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Multiple positive and sign-changing solutions for nonlinear Schrédinger equations

T

(Yohei Sato)

M Fak
(Kazunaga Tanaka)

0. Introduction

In this paper we consider the existence and multiplicity of solutions of the following

nonlinear Schrodinger equations:

—Au+ (Na(z) + Du = [Py in RY,

P
u(z) € HY(RY). ()

Herep € (1, ¥£2)if N > 3,p € (1,00) if N =1, 2 and a(z) € C(RY,R) is non-negative on
RY. We consider multiplicity of solutions (including positive and sign-changing solutions)
when the parameter ) is very large.

For a(z), we assume

(al) a(z) € C(RM,R), a(z) > 0 for all z € R" and the potential well Q = int a~1(0)
is a non-empty bounded open set with smooth boundary 69 and a~1(0) = Q.

(a2) 0 < liminfa(z) < sup a(z) < 0.

|| —o0 z€RN
When ) is large, the potential well Q plays important roles and the following Dirichlet
problem appears as a limit of (Py):

—Au+u=|uPtu inQ,

0.1
u=0 on O0. (01)

We remark that solutions of (Py) and (0.1) can be characterized as critical points of

b

p+1 lufP**dz: H'(RY) = R, (0.2)

Waw) = [ 5090 + (O%a(e) + 1) -

Vg (u) = /ﬂ %QWF +u’) - p_i_ﬂ“l”“dx i Hy(Q) > R (0.3)



and it is known that (0.3) has an unbounded sequence of critical values (cf. ...)

Bartsch and Wang [BW2] and Bartsch, Pankov and Wang [BPW] studied such a
situation firstly. Their assumptions on a(z) and nonlinearity are more general and as a
special case of their results we have

(1) There exists a least energy solution ux(z) of (P»). Moreover uy_(z) converges strongly
to a least energy solution of (0.3) after extracting a subsequence A, — co ([BW2]).

(ii) When N > 3 and p € (1, %‘%) is close to %, there exists at least cat({2) positive
solutions of (Py) for large A ((BW2]). Here cat(Q2) denotes Lusternik-Schnirelman
category of Q.

(iii) For any n € N, there exist n pairs of (possibly sign-changing) solutions tuy A (z), - -,
tupa(z) of (Py) for large A > A(n). Moreover they converge to distinct solutions
Fui(z), -+, Tun(z) of (0.1) after extracting a subsequence A, — oo ((BPW]).

Here we remark that in [BW2|, [BPW] they consider mainly the case where Q is con-

nected.

In this paper we consider the case where Q2 consists of 2 connected components:
Q=0,UQ, (0.4)

and we consider the multiplicity of positive and sign-changing solutions for large \.

We have studied the multiplicity of positive solutions in our previous paper [DT], it
is shown that there exist positive solutions u1,3(z), u2 (), u3 1 (z) of (Py) for large A such
that after extracting a subsequence A\, — o0,

ui(z) inQy, ug(z) in Qg ,
ul,/\n(m) - { 0 in RN \Qla U2,2n (I> - { 0 in RN \92’
U1 (23) in Q] y
U3\, (.I) - Uug (IE) in Qg,
0 in RN \(Ql U Qz),
strongly in H'(R"). Here u;(z) is a least energy solution of
—Au+u=v4? in Q;,

0.5
u=20 in 09);. (0:5)

In particular, (Px) has at least 3 positive solutions for large A. See [D'T| for the case
consists of multiple connected components: 2 = Qq U .-+ U Q4.

We remark that a solution u;(z) of (0.5) is said to be a least energy solution if and
only if

W; p(u;) = inf{¥; p(u); u(z) € Hy(Q;) is a non-trivial solution of (0.5)},
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holds. Here ¥; p(u) is defined by

1

P lulPtldz : Hy (%) — R. (0.6)

1
Woo@ = [ Fuf +u?) -
(“D” stands for Dirichlet boundary conditions.) It is natural to ask the existence of a
sequence of solutions of (Py) converging to solutions of (0.5) in each Q;, which may not be
least energy solutions.

1. Results
First we deal with positive solutions. Our first theorem is the following

Theorem 1.1. Assume (al)-(a2), (0.4) and N > 3. Then there exists a p1 € (1, Ni2y
and \; > 1 such that for p € (p1, %—J_E%) and A > A1, (Py) possesses at least cat(Q1) +
cat(Qs) + cat(Qy x Q) positive solutions.

