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Stationary isothermic surfaces and anew
characterization of the sphere

Shigeru Sakaguchi (坂口茂)
Faculty of Science, Ehime University (愛媛大学理学部)

1Introduction

This is based on the author’s recent work with R. Magnanini and J. Prajapat [MPS].
We establish arelationship between stationary isothermic surfaces and uniformly dense
domains. Astationary isothermic surface is alevel surface of temperature which does
not evolve with time. Adomain $\Omega$ in the $N$-dimensional Euclidean space $\mathbb{R}^{N}(N\geqq 3)$

is said to be uniformly dense in asurface $\Gamma\subset \mathbb{R}^{N}$ of codimension 1if, for every small
$r>0$ , the volume of the intersection of $\Omega$ with aball of radius $r$ and centered at $x$

does not depend on $x$ for $x\in\Gamma$ We prove that the boundary of every uniformly dense
domain which is bounded (or whose complement is bounded) must be asphere; this
is anew characterization of the sphere. We then examine auniformly dense domain
with unbounded boundary an and we show that the principal curvatures of $\partial\Omega$ satisfy
certain identities. The case in which the surface $\Gamma$ coincides with an is particularly
interesting. In fact, we show that, if the boundary of auniformly dense domain is
connected, then ,if $N=3$ , it must be either asphere, aspherical cylinder or aminimal
surface. We conclude with adiscussion on uniformly dense domains whose boundary
is aminimal surface.

In \S 2, we consider stationary isothermic surfaces in the Cauchy problem for the heat
equation with characteristic functions of domains as initial data. The purpose of \S 3 is
to give the problem we will consider as well as to give the definition of uniformly dense
domains, its relation to the Cauchy problem, and important examples of uniformly
dense domains. In Q4, we show that, if $\Omega$ is uniformly dense in $\Gamma$ , then $\Gamma$ is smoot $\mathrm{h}$
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under some conditions. \S 5 gives the main theorems concerning the symmetry of $\Gamma$

where $\Omega$ is uniformly dense in $\Gamma$ . In \S 6, we give very rough outline of proofs.

2 Stationary isothermic surfaces

Consider the following Cauchy problem for the heat equation:

$\partial_{t}u=\triangle u$ in $\mathbb{R}^{N}\cross(0, +\infty)$ , and $u=\mathcal{X}_{\Omega}$ on $\mathbb{R}^{N}\cross\{0\}$ , (2.1)

where $\mathcal{X}_{\Omega}$ is the characteristic function of a domain $\Omega$ in $\mathbb{R}^{N}(N\geqq 3)$ . Let $\Gamma\subset \mathbb{R}^{N}$ be

an open subset of a hypersurface. $\Gamma$ is said to be a stationary isothermic surface of $u$

if there exists a positive function $a=a(t)$ satisfying

$u(x, t)=a(t)$ for all $(x, t)\in\Gamma\cross(0, +\infty)$ . (2.2)

In [CK], I. Chavel and L. Karp have shown that, if $\Omega$ is bounded and the solution
of (2.1) has a stationary isothermic surface F. then $\Gamma$ must extend to a whole sphere

centered at $x_{0}= \frac{1}{|\Omega|}\int_{\Omega}xdx$, where $|\Omega|$ denotes the $N$ -dimensional Lebesgue measure
of $\Omega$ (see $[\mathrm{C}\mathrm{K}$ , Theorem 2, p. 275]). Moreover, by using functions

$-x_{j} \frac{\partial u}{\partial x_{i}}+x_{i}\frac{\partial u}{\partial x_{j}}$ , $i\neq j$ ,

with a little more argument, we can conclude that $\Omega$ is radially symmetric with respect

to $x_{0}$ .

3 Uniformly dense domains

Let $B(x, r)$ be the open ball with radius $r>0$ and centered at $x\in \mathbb{R}^{N}$ . If $x\in \mathbb{R}^{N}$ and
$r>0$ , we define the (spherical) average $r$ -density of $\Omega$ at $x$ as the ratio

$\rho(x, r)=\frac{|\Omega\cap B(x,r)|}{|B(x,r)|}$ . (3.1)

(We shall use the same symbol –single bars –to denote both the $\mathrm{i}\mathrm{V}$-dimensional
Lebesgue measure and the $(N-1)$-dimensional Hausdorff measure of sets; thus, for
instance, $|\Omega|$ and $|\partial\Omega|$ indicate the $N$-dimensional Lebesgue measure of $\Omega$ and the



