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XOR Boolean Networks
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We propose to study the dynamics of XOR Boolean network. We focus on the
characterization of global convergence in the entire space of a unique attractor. We study the
global dynamic behavior by exploring certain properties of synaptic matrix and then we can get
the relationship between the XOR Boolean network and the general Boolean networks.

Key Words: XOR Boolean network; global convergence; unique attractor; Global dynamic
behavior.

This work was supported in part by the National Science Council of Taiwan and in part by the Tainan Women’s
College of Arts and technology.(Project No.92-21 15-M-165-001).

E-mail : 20054@ms.twcat.edu.tw

1. INTRODUCTION

The automata networks are introduced by W. McCulloch, S. Ulam and J. von Neumann to
model phenomena studied in physics and biology. In 1943 the neurophysiologist W. McCulloch
and a mathematician W. Pitts published a paper entitled ”A Logical Calculus of the Ideas
Immanent in Nervous Activity”[1]. In that paper, McCulloch and Pitts claimed that the brain
could be modelled as a network of logical operations such as AND, OR, XOR, NOT, and so
forth. We call this particular case of automata networks are the McCulloch-Pitts automata.
Actually, the McCulloch-Pitts automata is the neural networks. S. Ulam and J. von Neumann
introduced another particular cases of automata networks, the Cellular automata(2,3,4].

Because from a mathematical point of view, automata networks are discrete dynamical
systems, in time and apace. We are interested in the dynamical behaviour of automata networks.
In 1986, F. Robert proposed the theory of discrete iterations which is one of the tools available to
characterize the dynamical behaviour of automata networks[5,6]. The F. Robert’ model gave a
characterization of the local convergence for the Boolean networks. In 1999, M.-H. Shih and
J.-L. Ho gave a complete solution to a difficult problem: The Markus-Yamabe problem in
Boolean networks [7]. In that paper, we characterize the global convergence for the Boolean
networks. In this article, we shall give a characterization of the global convergence for the XOR
Boolean networks, and we shall use the notions of derivative, spectrum, iteration graph,
Hamming metric, and von Neumann neighborhoods to study the global behavior of the iterations
of XOR Boolean networks.
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2. THE XOR BOOLEAN NETWORKS

Let us begin with some notions and notations. Let 4 = (G,0,(f; : i € J»)) be a finite
automaton where G is the graph on J, with J, = {1,2,---,n}, and Q = {0, 1} is the set of states.
The automaton’s global transition function F : Q" — Q" defined on the set of configurations
Q" is constructed with the local transition functions (f; : i € J») and with the synchronous
updating rule, that is the Boolean mappings. There are three operations on A4, one is
1®1=060=0(XOR),oneisl+1=1,1-0=0+1=0-0=0(AND), another is unary
operation ~ with 0 = 1, and 1 = O(NOT), we usually suppress “<” and substitute ab for a - b. We
denote B to be the other finite automaton with the same sets G, Q and J,. There are three
operations on B with OR, AND and NOT, where 1+1=1+0=0+1=1,0+0 = O(OR). Let
Fp : Q" — Q" to be this automaton’s global transition function with Fg(x)= F,(x) for all x in

or.

The automaton’s global transition function Fz is called the Boolean network. Hence we call
the automaton’s global transition function F4 to be the XOR Boolean network. For the parallel
iteration, since Fz(x)= Fr(x) for all x in Q" the trajectories of these Boolean networks are the
same. Starting at x0 in Q", It is the sequence {x"} o in Q" such that :

Vit > 0, x* = Fy(xl)= Fz(x’)

For x € 0", the von Neumann neighborhood of x is the set Vx = {x,%!,---,%"} where ¥/ is the
j-th neighbor of x, that is, ¥ = (xi,---,%j,--+,X») and for x € O, the derivative of F(F = F4 or
Fp) evaluated at x is given by F'(x)= (f(x)), where f;;(x)= 1iffi(x)= fi(#),f;(x)= 0
otherwise. For a 01-matrix of order n, denote by M, the set of n x n 01-matrix. Denote o 4(C)
and o 3(C) the spectrum of C in M, are associated to automata 4 and B, respectively. For any
C € M,, denote C(a) the principal submatrix of C that lies in rows and columns indexed by a
nonempty subset @ < J,. Here we also let C; be the j-th column of the matrix C and let ¢; be the
j-th unit vector, forj in J,.

Let & = F(&) be a fixed point of F(F = F4 or F) in Q" (that is a stable configuration for F).
Then & is called to be the attractor in its von Neumann neighborhoods V¢ if (1) F(Ve)c Ve and
(2) For all x? in V¥, the trajectory x**! = F(x’) reaches & in at most n steps.