Remark 1.2. Since cat(Q; U Q;) = cat(Qq) + cat(€), the argument of Bartsch-Wang
[BW2] ensures cat(€;) +cat({) positive solutions, which converges to a positive solution
of (0.3) in one of components and to 0 elsewhere after extracting a subsequence An — 00.
We remark that our Theorem 1.1 ensures additional cat(€; x Q) positive solutions. We

can also observe that these solutions converge to positive solutions in both components
Qq, Q.

Next we study the multiplicity of sign-changing solutions. When {2 consists of 2 com-
ponents, we have two limit problems (0.5), which are corresponding to ¥;,p : H}(Q)— R
(i = 1,2). It is well-known that each functional has an unbounded sequences of critical
points (ugi)(x));-";l C H}(S%) (i = 1,2). A natural question is to ask for a given pair
(ugz)(z), ugz) (z)) whether (Py) has a solution ux(z) € H'(RY) converging to ugz)(x) in Q;
and to 0 elsewhere. Here we try to give a partial answer to this problem. More precisely,
we try to find a solution ux(z) € H*(R") which converges to (ugl)(a;),ug-?) (z)) after ex-
tracting a subsequence A, — oo. Here ugl)(z) is a mountain pass solution of (0.5) in Oy
and ug_z) (z) is a minimax solution of (0.5) in Q.

To find an unbounded sequence of critical values of a functional I(u) € C'(E,R)
defined on an infinite dimensional Hilbert space E, Zy-symmetry of I(u) — I(Zu) = I(u)
for all u € E — plays an important role. We remark that ¥x(u) € C*(H'(RY),R)
and a functional ¥ (uy,us) = ¥y p(u1) + Yo, pus) € CH{Hg(Q) x H}(Q2),R), which is

corresponding to (0.5) in ©; and Q, have different symmetries; ¥x(u) is Zg-symmetric
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and \fl(ul,uz) is (Z2)?-symmetric, that is,

U, (su) = ¥y (u) for all s € Zo = {-1,1}, u € H*(R"),
U (squ1, Sauz) = U (u1,uz) for all 51,52 € {=1,1}, (u1,u2) € HY () x H} ().

Note that Z;-action on ¥x(u) is corresponding to the following Zs-action on W (uy,us)

‘If(S’ltl,SUQ) = \Il(ul,u2) for all s € {*'1, 1}, (ul,’LLz) € H(}(Ql) X H&(Qz)
and there are no symmetries of ¥x(u) corresponding to the Zs-symmetry of \il(ul,ug):
\‘I-/(Ul,i’U2) = \il(ul,uz). (11)

We also remark that solutions (ugl) (z), u§2) (x)) are obtained using group action (1.1). Thus
to construct solutions ux(z) converging to (ugl)(:t:), u§-2) (z)), we need to develop a kind of
perturbation theory from symmetries and in this paper we use ideas from Ambrosetti [A],
Bahri-Berestycki [BB], Struwe [St] and Rabinowitz [R] (See also Bahri-Lions [BL], Tanaka
[T] and Bolle [B]). In [A, BB, St, R, BL, T}, perturbation theories are developed for

—Au= |ufP"lu+ f(z) inQ,
u=0 on 01},

where 2 C RY is a bounded domain. They successfully showed the existence of unbounded

sequence of solutions for all f(z) € L*(Q) for a certain range of p.
Now we can give our second result.

Theorem 1.3. Assume (al)-(a2) and (0.4). Then ¥y p(u) and ¥, p(u) have critical

values c},;gl and {ci’D }%2, with the following property: For any k € N there exists Ay (k) >

1 such that for any A > Ay(k), (Py) has a solution u,(z) such that

(i) Ux(ur) — c:,'”el + ci’D as A — 0.

(ii) For any given sequence Ay — o0, we can extract a subsequence \,, — oo such that
uy,, converges to a function u(z) strongly in H*(R"). Moreover u(z) satisfies (0.5)
in 1 UQ2, u|lg~\(,un,) =0 and u(z) > 0 in Q.