163

$(N-1)$-dimensional Hausdorff measure of $\partial\Omega$ , respectively.) If $\Gamma\subset \mathbb{R}^{N}$ , we say that
$\Omega$ is unifomly dense in $\Gamma$ if it satisfies the following property:

there exists $r_{0}\in(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\Gamma, \partial\Omega),$ $+\infty]$ such that, for each fixed $r\in(0, r_{0})$ . (3.2)

the function $x\mapsto\rho(x, r)$ is constant on $\Gamma$

We notice that (3.2) holds if and only if

there exists $r_{0}\in(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\Gamma, \partial\Omega))+\infty]$ such that (3.3)
for almost every fixed $r\in(0, r_{0})$ , the function $x\mapsto \mathrm{a}(\mathrm{x}, r)$ is constant on $\Gamma$

where

$\sigma(x, r)=\frac{|\Omega\cap\partial B(x,r)|}{|\partial B(x,r)|}$ . (3.4)

It is clear that, if $\Omega$ is uniformly dense in $\Gamma$ . then any $x\in\Gamma$ must have the same
distance from $\partial\Omega$ . In other words, $\Gamma$ must be parallel to a portion of $\partial\Omega$ and, for this
reason, many of the properties of $\partial\Omega$ will be inherited by $\Gamma$

Theorem 3.1 Let $\Omega$ be a domain in $\mathbb{R}^{N}$ and let $u$ be the solution of (2.1). Then
$\Gamma\subset \mathbb{R}^{N}\iota s$ a stationary isothermic surface for $u\dot{\mathrm{z}}f$ and only if $\Omega$ is uniformly dense $?.n$

$\Gamma$ with $r_{0}=+\infty$ .

Proof The solution of problem (2.1) is represented by

$u(x, t)=(4 \pi t)^{-\frac{N}{2}}\int_{\mathrm{I}\mathrm{R}^{N}}\mathcal{X}_{\Omega}(\xi)e^{-\frac{|x-\xi|^{2}}{4t}}d\xi$ for all $(x, t)\in \mathbb{R}^{N}\cross(0. +\infty)$ . (3.5)

We compute that

$u(x, t)$ $=$ $(4 \pi t)^{-\frac{N}{2}}\int_{0}^{+\infty}e^{-\frac{r^{2}}{4t}}$ $( \int_{\partial B(x,r)}\mathcal{X}_{\Omega}(\xi)dS_{\xi})dr$

$=$ $(4 \pi t)^{-\frac{N}{2}}\int_{0}^{+\infty}e^{-\frac{r^{2}}{4t}}|\Omega\cap\partial B(x_{\tau}r)|$ dr. (3.6)

Let $p$ , $q\in\Gamma$ be any pair of points. Since the Laplace transform is injective, (3.6) implies
that $u(p, t)=u(q, t)$ for every $t>0$ if and only if $|\Omega\cap\partial B(p, r)|=|\Omega\cap\partial B(q, r)|$ for
almost every $r>0$ . This completes the proof. $\square$

Now, let us consider the following problem
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Problem 3.2 When $r_{0}<+\infty$ , classify pairs $(\Omega, \Gamma)$ satisfying that $\Omega$ is uniformly

dense in $\Gamma$

We know several examples with $r_{0}=+\infty$ .

Example 3.3 A smooth function $f$ : $\mathbb{R}^{N}arrow \mathbb{R}$ is called isoparametric if both $|\nabla f|^{2}$ and
$\triangle f$ are functions of $f$ . The family of the level hypersurfaces of $f$ is called an isopara-
$metr\dot{\iota}c$ family, and each level hypersurface of $f$ is called an isoparametric hypersurface.

It was shown in [LC] and [Seg] that any isoparametric family must be either parallel

hyperplanes, concentric spheres, or concentric spherical cylinders. See [No, PaTe] for

surveys of isoparametric hypersurfaces. If $\Omega$ is either a strip or a half space, and if $\Gamma$

is a hyperplane parallel to $\partial\Omega$ , then $\Omega$ is uniformly dense in $\Gamma$ If $\Omega$ is either a ball,

an annulus, or the exterior of a ball, and if $\Gamma$ is a sphere having the same center as $\Omega$ ,

then $\Omega$ is uniformly dense in $\Gamma$ Since any spherical cylinder is the Cartesian product

of a lower dimensional Euclidean space and a lower dimensional sphere, the similar

proposition holds if $\Gamma$ is a spherical cylinder.

Example 3.4 Let $N=3$ . A right helicoid $?t$ is defined as the set

$H$ $=$ { ( $x_{1}$ , $x_{2}$ , $x_{3})\in \mathbb{R}^{3}$ : $x_{1}=s\cos t$ , $x_{2}=s\sin$ t. $x_{3}=at+b$ , $(s,$ $t)\in \mathbb{R}^{2}$ },

where $a\neq 0$ , $b$ are real constants. 7{ splits $\mathbb{R}^{3}$ up into two connected components, and

let $\Omega$ be one of them. Then $\Omega$ is uniformly dense in $\mathcal{H}(=\partial\Omega)$ . Furthermore, we have

that $\rho(x, r)=\frac{1}{2}$ for every $x\in H$ and every $r>0\backslash$ and the symmetry of $\mathcal{H}$ implies that

the solution $u$ of (2.1) satisfies $u= \frac{1}{2}$ on $H$ $\cross(0, +\infty)$ . It is evident that, when $N\geqq 4$ ,
$\Omega\cross \mathbb{R}^{N-3}$ is uniformly dense in $H$ $\cross \mathbb{R}^{N-3}$ .