3. GLOBAL CONVERGENCE FOR THE XOR BOOLEAN NETWORKS

In 1996, F. Robert developed the characterization of local convergence for the Boolean
networks and he got the following conclusions ([6], p.103) :

Theorem 3.1 Let F : Q" — Q" be the Boolean network with £ = F(&). Suppose the
following two conditions are valid :

(1) F(Ve ) Ve
() o5(F'(&)) = {0}

Then £ is an attractor in its von Neumann neighborhoods V.
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Actually, we were interested in global convergence for the Boolean networks. In 1999 M.-H.
Shih and J.-L. Ho ([7], p.73 & p.66) ) have developed the characterization of global convergence
for the Boolean networks :

Theorem 3.2 Let Fg : 0" — Q" be the Boolean network. Suppose the following two
conditions are valid :

(1) Fp(Vx)T Vry forallxin O
(2) op(Fi(x)) = {0} forallxin O".

Then there exists a unique attractor £ in 0", such that Vx° € O", the trajectory xtl = Fp(x")
reaches ¢ in finite steps.

Now, we give the characterization of global convergence for the XOR Boolean networks :

Theorem 3.3 Let F4 : 0" — O be the XOR Boolean network. Suppose the following two
conditions are valid :

(1) Fa(Vy)© Vg, forallxin Q"
(2) 1 g o4(F,(x)) forallxin Q"

Then there exists a unique attractor £ in 0", such that Vx° € O”, the trajectory xt* = F4(x")
reaches ¢ in finite steps.

We shall prove the main Theorem 3.3 in the next section.

4. PROOF OF THE MAIN THEOREM
In order to prove Theorem 3.3 we shall employ the following lemmas.

Lemma 4.1 Let C € M,,. Then 0 € 04(C)

if and only if
there exists a nonempty subset a < J, suchthat Z C; =0 (the zero vector).
Jjea
Proof. (=) Let u be an eigenvector of C associated with the eigenvalue 0
cux
.. 3 nonempty subset a < J, suchthatu =X e,
Jjea
Hence

Z Cj=X Cej = C(’Z ej) =Cu=0-u=0
Jjea Jea c€a
(<) Let a be the nonempty subset of J, such that ¥ C; = 0
jea
Choose u =X e¢;, then clearly
jea

Cu=C zej>=z Ce; =% C;=0. O
€a

Jjea Jjea

Lemma 4.2 Let C € M,. Then 1 € 04(C)
if and only if
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there exists a nonempty subset @ < J,, such that & (C @ I); = 0 (/ is the identity matrix).
jea
Proof. Let u be an eigenvector of 4 associated with the eigenvalue 1
Then
Cu=leu=u
=>Cudu=0
= (Cohu=0
= 0 € g4(0)
By Lemma 4.1, we have
da & Jp,a+¢
such that
X(CeoDi=0
Jjea
Conversely, if there is a nonempty subset @ < J, such that
Z(CoDhi=10
jea
By Lemma 4.1, we have
Oeoy(CoI)
= Ju+O0suchthat (C®Nu=0-u=0
=>Cudu=0
=Cu=u

ﬁlEO’A(C). O

Lemma 4.3 Let C € M,,. Then 64(C)= ¢

if and only if

for any nonempty subseta © J,, 2 4; #0and T (A D D; # 0
jea

Jjea
Proof. It’s not difficult to get this conclusion from Lemma 4.1 and Lemma 4.2. [J

We have known any Boolean matrix C € M, has a nonempty spectrum ¢ z(C) (see [6], p.48),

but now we want to propose the spectrum o 4(C) maybe empty.

Lemma 4.4 Let F4 : 0" — Q" be the XOR Boolean network and lety € Q.
Suppose the following two conditions are valid :

(W FVy)S Ve
Q)1 ¢ o4(F,()).

Then each entry in the diagonal of F/,(y) is 0.
Proof. By condition (1), we get
F,(y) has at most one 1 in each column
= Vi € Jp,3j € J, such that [F/,(3)]; = O org;
Suppose i = j, then
the i-th column of F',(y) @ I equals zero
By Lemma 4.2, we have
1 € o4(F ()
This contradicts condition (2). Therefore i # j, this implies
fu(y)= 0 forallie J, O
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Lemma 4.5 Let F4 : Q" — Q" be the XOR Boolean network, let £z : Q" — Q" be the
Boolean network and such that F(x)= F4(x) for all x in 0" and lety € O".
Suppose the following two conditions are valid :

() FaW)c Ve
)1 ¢ ouF,»).