(iii) Moreover if the set of critical values of either W1 p(u) or ¥ p(u) are discrete in a
1,D

neighborhood of c,’;. or ci’D , then we have

,D 2,D
U1,p(ul,) =cpim,  Ya,p(ula,) =cp”.

Remark 1.4. It seems that discreteness of critical values of ¥; p(u) is not known; However
we don’t know any example that the set of critical values has interior points. We also
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remark that if the least energy solution of ¥; p(u) is non-degenerate — for example it
holds for Q@ = {z € R™; |z| < R} (R > 0) —, then critical values of ¥1,p(u) are isolated
in a neighborhood of c},’”a and the assumption of (iii) holds.

When N = 1, we have a stronger result. We write Q1 = (a1,b1), Q2 = (a2,b2). For
any jq, j2 € N and s; € {—1,+1} there exist unique solutions ui(z) = u;(Ji, si;z) of (0.1)
in Q; which possesses exactly j; zeros in Q; = (ai,b;) and s;uj(a;) > 0. We have the
following

Theorem 1.5. Assume N =1 and Q; = (a;,b;) (i = 1,2). Then for any ji, j2 € N and
s; € {—1, +1} there exists a solution ux(z) for large A such that

ux(z) = u(z) strongly in H'(R)

as A — 00, where ulq, (z) = ui(ji, si; ) and u|g\(Q,un,)(z) = 0.

In the following section, we give a variational formulation and give an idea of the
proofs of Theorem 1.1. We refer [ST] for details of proofs of Theorems 1.1, 1.3 and 1.5.

2. Functional setting and variational formulation
(a) Reduction to a problem on an infinite dimensional torus

To find critical points of ¥y (u), we reduce our problem to a variational problem on an
infinite dimensional torus. For i = 1,2, we choose bounded open subset Q with smooth
boundary such that

Qcc, (=12, Un=0

First we take local mountain pass approach due to del Pino and Felmer [DF] to find
solutions concentrating only on €1 U€z. We choose a function f(£) € C'(R,R) such that
for some 0 < £; < 45

f&) = €PP71¢ for [€] < 4,
0 < f'(€) Sg for all £ € R,

fe) = 3¢ forlél 2 £

We set
|EP~1¢ if € >0 and z € Qf U Q),

f(&) if € >0 and z € RV \(Q] U Q5),
0 if£<0

13
/g
0
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In what follows we will try to find critical points of

1

Py(u) = 3 /RN |Vul? + (A\2a(z) + 1)u? dz — /RN G(z,u)dr

1
= Il [ Glau)e

We can observe that ®x(u) € C2(HY(RY),R) satisfies (PS). condition for all ¢ € R.
Moreover we have

Lemma 2.1. Suppose that (ux(z))a>x, Is a family of critical points of ®(u) and assume
that there exists constants m, M > 0 independent of )\ such that

m < ®y(uy) <M forall > 1.

Then we have _

-1 1
i) (3-5h) m<lulien < (3-54) Moralrz1

(ii) There exists A(M) > 1 such that for A > A\(M), ux(z) satisfies 0 < ux(x) < ¢ for
z € RV\(Q UQ,). In particular, g(z,ux(z)) = |ur(z)|P " ur(z) holds in RN and
ux(z) is a solution of the original problem (Py).

(iii) After extracting a subsequence A, — o0, there exists u € HY(R") such that

llur, —ullr, pv =0 asn — .
Moreover u(z) satisfies u(z) =0 in RY \(Q} U Q) and

—Au+u=ulflu inQ, (2.1)
u=20 on 09 (2.2)
for i =1,2. It also holds ®, (ux,) — \Ill,D(ulnl) + \I’Q’D(UlQQ) as n — 0.

Here and after we use notation
Hux”?\,o = / |Vu? + (M2a(z) + 1)u’ dz
o

for an open set O ¢ RN and A > 0.
Identifying H(Q} U ) and H(Q)) & H1(Q)), we write u = (u3,u2) € H(Q] U Q})
if u1 = ulqr, u2 = ulq, holds. We define for u = (u1,u2) € H'(Q] U Q)

Dy(uy,u2) =

a(w), (2.3)

inf
wEH(RN),w=(uy,uz) ON QUNQY,
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Now we set
Tia = {ve HH(Q); vl =1} fori=1,2

and define

Ia(v1,v2) = supob\(svl,tvz) :Tiae 20— R.
8,t>

We can observe that for any M > 0 there exists A(M) > 1 such that for any A > A(M)
e For any (v1,v2) € [Jx £ Mlx, 052 (5,1) — In(sv1,tve) has a unique maximizer.