In [Ni] J. Nitsche settled a conjecture of G. Cimmino [Cim]. He showed that the

plane and the right helicoid are the only (smooth) hypersurfaces in $\mathbb{R}^{3}$ such that, for

each point $x$ on the surface, every sufficiently small sphere centered at $x$ has its area

bisected by the surface. This result was derived by computing the Taylor’s formula for
$\sigma(x_{7}r)$ near $r=0$ up to the relevant degrees, where $\Omega$ is one part of a neighborhood of $x$

split up by the surface. Since J. Nitsche assumes that $\sigma(x, r)\equiv\frac{1}{2}$ for sufficiently small

$r>0$ , his result does not rule out the existence of hypersurfaces $\Gamma$ in $\mathbb{R}^{3}$ other than

the helicoid, the plane, the sphere, or the spherical cylinder such that $\Omega$ is uniformly

dense in $\Gamma$ for some domain $\Omega$ .
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4 Regularity of $\Gamma$ where $\Omega$ is uniformly dense in $\Gamma$

The purpose of this section is to show that, if $\Omega$ is uniformly dense in $\Gamma$ then $\Gamma$ is
smooth under some conditions. We consider the case where $r_{0}<+\infty$ . The first
theorem takes care of the case where $\Gamma\subset\partial\Omega$ , and the second one takes care of the
case where $\Gamma\cap\partial\Omega=\emptyset$ .

Theorem 4.1 Let $\Omega$ be an open set in $\mathbb{R}^{N}$ with boundary $\partial\Omega$ of class $C^{0}$ , and let $\Gamma$ be
an open subset of $\partial\Omega$ . If $\Omega$ is umformly dense in $\Gamma$ , then $\Gamma$ must be smooth.

Proof Choose $\psi$ $\in C_{0}^{\infty}(\mathbb{R}^{N})$ such that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\psi)\subset B(0, r_{0})$ and $\psi(x)=\eta(|x|)$ . The
convolution $\psi$ $\star \mathcal{X}_{\Omega}$ belongs to $C^{\infty}(\mathbb{R}^{N})$ and we have that

$\psi$

$\star \mathcal{X}_{\Omega}(x)=\int_{B(0,r_{\mathrm{O}})}\psi(\xi)\mathcal{X}_{\Omega}(x-\xi)d\xi=\int_{0}^{r_{0}}\eta(r)(\int_{\Omega\cap\partial B(x,r)}dS_{\xi})$ dr. (4.1)

Since $\Omega$ satisfies (3.3), we infer that $\psi’\star \mathcal{X}_{\Omega}$ must be constant on $\Gamma$ and hence $\Gamma$ is the
level surface of a smooth function. If we prove that, for every $x\in\Gamma\backslash \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ is a $\mathrm{s}\mathrm{m}\mathrm{o}\mathrm{o}\mathrm{t}\}_{1}$

function $\psi$ such that $\psi$ $\star \mathcal{X}_{\Omega}$ has non-vanishing gradient at $x$ , then, by the implicit
function theorem, we can conclude that $\Gamma$ is smooth.

Assume, by contradiction, that there exists a point $x_{0}\in\Gamma$ such that $\nabla(\psi\star \mathcal{X}_{\Omega})(x_{0})=$

$0$ for every function $\psi$ with the properties stated above. Since

$\nabla(\psi\star \mathcal{X}_{\Omega})(x_{0})$ $=$ $\int_{B(x_{0},r_{0})}\mathcal{X}_{\Omega}(\xi)\eta’(|x_{0}-\xi|)\frac{x_{0}-\xi}{|x_{0}-\xi|}d\xi=$

$\int_{0}^{r_{0}}\eta’(r)(\int_{\Omega\cap\partial B(x_{0},r)}\frac{x_{0}-\xi}{|x_{0}-\xi|}dS_{\xi})dr$ ,

then

$\int_{0}^{r0}\eta’(r)M(r)$ $dr=0$ , (4.2)

where

$M(r)= \int_{\Omega\cap\partial B(x_{0},r)}\frac{x_{0}-\xi}{|x_{0}-\xi|}dS_{\xi}$ .