Then for any principal submatrix F(y)(a) of F(y), there exists an index i € a such that the
i-th row of F3(y)(a) equals zero.

Proof. Let F/;(y)="(f;(»))nxn. Suppose there is a nonempty subset & < J,, such that
F'(y)(a) has no zero rows. Since the discrete derivative of F4 at y equals to the discrete
derivative of Fz at y, this implies

F';(»)(a) has no zero rows

Hence by Lemma 4.4 with the condition (1), we get, forany i € a, there exists unique

j € a, j # i such that

fio)= 1
and for any j € a, there exists unique i € @, i # j such that
fio)= 1

This implies F/,(y)(«) has no zero columns and
T [Fy0)(a) & [(a)): = 0

ica
Since condition (1) and F',(y)(a) has no zero columns that ensures for any i € a, )= 0
if j ¢ a, we have
X F)ei=0
ica
Choose u =X e;, then
ica
Fi0) © I =[F0) @12 &) =E [Fi0) @ 1) = 0
1ea 1ea
By Lemma 4.2, we have
1 € 04(F,0))
This contradicts condition (2). Therefore, for any nonempty subset a < J»
F',(»)(a) has at least one zero row.
This implies for any nonempty subset a < J»

Fl(y)(a) has at least one zero row. [

Next, we want to propose 6 4(F(»)) * ¢.

Lemma 4.6 Let F, : O" — O be the XOR Boolean network and lety € Q™. Suppose the
following two conditions are valid :

(M) FaVy)S Ve
Q)1 ¢ o4(F,»)).

Then 0 € o 4(F,(»)).

Proof. Let Fi{ (Y)= (ij(y))nxn.

Suppose 0 & o4(F,().

By Lemma 4.1 with the condition (1), we get for any i € J,,3!j € Jn such that
(Fy00)i = ¢

and [FL!()/)]” * [FIA(_}))]IZ ifi\ * in.

By Lemma 4.4, we have
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f:(y)= 0 foralli e J,

Z[FO»eli=0

ieJn

By Lemma 4.2, we have

1 € o4(F,(»))
This contradicts condition (2), hence 0 € o 4(F,(y)). O

Hence

Lemma 4.7 Let Fp : Q" — Q" be the Boolean network, let F; : 0" — Q" be the XOR
Boolean network and such that F4(x)= Fp(x) forall x in Q" and let y € Q". Suppose
1 ¢ o(F3())
Then for any nonempty subset a < J,
T [Fio) el =0.

Proof. Let F/,()= (fy(3))nxn and F(y)= (h;(¥))nxn. The conditions imply (see [7],
Theorem 2.2, p.64)
hi(y)= 0 foralli e J,
Hence we get,
fi(y)= 0 foralli € J,
Suppose there is a nonempty subset @ < J, such that
r [F,on el =0,

iea

then foranyi € @, 3j € a, j # i such that

1@ f;(n)= 0
it means,
fin= 1

and then F/,(y)(a) is a principal submatrix of F/,(y) which has no zero rows. Since the
discrete derivative of Fp at y equals to the discrete derivative of F4 at y, we get Fp(y)(a) is a

principal submatrix of Fz(y) which has no zero rows. Hence we have (see [6], Theorem 3, p.47)
1 € 05(Fp())
This contradicts the conditions, hence the conclusion follows. [J

Lemma 4.8 Let F; : Q" — Q" be the XOR Boolean network, let Fz : Q" — Q" be the
Boolean network and such that Fg(x)= F4(x) for all x in Q" and lety € Q”. Suppose the
following two conditions are valid :

(D) Fa(Vy) VE)
()1 ¢ o4(F,()

if and only if the following two conditions are valid :

@) Fs(Vy)c Vi
(b) 68(F3(»)) = {0}.

Proof. First, by the definition, we have Fg(x)= F4(x) for all x in 0", this means conditions
(1) and (a) are equivalent. Now if conditions (1) and (2) hold, then the Lemma 4.5 concludes the
condition (b). Conversely, if the condition (b) hold, then the Lemma 4.7 implies the condition (1)
is true. Therefore we complete this proof. [

We now turn to the proof of Theorem 3.3. Let 4 : Q" — Q" be the XOR Boolean network,
let Fg : Q" — Q" be the Boolean network and such that Fp(x)= F4(x) for all x in Q. Then the
Lemma 4.8 shows the following conditions hold for all x in Q" :
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(@) Fs(Vx)S Vs
(b) o8(Fp(x)) = {0}.