This maximizer satisfies s,t < dps for some dp; > 0. Therefore (vi,v2) € [Jx <

My, yo3,., implies [|v;][2F} ) > 5P (i=1,2).
o [J < Mls, @5, = Rt (v1,v2) = Ja(v1,v2) is of class C* and its critical points are

corresponding to critical points of I (u).

Here we use notation:
[Jx < Mg, so5sa = {(v1,02) € T1)x @ Tax; Ia(v1,v2) < M},

(b) Comparison functionals

To find critical points of Jx(v1,v2) : 1,1 @ T2,2 — R the following observation is useful.

We use notation:

Jia(vi) =sup In(svi) : Tia— R
3>0

Lemma 2.2. There exists ¢y > 0 such that

cy— 0 as A — oo,
|Ja(v1,v2) = Jia(v1) — Jaa(ve)] < ea,
| T4 (v1,v2) (ha, ha) = J] A(v1)ha — J5 z(v2)h2| < ex(llhallxop + 1hzllany)
for all (vy,v2) € [Jx < M|z, 052 and (hy,he) € Ty, X1 3 © Toy X1 5 |
We remark that
Yix—= R vi = Jia(vs)

are even functionals and the existence of infinite many critical points can be obtained

through minimax arguments. By Lemma 2.2, we regards Jx(v1,v2) as a perturbation of
Jia(vr) + Jaa(v2).

3. Proof of Theorem 1.1
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In this section we give proof of Theorem 1.1. Since we bring a p close to %j_'—%, a critical
problem for p = % plays an important role;

—Au=u¥? in RY,
u>0 in RY, (3.1)
u e H'(RY).

In fact, the solution of (3.1) has a invariance under translations and dilations. Although
this invariance is lost for p < %, the solution of (3.1) played an important role in the
arguments theorem in Benci and Cerami [BC), Bartsch and Wang [BW2]

Since the index p have a important role, in this section we write dependence of Jy, Ji.p
on p explicitly and are notation:

Ia(pyv1,v2) = Ja(v1,v2)  for (v1,v3) € By a4 B o4,
2(p+1)

1 1 1 p—1
Jip(piv) = = — for v; € Sip 4.
olpivi) (2 p+1>(|mnm1(m>) T E 2D

2 p+ = {ve H (); vl g1y = 1,0t £ 0} fori=1,2.

We define
Crp = in JIx(p; v1, v2)
i (v1,v2)€X1 2,4+ BB2,a 4+ ( T
and
Cp(Qi) = ll‘lf J,"D(p; ’U-L').
Vi€ D+

By (PS)-conditions, cxp and () are critical values of Jx(p;vi,v2) and J; p(p;v;) re-
spectively.

First of all, we fix p and show two following lemmas.
Lemma 3.1. (i) Suppose that (v1,v3) € X154+ © X254 is critical point of Jx, Then

corresponding critical point of ®, is positive in RY .
(i) cap < ep(Q1) + cp(Q2).
Proof. (i) Let (v1,v2) € £1,0,+ D X214+ be critical point of Jx. Then there exists a unique

maximizer sg,ty > 0 satisfying

I,\(Sovl,to‘vg) = sup I)\(Svl,t’vg).
8,t>0
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We can easily show u = (sov1,tov2) is critical points of Ix. For this u, w € H HRY)

achieving (2.3) is a solution of
—Aw + (Ma(z) + 1)w = g(z,w) in RV .

By definition of g in section 1, g(z,u) > 0. From the maximum principle it follows that
w>0in RY.
(i) First, since $1,p,4+ & X2,0,4 C L1,2+ ® X2+, We have

Crp = inf Ja(p;v1,v
P (v1,2)€X1,2,+BD2,2,4 (p7 1 2)
< in Ix(p: v, v
(v1,v2)€EX1,D,+®Y2,D,+ (pv 1 2)
= mf J p(p;v +J D .
(vl,vz)ezl'p‘+@22’D‘+ ( 1, (p 1) 2 (p’ 2))
= cp (1) + cp(Qa).