Equation (4.2) implies that the distributional derivative of the bounded function $\mathrm{M}\{\mathrm{r})$

equals zero on $(0, r_{0})$ . Therefore, by observing that $\lim_{rarrow 0+}M(r)=0$ , we conclude that
$M(r)$ equals zero for almost every $r\in(0, r_{0})$ , and hence

$\int_{\Omega\cap\partial B(x_{0},r)}(\xi-x_{0})dS_{\xi}=0$ for almost every $r\in(0, r_{0})$ .
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Thus, by integrating this equation in $r$ , we see that

$\int_{\Omega\cap B(x\mathrm{o},r)}(\xi-x_{0})d\xi=0$
for every $r\in(0, r_{0})$ . (4.3)

Hence, $x_{0}$ must be the center of mass of the set $\Omega\cap B_{(}^{/}x_{0}$ , $r$ ) for every $r\in(0, r_{0})$ .

Now, by choosing $r>0$ sufficiently small and by eventually translating and rotating

the axes, we can suppose that $x_{0}=0$ and that $\partial\Omega$ be represented, in a neighborhood

of $x_{0}=0$ , by the graph of a continuous function $\varphi$ : $U(0)arrow \mathbb{R}$ , where $U(0)\subset \mathbb{R}^{N-1}$

is a suitable neighborhood of 0 and $\varphi(0)=0$ . Let $\varphi_{\pm}(y)=\max[\varphi(y), \pm\sqrt{r^{2}-|y|^{2}}]$ for
$y\in B’=\{y\in \mathbb{R}^{N-1} : |y|<r\}\subset U(0)$ ; the set $\Omega\cap B(x, r)$ can be represented as
$\{(y, y_{N})\in B’\cross \mathbb{R} : \varphi_{-}(y)<y_{N}<\varphi_{+}(y)\}$ . Therefore, we can infer that

$\int_{\Omega\cap B(x,r)}(\xi_{N}-x_{N})d\xi=\int_{\Omega\cap B(x,r)}y_{N}dy_{N}dy=$

$\int_{B}$

,
$( \int_{\varphi-(y)}^{\varphi+(y)}y_{N}dy_{N})dy=\frac{1}{2}\int_{B}$

,
$[\varphi_{+}(y)^{2}-\varphi_{-}(y)^{2}]dy>0$ ,

which contradicts (4.3). $\square$

Theorem 4.2 Let $\Omega$ be an open set in $\mathbb{R}^{N}$ satisfying the interior sphere condition

and suppose that $D$ is a domain satisfying the interior cone condition and such that
$\overline{D}\cap\overline{\Omega}=\emptyset$ . Let $\Gamma=\partial D$ . If $\Omega$ is uniformly dense in $\Gamma$ , then there exists an open subset
$\Lambda$ of $\partial\Omega$ satisfying the following properties:

(i) both $\Gamma$ and $\Lambda$ are smooth;

(ii) $\Gamma$ and $\Lambda$ are parallel;

(iii) each principal curvature of $\Lambda$ with respect to the exterior normal direction to $\partial‘\Omega$

is smaller than the number $\frac{1}{R}$ , where $R=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\Gamma, \partial\Omega)$ .

Proof We proceed as in the proof of Theorem 4.1 and calculate $v$) $\star \mathcal{X}_{\Omega}(x)$ and $\nabla(\psi\star$

$\mathcal{X}_{\Omega})(x)$ . By supposing that there exists a point $x_{0}\in\Gamma$ such that $\nabla(\psi\star \mathcal{X}_{\Omega})(x_{0})=0$ for

every function $\psi$ with the properties stated in the beginning of the proof of Theorem

4.1, we conclude that (4.3) holds for every $r\in(0, r_{0})$ . Define the function $d=d(x)$ by

$d(x)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, \partial\Omega)$ for every $x\in \mathbb{R}^{N}\backslash \overline{\Omega}$ . (4.3)
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Since $\Omega$ is uniformly dense in $\Gamma$ , as is observed in \S 3 we have

$d(x)=R$ for every $x\in\Gamma$ , (4.5)

where $R=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\Gamma, \partial\Omega)$ . Since $D$ satisfies the interior cone condition, there exists a
finite right spherical cone $K$ with vertex at $x_{0}$ such that $K\subset\overline{D}$ and $\overline{K}\cap\partial D=\{x_{0}\}$ .

By translating and rotating if needed, we can suppose that $x_{0}=0$ and that $K$ is the
set $\{x\in B(0, \rho) : x_{N}<-|x|\cos\theta\}$ , for some choice of $\rho\in(0, R)$ and $\theta\in(0, \frac{\pi}{2})$ .