Now, by Theorem 3.2, we can conclude there exists a unique attractor £ in 0", such that
vx® € O, the trajectory x*! = Fp(x*) reaches £ in finite steps.. Since Fp(x)= F(x) forallx in
0", the trajectory x#! = F 4(x*) have the same orbits with the trajectory x**! = Fp(x’). Therefore,
there exists a unique attractor & in 0", such that Vx° € Q7, the trajectory x**! = F 4(x") reaches &
in finite steps.. This complete the proof of Theorem 3.3.

5. THE EXISTENCES OF FIXED POINT

Let Fz : Q" — Q" be the Boolean network. From Theorem 3.2 we know the fixed point
exists if both the following conditions hold :

(@) Fp(Vx)© Vi, forallxin Q"
(b) o3(F(x)) = {0} forallx in Q"

Indeed, this condition (b) is enough to conclude the existences of fixed point for this Boolean
network[8]. Now we are curious to the existences of fixed point for the XOR Boolean network
when the condition(2) hold in Lemma 4.8. Let F, : Q" — Q" be the XOR Boolean network.
Suppose 1 ¢ o4(F/,(y)). Can we say there exists a fixed point for this XOR Boolean network?
Unfortunately, we cannot. Now we want to present two counterexamples. First, we consider

oc4(F,(x)) =¢forallxinQ":

Let F4 : O3 — Q3 be defined by

X1 ) X2 @ x1X3 B x2x1X3
Fix)= F4| x; -l x1% @ x3(x1 © x2) D x1X2x3(x) D Xx2)
X3 x7%3(x1 @ x2 @ x3)

Then F, is given by Table 5.1. The discrete derivatives of 4 are the following,

110 ] 101 |
Fl0,0,00= | 101 |, Fl(,00=| 110 |
111 111
010 | 010 |
F,0,1,00= | 000 |, Fl,0)={ 011 |
110 101
T 000 | 0011 ]
F(,1,0=1| 011 |, F(,0,0=1 000 |
111 RREE
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F;(Osl,l): Fg(l’l’l):

S = O
O =
o O O
SO = O
—_ O
—_— O

Then for any x in Q% and for any nonempty subset a < J3, £ [F(x)]; # 0 and
jea
% [F(x) @ I}; # 0. even the Lemma 4.3 shows 0 4(F);(x)) = ¢ for ail x in 0", but F still has
jea

no any fixed point.

TABLE 5.1

Bit stringx 000 001 010 011 100 101 110 111
Bit string F(x) 001 010 100 100 110 011 101 110

Moreover, even we consider o 4(F/,(x)) = {0} for all x in O7, it’s no use for the next
counterexample :

Let Fy : Q3 — Q3 be defined by

X1 . XX @ x3(x1 @xZ)@)-ClJ-sz3(X1 @x2)
Fsx)= F4| x3 & X1(x2 ® x3 @ x2x3)
X3 x1x2 @ X3(x1 @ x2) @ x1x2%3(x1 D x2)

Then F4 is given by Table 5.2. The discrete derivatives of 4 are the following,

110 ] 101

Fl000=| 011 | Fl(,00=| 000 |
110 101

011 | 000 |

Fl,1,00= | 110 | F,0)=1| 101 |

011 000 |

000 0011 |

F(,L,0= | 100 | FobD=1| 100 |,
000 011
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101 110
F1,1)=| 100 | F(,L,1)={ 100 |
101 110

Then for any x in Q3 and for any nonempty subset @ € J3, & [F(x) @ I]; # 0. It means,

Jjea

1 ¢ o4(F,(x)) for all x in 03 (see Lemma 4.2). But T [F,(x)]; = 0 where a = J3 = {1,2,3} as
jea

x = (0,0,0),(0,0,1),(1,0,0),(0,1,0); & = {2,3} asx = (1,0,1),(1,1,0); & = {2} as
x=(0,1,1);and @ = {3} asx = (1,1,1). Hence 0 € 0 4(F;(x)) for all x in O* (see Lemma 4.1),
and then o 4(F',(x)) = {0} for all x in O3, but F 4 still has no fixed point.

TABLE 5.1

Bit stringx 000 001 010 011 100 101 110 111
Bit string F(x) 100 110 011 110 001 100 001 001

Therefore, by Theorem 3.3, we get the conclusion : The unique fixed point exists in the XOR
Boolean network F, : O" — Q" if both the following two conditions are valid :

(D) Fa(Vo) VFA(x) for all x in Q"
@)1 ¢ o4(F,(x)) forallxinQ".
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