Next, we show that the inequality cx p < ¢p(Q)+cp(Q2) is strict. Suppose ex,p = cp(Q1) +
cp(€22) and let u; be a least energy solution of
—Au+u=uP inQ,,

w>0 in

u=0 in 9Q;.
Here we set v; = u;/||uil|gri(a,) € Zi,p,+. Then cy(:) is achieved by vi € ¥ip + and we
get

Ja(psv1,v2) = J1,p(p;v1) + J2,0(Piv2) = cp(Q) + cp(Q2) = Crp-

Therefore (v1,v2) € ¥1,p,+ & Y2, p,+ achieve cxp. But, by previous results (i), cx,p is never

achieved by for any (vy,v2) € ¥1,p,+ ® X2,p,+. This is contradiction. i

Lemma 3.2.

exp — (1) +¢p(Q2) as A — oo.

Proof. By previous lemma, the inequality cx p < cp(€1)+cp(Q2) is strict. Let (v1x,v2,0) €
T1a+ D T2a+ be a critical point of Jy satisfying Ja(p;v1,a,v2,0) = €ap. Then, by
Lemma 2.2 for Jy, there exists a sequence A, — oo and critical points 0 # v; € ¥; p,+ of
Ji,p (i =1,2) such that

(v1,,, V2,0, ) — (v1,v2) strongly in HI(Q'l) EBHI(Q'Q).

and

In, (3010, V2.0,) — J1(p5v1) + J2(p3v2) 2 cp(u) + cp(S22)
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Therefore,
CAnp — Cp(1) + cp(S2)
|

This holds without extracting subsequence.

N+2

2 we need following lemmas. Similar lemmas

Next, in order to bring a p close to %
showed in Benci and Cerami [BC].
Lemma 3.3. For any bounded domain D C R and1<p < g < J£2,

1

p=1 g—
11\ i 11\ a
DI~z - — > -1 _
[I! G-7+1) cpw)] > (5 ) @)
Where we define
. 1 1 1 2:_4—11
(D)= inf 1 |
uEHr}(D)y[’tul(D)=1 2 P+ 1 Hu“Lp+1(D)

Proof. By using Holder’s inequality, for every p,q € [1, %J_“—g] with p < q and for every

u € HY(D) we get
p+1 a—p
qF1 9FT

/ lu|Ptldr < l:/ (|u|P+1)§-++’_i:l ’ </ dz) .

D D D

Hence
Il zo+2(py < D] 2T ||uf| Los1p),
from which we obtain
1 1 _pptl o o= 1 1 —2EtL
(5 - m)”ullLﬂl(lD) > |D| G (5 - m) I ”Lq+1(}p)
pt+l g-1
1g-1 (1 1 1 1 ~P=1971
—pr-Es (s V(2 _
P 2 p+1/\2 gq+1 (3.2)
<| (3 )l
2 q+1 Lat1(D)

Here from definition of ¢y(D) we have
1 1

41 g1
—ptig-1 (1 1 —hgﬁ p+l g—1
cp(D) > D' 1 (5 - m) (5 -~ m) ¢ .

Note that cn+2(D) does not depends on D, so we write cny+2 = cn+2 (D). Moreover,
N-2 N -2 N-=-2

cn+2 is never achieved in any proper subset of RY.
N;—t2
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Lemma 3.4. For any bounded domain D C RY,

11\1,1}12 OCP(D) =ch42
p—Ea -

Proof. We set

m = liminf c,(D), M = limsup c,(D).
Jmist (D), M= Imew c,

By Lemma 3.3 it easily follows that
N2 <m< M.
In order to prove Lemma 3.4 we have to show that
CNiz = M.

For any ¢ > 0, by definition of ¢ Niz, We can choose a T € H}(D) such that
—2

1, -~
NI ) SR te

Next, by continuity of the map p — ||z||Ls+1(p), We can choose a § € (1, ~£2) such that
for every p € [p, X2 2y

l 1 —gptl
—HUHL’@L('D) 5 p+1 |1 ||Lp+1(1>) <e
Hence for every p € [p, %“_L—g) we get
1 1 —2241
(5 - m)li | i (p) < Cyzg + 26
This implies
(D) <c N2 +2¢.