Since $K\subset\overline{D}$ and $\overline{K}\cap\partial D=\{0\}$ , (4.5) implies that

$d(x)>R$ for every $x\in K$ . (4.6)

The set defined by

$V=\{x\in\partial B(0, R) : x_{N}\geq R\sin\theta\}$ , (4.7)

is such that
$\partial\Omega\cap\partial B(0, R)\subset V$. (4.8)

because, otherwise, there would be a point in $K$ contradicting (4.6). Thus, from (4.8)
it follows that there exists a number $\delta>0$ such that

$d(x)\geq\delta$ for every $x \in \mathrm{d}\mathrm{B}(0, R)\cap\{x_{N}\leq R\sin\frac{\theta}{2}\}$ . (4.9)

Choose $r \in(R, \min\{R+\delta, r_{0}\})$ . Then (4.9) yields that

$\Omega\cap B(0, r)$ $\subset B(0, r)\cap\{x_{N}\geq R\sin\frac{\theta}{2}\}$ . (4.10)

This contradicts the fact that (4.3) holds for $x_{0}=0$ .
Therefore, it follows that $\Gamma$ must be smooth, and we can complete the proof by

following that of [ $\mathrm{M}\mathrm{S}$ , Lemma 3.1]. $\square$

5 Symmetry of $\Gamma$ where $\Omega$ is uniformly dense in $\Gamma$

Under the hypotheses either of Theorem 4.1 or of Theorem 4.2, we know that a part of
$\partial\Omega$ corresponding to $\Gamma$ is a smooth hypersurface. Let $\kappa_{j}(x)$ , $j=1$ , $\cdots$ , $N-1$ be the
principal curvatures of $\partial\Omega$ at $x\in\partial\Omega$ with respect to the exterior normal direction to
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$\partial\Omega$ . For each $g$ $\in\{1, \ldots, N-1\}$ , $K_{j}(x)$ denotes the $j$-th symmetric invariant $K_{j}(x)$

of the surface $\partial\Omega$ evaluated at $x$ , that is

$K_{j}(x)= \sum_{i_{1}<<i_{J}}$

.

$\kappa_{i_{1}}(x)\cdots\kappa_{i_{j}}(x)$ , $j=1$ , $\cdots$ , $N-1$ .

With this definition, $H=K_{1}/(N-1)$ and $K=K_{N-1}$ are the mean and the Gauss

curvature of $\partial\Omega$ , respectively. We will use the notation $\omega_{N}=|\partial B(0,1)|$ , where
$B(0,1)\subset \mathbb{R}^{N}$ Let us first consider the case where $\Gamma\subset\partial\Omega$ .

Theorem 5.1 Let $\Omega$ be a domain in $\mathbb{R}^{N}$ (N $\geqq 3)$ , and suppose $\Gamma$ is an open subset of
the boundary $\partial\Omega$ which is of class $C^{0}$ . If $\Omega$ is uniformly dense in I. then

$\sigma(x, r)=\frac{1}{2}+\sigma_{1}(x)r+\sigma_{3}(x)r^{3}+O(r^{5})$ as $rarrow 0$ , $x\in\Gamma$ , (5.1)

where
$\sigma_{1}(x)=\frac{\omega_{N-1}}{2\omega_{N}}H(x)$ (5.2)

and

$\sigma_{3}(x)=\{$

$\frac{1}{256}[K_{1}(x)^{3}-4K_{1}(x)K_{2}(x)]$ if $N=3$ ,

$\frac{\omega_{N-1}}{16\omega_{N}(N^{2}-1)}[K_{1}(x)^{3}-4K_{1}(x)K_{2}(x)+4K_{3}(x)]$ if $N\geqq 4$ ,

(5.3)

are constant on $\Gamma$

Corollary 5.2 Let $\Omega$ be a domain in $\mathbb{R}^{N}(N\geqq 3)$ , and suppose that $\Gamma$ is an open

subset of the boundary $\partial\Omega$ which is of class $C^{0}$ . If $\Omega$. is uniformly dense in $\Gamma$ . then $\Gamma$ is

analytic and the following hold:

(i) If $N\geqq 3$ , $\Gamma=\partial\Omega$ , and $\partial\Omega$ is bounded, then $\partial\Omega$ must be a sphere.

(ii) If $N=3$ and $\Gamma$ is connected, then $\Gamma$ must be $eit/ier$ a portion of a $sphere_{j}$ of $a$

spherical cylinder or of a minimal surface.

Proof of Corollary 5.2. (i) follows from Theorem 5.1 and Aleksandrov’s Soap Bubble
Theorem (see [Alek]), and Theorem 5.1 implies (ii) directly. $\square$
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Remark 5.3 In [Ni] J. Nitsche computed $\sigma_{5}(x)$ when $N=3$ for the series expansion
$\sigma(x.r)=\frac{1}{2}+\sum_{n=1}^{\infty}\sigma_{n}(x)r^{n}$ . He showed that, if $H(x)=\sigma_{5}(x)=0$ for every $x\in\Gamma$ . then
$\Gamma$ must be either a portion of a plane or of a right helicoid.

