and also listed as one of 18 mathematical problems for 21st century

by Steve Smale[3]. Mathematicians hope to unlock its mystery. Here we propose anetwork

perspective of tlle Jacobian conjecture.

One of the fundamental tasks of biology is to understand cell differentiation. Recent bi0-

logical progress, including the regulation of genes, gives as new insights into the mystery of

differentiation. In 1961, Jacob and Monod[4] had discovered that genes coupled of promoters

can act as switches to turn the genes on and off. (It was the work for which they later won the

Nobel Prize in Physiology or Medicine.) As one gene is turned on, it leads to the production

of proteins that can work upon the promoters of other genes. Every cell contains anumber

of such regulatory genes, and triggers agene network coupled of complicated interactions.

Each gene is regarded as abasic processing unit in the network; it has two states the

“on” state of gene $i$ is denoted by $x_{i}=1$ , and the “off’ state is represented by $x_{i}=0$ . For

anetwork made up of $n$ genes, the state of the network is thus determined by the vector

$x=$ $(\mathrm{x}\mathrm{i}, x_{2}, \ldots, x_{n})^{T}$ , and the $n$-cube $\{0_{\backslash }1\}^{n}$ is the network’s phase space.

Atype of cell resulting from cell differentiation might be associated with apermanent ex-

pression of corresponding genes. In that case, we have the transition function $F$ : $\{0, 1\}^{n}arrow$

$\{0,1\}^{n}$ associated with the gene network, and each choice of the steady state of $\Gamma\sqrt \mathrm{w}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{d}$ re-

spond to an assembly of genes guiding the differentiation of cells (a steady state has no change
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under any updating of genes). This motivates us to have a mathematical interpretation of cell

differentiation on the finding of multiple steady states of the gene network. A famous conjec-

ture to characterize the structural properties for the occurrence of multiple steady states is

proposed $\mathrm{b}.\mathrm{v}$ Ren\’e Thomas in 1981 [5].

Thomas’ Conjecture. A necessary condition for the occurrence of multiple steady states

of gene $ne,twor\mathrm{A}^{\tau}$ is the presence of a positive circuit among complicated interacting genes.

Let us introduce the notion of discrete derivative of $F$ evaluated at $x\in\{0,1\}^{n}$ , that is,

$F’(x)=(f_{i_{J}}(x))$ ,

where $f_{ij}(x)=1$ if $f_{i}(x)\neq f_{i}(\overline{x}^{j})$ , and $f_{ij}(x)=0$ otherwise. Here $\tilde{x}^{j}$ means the changing

state of $j\mathrm{t}\mathrm{h}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{t}$ of $x$ . For a discrete $F’(x)$ , we have a corresponding interaction graph

$G(F’(x))$ . The following theorem is a reformation of a combinatorial version of the Jacobian

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{e}(.\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}_{\mathrm{L}}^{1}7]$ .

Theorem 1. Given a complex network of interacting $n$ genes and let $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$

be the transition function associated with the network. If F has multiple steady states or has

no steady states, then circuits exist in an interaction graph $G(F’(x))$ for some $x\dot{\iota}n\{0,1\}^{n}$ .

A further study of Theorem 1 will be given by adding a sign to each edge in the interaction

$\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}1_{1}G(F’(x))$ and counting the attribution of each circuit lurking in $G(F’(x))$ . A new graph

method would be applied to solve the Thomas’ Conjecture in full generality, and will appear

$\mathrm{i}_{11}$ the forthco ming pape by Shih&Tsai.

For an $n\cross n$ Ol-m atrix $A$ , the boolean spectral radius of $A$ , denoted as $\rho(A)$ , is defined to

be the maximum of boolean eigenvalues of $A$ . One can prove that $\rho(A)=0$ iff $G(A)$ has no

circuits. Thus Theorem 1 has the following analytic boolean counterpart[7].

Theorem 2. Let $F:\{0_{\backslash }1\}^{n}arrow\{0,1\}^{n}$ . If $\mathrm{p}(\mathrm{F}’\{\mathrm{x}))=0$ for all $x$ in $\{0, 1\}^{n}$ , then $F$ has $a$

unique fixed point.
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Theorem 2 answers to the “Combinatorial Fixed Point Conjecture”, a combinatorial version

of the Jacobian conjecture[6].

To prove Theorem 2, we need the following lemma[7]. Let $x\in\{0,1\}^{n})$. for each $\mathrm{A}$ . $=1,2$ , $\ldots$

$n-1$ and for each choice of $k+1$ distinct integers $i_{1}$ , $\ldots$ , $i_{k+1}$ (which are arranged in any

order) from $\{$ 1, $\ldots$ , $n\}$ , we define

$x[\{i_{1}, \ldots, i_{k}\}|i_{k+1}]\equiv$ { $y\in\{0,1\}^{n};y_{i_{k+1}}=x_{\mathrm{i}_{k+1}}$ , $y_{j}=x_{j}$ for all $j\neq i_{1,\ldots,7_{h}}$. } $\backslash$

$x[\{?_{1}, \ldots, i_{h}\}|\overline{i}_{k+1}]\equiv$ { $y\in\{0,1\}^{n};y_{i_{k+\mathrm{l}}}=\overline{x}_{\mathrm{z}_{k+1}}$ , $y_{j}=x_{j}$ for all $j\neq A_{1}$ , $\ldots$ , $i_{k}$ , $i_{k+1}$ }.

We call $x[\{i_{1}, \ldots, i_{k}\}|i_{k+1}]$ a $k$-subcube generated by $x$ .

Lemma. Let $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$ . If $\rho(F’(x))=0$ for all $x$ in $\{0, 1\}^{n}$ , then for each

$x$ in $\{0, 1\}^{n}$ and for each $k=1$ , $\ldots$ . $n-1$ and for each choice of $k+1$ distinct $?,nte.q_{C\mathit{7}\mathrm{S}}$
.

$i_{17}$ . . . , $i_{k+1}$ (which are arranged in any order) from $\{$ 1, . . . , $n\}$ , tftere exists a unique point

$\alpha\in x[\{i_{1}, \ldots , i_{k}\}|i_{k+1}]$ such that $f_{j}(\alpha)=\alpha_{j}$ for all $j=i_{1}$ , $\ldots$ , $i_{k}$ . (Geometrically, this

means that the image of this element $\alpha$ belongs to $n$ hypercube which is a kind of $‘.\mathit{0}\mathit{7}\theta\iota ogonal$

”

to the k-subcube.)

The spectral condition “$\rho(F’(x))=0$ for all $x\in\{0, 1\}^{n}$
” implies that $F$ leaves a llllique

point invariant. And on toward microscopic perspectives: the spectral condition also $\mathrm{i}_{1}\mathrm{n}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{s}^{\urcorner}$

that for each $k=1\ldots$ . ’ $n-1$ and for each $k$-subcube the boolean function $F$ leaves. a unique

point in the $k$-subcube having $k$ components invariant in a very regular pattern indeed. This

lemma triggers us to understanding the collective behavior in systems of many components

interacting simultaneously. Finally, the author wishes to thank Professor Christophe Soule

(at IHES in Paris) for informing that Theorem 2 fits nicely in Rell\’e $\mathrm{T}1_{1}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{s}$
’ Conjectur\"e,
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