Consequently we find ¢ Nz = M
We fix r > 0 such that the inclusions 2] — §; — QF are homotopy equivalences.
Here we define
QF = {z € RY;dist(z, Q) <r},
and
Q7 = {z € Qy;dist(x, 0) > r}.
For v; € X; 5, we define the center of mass of v;:
v;|PHxdx
Bi(p;vs) = "—————fﬁ;llvllpﬁd:ﬂ :
We remark that for any d > 0 1
(p; )+ {u € LPYHQ)); ||l osryy 2 0} — RV

is continuous.



Lemma 3.5. Assume sequences (pn)a; and (vin)S2, C i p + satisfy
N 42

P — 2,

N -2’
1 1 - 2entl)
Ji,D(Pni Vi) = <§ - m)“vi,nllufﬁl}ni) — CNiz.
Then f;(pn; vi,n) € QF for large n.
Proof. Using inequality (3.2), it follows that

c%ﬁ < J; D(ﬁavz n)

Pn—1N 1
2n 1/1 1 Tl Fres s
<|D|'"7 +1-¥_ 5 [Jz n; in]p"
——| I N(2 pn+1) 7D(p 7U, ) b

from which we have
Ji,p (N2 vim) — CNsz.

Here, by Ekeland’s principle, there exists (w; ,)3, C %; p 4 satisfying

ez < Jip(%%%;wi,n) < Ji,p(FE2;vin) — Cyiz,

17, p(FE 5 win)l* — 0,

llwi,n — vinllH2(0,) — 0,
as n — 00. Now, observe that from well-known compactness results (see Struwe [St2],
Lions [L]), it follows that there exists 7, — 0, (z,)%; C Q; and solution of wy of (3.1)
such that

N-
2wi,n('rn(:z; ~ Zp)) — wo(z) strongly in HY(RM).

Hence, we can show that
Bi(pn;win) € QF  for large n.
Since ||win — Vin||g1(0,) — 0, we find

Bi(pn;vin) € Qf' for large n.

We set B, = {z € R";|z| < r}. We remark that by the choice of r
eap < () + () < 2¢5(By),

so the level set
[In(psv1,v2) < 26p(Br)lgsng 8520 s
= {(v1,v2) € 1 p + D Z2.x 45 Ia(p;v1,v2) < 2¢5(By)}

is not empty.

A following proposition is key proposition.
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Proposition 3.6. There exists p1 € a, ¥ = g) such that for any p € (p1, % N 2) there

exists A1(p) > 0 such that (81(p;v1), B2(p;v2)) € Qf x QF for all A > A1(p) and for all
(vi,v2) € T1a+ & Lo+ satisfying Jx(p;v1,v2) < 2¢p(Br).

Proof. If the conclusion is not true then for any g € (1, & 242) there exists p € (g, %t%)

and sequence A, — 00 and (Vin,V2,n) = (V1,n(D), V2, (D)) € L1 A0+ © T2,x,,+ such that

I, (s Ul,mvz,n) < 2CP(B1') and (51(1’; 'Ul,n)a52(p§ ’Uz,n)) ¢ Q1+ X Q;-

Clearly v, are bounded in H}(R") and |[v1,n||zo+1(07) 2 6, [|va,nllLo+1(ay) 2 d by property
of Jx. We may assume
n — V; 0 weakly in HY(Q),

Vin — Ui, strongly in LPT1(Q}), (3.3)

and v; o depends on p; vi,p = vi,0(p). From (3.3), we find
8 < Jviollze+r(ary < Cllviollmr (-
Furthermore, since we observe
Bilp; - ) : {u € LPYHQ); |Jul|orr () = 8} = RY
is continuous and Q" x Q7 is open, we find
(Br(p; v1,0), B2(p5 v2,0)) & OF x Q3. (3.4)

Since ||vi nl|x,,q; is bounded, for any Q; C QY C Qf, we can show

2
vinllzzner) < 2 0F a2tz

1
lvinl 2, 0; = 0.
e\ (z)
1 1

Therefore we find
vg,n — vip = 0 strongly in L*(Q\QY),

and this implies
Vi,0 = 0in Q;\Q,

From weakly lower semi-continuous of norm, we get

1= lim [|vinlla,0 2 lm [viallaa) = [lviollar@y > 0-
n—oo n—oo
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Therefore it follows that