Let us consider the case where $\Gamma\cap\partial\Omega=\emptyset$ .

Theorem 5.4 Under the hypotheses and the situation of Theorem 4.2, for every $x\in\Gamma$

there exists a unique point $y\in\Lambda$ such that $\overline{B(x,R)}\cap\overline{\Omega}=\{y\}$ , and furthermore we
have that, for each $x\in\Gamma$ . as $rarrow R+0$ ,

$\rho(x, r)=\frac{2^{\frac{N+1}{2}}N\omega_{N-1}}{(N^{2}-1)\omega_{N}R^{N}}\{\prod_{j=1}^{N-1}(\frac{1}{R}-\kappa_{j}(y))\}^{-\frac{1}{2}}(r-R)^{\frac{N+1}{2}}+o((r-R)^{\frac{N+1}{2}})$ (5.4)

In particular, both $\Gamma$ and $\Lambda$ are analytic, and for some constant $c>0$

$\prod_{j=1}^{N-1}$ ( $\frac{1}{R}-\kappa j$ $(y))=c$ for every $y\in\Lambda$ . (5.5)

Moreover, if $\partial\Omega$ is bounded and connected, then $\partial\Omega$ must be a sphere.

Remark 5.5 As in [MS], by Aleksandrov’s uniqueness theorem in [Alek] we see that
equality (5.5) implies that, if $\partial\Omega$ is bounded and connected, then $\partial\Omega$ must be a sphere.

Remark 5.6 In Example 3.4, by using Theorem 5.4, we see that $\mathcal{H}$ is an isolated
isothermic surface. Indeed, if there exists another isothermic surface sufficiently close
to $Tt$ , then by Theorem 5.4

$( \frac{1}{R}-\kappa_{1}(y))(\frac{1}{R}-\kappa_{2}(y))=c$ for every $y\in H$

for some positive constant $c$ . Thus, since $\kappa_{1}(y)+\kappa_{2}(y)\equiv 0$ , the Gauss curvature
$\kappa_{1}(y)\kappa_{2}(y)$ must be constant on $H$ . This is a contradiction.

Nitsche’s result [Ni] does not rule out the existence of minimal surfaces (other than
the helicoid or the plane) which are boundaries of uniformly dense domains. Here, we
consider the case of embedded minimal surfaces of finite total curvature. The theory
of complete embedded minimal surfaces of finite total curvature in $\mathbb{R}^{3}$ has developed
recently (see [HK], $[\mathrm{L}\mathrm{o}\mathrm{M}]$ , and [PeRo] for some surveys). In particular, in [Kap] N.
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Kapouleas constructed large families of such minimal surfaces with symmetries, and

moreover in [T] M. Traizet showed the existence of such minimal surfaces with no

symmetries. Note that the catenoid and the plane are the classical examples of complete

embedded minimal surfaces of finite total curvature, and the helicoid is not of finite

total curvature because of its periodicity. By combining Nitsche’s result [Ni] and the

theory of complete embedded minimal surfaces of finite total curvature in $\mathbb{R}^{3}$ , we

conclude our analysis of uniformly dense domains with the following result.

Theorem 5.7 Let $S$ be a complete embedded minimal surface offinite total curvature

in $\mathbb{R}^{3}$ , and let $\Omega$ be one of the two domains disconnected by $S$ from $\mathbb{R}^{3}$ . If $\Omega$ is uniformly

dense $\dot{l}nS(=\partial\Omega)$ , then $S$ must be a plane.

6 On proofs of theorems

In this section we give very rough outline of proofs of Theorem 5.1 and Theorem 5.7.

See [MPS] for their details.

On the proof of Theorem 5.1. For x $\in\partial\Omega$ , denote by Tx(dQ) and $\nu$ the tangent

space and the interior normal unit vector to $\partial\Omega$ at $x$ , respectively. For fixed $v\in T_{x}(\partial\Omega)$

with $|v|=1$ , let $\pi_{x}(v, \nu)$ be the plane through $x$ spanned by $v$ and $\nu$ . We may assume
that, for $r>0$ sufficiently small, each point $z$ in $\Omega\cap B(x, r)$ can be parameterized in

spherical coordinates as:

$z=x+\rho\cos\varphi$ $v+\rho\sin\varphi\nu$,
(6.1)

$v\in T_{x}(\partial\Omega)\cap \mathrm{S}^{N-2}$ , $\theta(\rho, v)\leqq\phi$ $\leqq\pi/2,0\leqq\rho\leqq r$ ,

where, for fixed $v\in T_{x}(\partial\Omega)\cap \mathrm{S}^{N-2}$ , $\phi=0(\mathrm{p}, v)$ parameterizes the curve $\partial\Omega\cap\pi_{x}(v, \nu)$

in polar coordinates. Expand $\theta(r, v)$ in $r$ as

$\theta(r, v)=\theta_{1}(v)r+\theta_{2}(v)r^{2}+\theta_{3}(v)r^{3}+\cdot$ . (6.2)

The Jacobian of the change of variables (6.1) is $\rho^{N-1}\cos$ $\phi$ , so that we can write:

$| \Omega\cap B(x, r)|=\int_{\mathrm{S}^{N-2}}\int_{0}^{r}\rho^{N-1}\int_{\theta(\rho,v)}^{\pi/2}\cos$ $\phi d\phi d\rho dS_{v}$ , (6.3)
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where $dS_{v}$ denotes the surface element on $\mathrm{S}^{N-2}$ . By differentiating this formula with
respect to $r$ and dividing by $\omega_{N}r^{N-1}$ , we get:

$\sigma(x, r)=\frac{1}{\omega_{N}}\int_{\mathrm{S}^{N-2}\theta(}\int_{r,v)}^{\pi/2}\cos$ $\phi d\phi dS_{v}=\frac{1}{2}-\frac{1}{\omega_{N}}\int_{\mathrm{S}^{N-2}}\int_{0}^{\theta(r,v)}\cos$ $\phi d\phi dS_{v}$ .

Here we have

$\int_{0}^{\theta(r,v)}\cos$

$\mathrm{C}^{)}d\phi=\theta_{1}(v)r+\theta_{2}(v)r^{2}+[\theta_{3}(v)-\frac{N-2}{6}\theta_{1}(v)^{3}]r^{3}+\cdot$ . (6.4)

Without loss of generality, we suppose that $x$ is the origin in $\mathbb{R}^{N}$ and $T_{x}(\partial\Omega)$

coincides with the hyperplane $\{(y, y_{N})\in \mathbb{R}^{N} : y_{N}=0\}$ , where we use the letter $y$ fo
denote an element of $\mathbb{R}^{N-1}$ , that is, $y=$ $(y_{1}, \ldots, \mathrm{y}\mathrm{w}-\mathrm{i})\in \mathbb{R}^{N-1}$ . Suppose that $\partial\Omega$ is
the graph of a smooth function $\varphi$ in the neighborhood of a point $x=0\in\partial\Omega$ and
we compute the coefficients (6.2) in terms of the derivatives of $\varphi$ . We may assume
that the function $\varphi$ : $\mathbb{R}^{N-1}arrow \mathbb{R}$ then parameterizes $\partial\Omega$ in a neighborhood of $x=0$ ,

that is $\partial\Omega$ is represented by the equation $y_{N}=\varphi(y)$ , where $\varphi(0)=0$ , $\nabla\varphi(0)=0_{\backslash }$

and $-\nabla^{2}\varphi(0)=$ diag $(\kappa_{1}, \cdot\cdot 1 , \kappa_{N-1})$ . Here $\kappa j$ , $j=1$ , $\cdot$ . , $N-1$ are the principal
curvatures of $\partial\Omega$ at $0\in\partial\Omega$ with respect to the exterior normal direction to $\partial\Omega$ . $\mathrm{W}^{\gamma}\mathrm{e}$

also use a standard multi-index notation for the derivatives of $\varphi$ : if $i=(i_{1}, \ldots, i_{N-1})$

is a multi-index, we denote $|i|=i_{1}+\cdot\cdot+i_{N-1}$ , $i!=i_{1}$ ! $\cdots$ $i_{N-1}!$ ,

$D^{i}\varphi=\partial_{y1}^{i_{1}}$ . . $\partial_{yN-1}^{i_{N-1}}\varphi$ ,

and $y^{i}=y_{1}^{i_{1}}\cdots y_{N-1}^{i_{N-1}}$ for $y\in \mathbb{R}^{N-1}$ . With these notations and assumptions, the Taylor
expansion of $\varphi$ in a neighborhood of $y=0$ is

$\varphi(y)=\sum_{n=2}^{\infty}P_{n}(y)$ where $P4\{v$ ) $= \sum_{|\mathrm{i}|=n}\frac{D^{i}\varphi(0)}{i!}y^{i}$ . $n=0,1$ , $\cdots$ (6.5)

Since $r\sin\theta(r, v)=\varphi(r\cos\theta(r, v)v)$ for sufficiently small $r$ , we have:

$\sin\theta(r_{\backslash }v)=\sum_{n=2}^{\infty}r^{n-1}\cos\theta(r, v)P_{n}(v)$ . (6.6)

By expanding both sides in $r$ and comparing their coefficients, we can get:

$\theta_{1}(v)=P_{2}(v)$ , $\theta_{2}(v)=P_{3}(v)$ , and $\theta_{3}(v)=P_{4}(v)-\frac{5}{6}P_{2}(v)^{3}$ . (6.7)
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Hence, combining this with (6.4) yields that in the Taylor expansion (5.1)

$\sigma_{1}(x)=-\frac{1}{\omega_{N}}\int_{\mathrm{S}^{N-2}}P_{2}(v)dS$ , an (x)
$=- \frac{1}{\omega_{N}}\int_{\mathrm{S}^{N}2}P_{3}(v)dS$

, and

(6.8)

$\sigma_{3}(x)=-\frac{1}{\omega_{N}}\int_{\mathrm{S}^{N-2}}[P_{4}(v)-\frac{N+3}{6}P_{2}(v)^{3}]dS_{v}$
.

Lemma 6.1 Let $i=$ $(i_{1}, \ldots, i_{N-1})$ be a multi-index. We have

$\int_{\mathrm{S}^{N-2}}v^{i}dS_{v}=0$

if at least one entry of $i$ is odd; otherwise,

$\frac{1}{\omega_{N-1}}\int_{\mathrm{S}^{N-2}}v^{2\mathrm{i}}dS_{v}=\frac{(N-3)!!(2i)!}{(2|\mathrm{z}|+N-3)!!2|i|i!}$ (6.9)

$[ \frac{n-1}{2}]$

where $n!!= \prod_{k=0}(n-2k)$ .

Consider $\sigma_{2}$ first. Lemma 6.1 and (6.8) directly imply that $\sigma_{2}=0$ . Let us consider

$\sigma_{1}$ . Since $P_{2}(v)=- \frac{1}{2}\sum_{j=1}^{N-1}\kappa_{j}v_{j}^{2}$ , we have from Lemma 6.1 and (6.8)

$\sigma_{1}(x)=\frac{\omega_{N-1}}{2(N-1)\omega_{N}}\sum_{j=1}^{N-1}\kappa_{j}=\frac{\omega_{N-1}}{2\omega_{N}}H(x)$ ,

which is just (5.2). Therefore, the assumption that $\Omega$ is uniformly dense in $\Gamma$ implies

that $H(x)\equiv H_{0}$ on $\Gamma$ for some constant $H_{0}$ . By using this fact, we get

$(1+| \nabla\varphi|^{2})\triangle\varphi’-\sum_{k,\ell=1}^{N-1}\frac{\partial\varphi}{\partial y_{k}}\frac{\partial\varphi}{\partial y\ell}\frac{\partial^{2}\varphi}{\partial y_{k}\partial y_{l}}\equiv-(N-1)H_{0}(1+|\nabla\varphi|^{2})^{\frac{3}{2}}$.

This fact implies that $\varphi$ is analytic in $y$ . By differentiating this equation twice and

letting $y=0$ , we can get (5.3) from Lemma 6.1 and (6.8).

Remark 6.2 It can be shown that $\sigma(x, r)$ admits the series expansions

$\sigma(x, r)=\frac{1}{2}+\sum_{n=1}^{\infty}\sigma_{n}(x)r^{n}$ . (6.10)

Here, for each $n\in \mathrm{N}$ , the integrand in the expression for $\sigma_{n}(x)$ is a polynomial, without

zeroth order coefficient, of the functions $P_{2}(v)$ , $\ldots$ , $P_{n+1}(v)$ and hence each coefficient
$\sigma_{n}(x)(n\in \mathrm{N})$ is a polynomial, without zeroth order coefficient, of $D^{\beta}\varphi(0,0)$ , $2\leq|\beta|\leq$

$n+1$ . In particular, we obtain that $\sigma_{2k}(x)=0$ for any $k=1,2$ , $\cdots$
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On the proof of Theorem 5.7. We recall from [PeRo, p. 18] that $‘(\mathrm{a}$ complete
embedded minimal surface in $\mathbb{R}^{3}$ with finite total curvature, outside a big ball in space,
has a nice shape: there are a finite number of parallel ends and each end is asymptotic
to a plane or to a halfcatenoid” (see also [ $\mathrm{H}\mathrm{K}$ , Proposition 2.5, pp. 36-37] for a more
precise description concerning complete, nonplanar, minimal surfaces with finite total
curvature). On one end of $S$ , we can see that, as $x$ goes to the end,

$\sigma j(x)arrow 0$ for every $\gamma$

$\in \mathrm{N}$ .

Hence, since $\Omega$ is uniformly dense in $S$ , we must have

$\sigma j(x)\equiv 0$ for every $x\in S$ and every $j\in \mathrm{N}$ ,

which shows that $\sigma(x, r)\equiv\frac{1}{2}$ for sufficiently small $r>0$ . Finally, by Nitsche’s result
[Ni], we can conclude that $S$ must be a plane.
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