2$p+12

11\ (Ivollney ) "
Q) < (— - ) Y \
cp(§2) 2 p+1 (H'Ui,OHHl(ﬂi)
_2(p+1)
L Vol
2 p+1 ’ @)

(11 2ty
=3 "y )l

l

1 1 _20et1) _2(pt1)
ep(h) + p() < lim (5 - m) (1101011 25y + el 2o |
< lim Jy, (95010, v2,n)
< 2¢p(Br).
We consider a sequence (gx)%o; C (I, %‘*_—‘%) with g — N—'fg as k — o0o. Applying a

previous argument for each gi, there exists a sequence px € (g, %_ig) satisfying

N +2
L Y
and we set
v1,0(Pk)

Wi,k =

k= Ezi, e
R

By Lemma 3.4, we remark limp-»%—f—g—o () = limp__)%%_o cp(Br) = casz. We have

1 1 _2(p +11)
— — , Pr—
(2 Pr +1)”w"’°HL”k+1<m> A=A

According to Lemma 3.5, for large k, w; & satisfies

(B1(pr;v1,k), B2 (P v2,k)) = (B1(Pr; wi k), B (Prj wa k) € QF x QF

This is contradiction to (2.4). |

Lemma 3.7. There exists ps € (1, x—f%) such that for any p € (p2, Lf—g), there exists

A2(p) > 0 such that for all A > Aq(p)
cp(Br) < exp < 2¢4(By)

Proof. By Lemma 3.2, the inequality ¢y, < 2¢p(B,) is trivial. By Lemma 3.4, there

exists pg € (1, —%—‘-ﬁ%) such that for any p € (p2, %—f—g),

1 .
lcp(ni) - CP(BT)] < "4'6%%% (7' = 1v2)7
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and )
lep(Br) — c%v%gl < Zc%f_i-_g

By Lemma 3.2, there exists A2(p) > 0 such that for all A > Az(p)
1
leap — () — 6p(Q2)] < 18

Then we get

1
cap > cp(h) + cp(f22) — 7°N

N-2
> 2CP(BT) — %c%
> cp(Br).

In order to prove Theorem 1.1, we need following lemma.

Lemma 3.8. Let A,B,X be topological spaces and suppose that there exist maps « :
A — X and B : X — B such that Boa : A — B is a homotopy equivalence. Then
cat(X) > cat(A).

Proof. Suppose that cat(X) = k. Then there exist closed sets Xi,...Xx C X such that
X C X, U...UX; and each X; are contractible in X. We set 4; = a7 1(X;) C A. It
follows that

cat(A) < Z cat(A4;).

i=1
We claim that, if 4; # 0, A; is contractible in A, that is, cat(4;) = 1. Since X; are
contractible in X, there exist H; € C([0,1] x X;, X) and x; € X such that

H,;(O,IE)=$ if z € X,
H(,z) =5 ifze X

Furthermore, since S o a : A — B is a homotopy equivalence, there exist continuous map
¢:B— Aand G; € C([0,1] x A, A) such that

G;(0,a) =a ifzeX;,
Gi(1,a) = p(B(afa))) ifze X

We define F; € C([0,2] x A;, A) by

]G, if t € [0,1] and a € A;,
Fi(t,0) = { go((ﬁ(cllﬁ)h(t —1,a(a)))) ;ft €[1,2] and a € 4;.



Then F; satisfies
Fi(0,a) =a ifae€ A,

Fi<2, a) =(p(ﬁ($z)) if a € A;.
Therefore, A; is contractible in A, that is, cat(4;) = 1. Consequently we get

cat(A) < k = cat(X).

We show main theory.

Theorem 3.9. Assume (al)-(a2), (0.5) and N > 3. Then there exists a p; € (1, {32)

and Ay > 1 such that for p € (p1, %—i’%) and A > A1, @ has at least cat(€y x Q) positive
critical points.

Proof. We may show that J) has at least cat(); x )3) positive critical points. Let
U € H}(B,) be a unique solution of
—Aut+u=v" in B,,
u>0 in By,
u=0 ondB,,

and we set _ ‘
Uz —y) c H!

Uy(z) = Hy (Br(y)).

T|1x,5,
We note that
2¢p(Br) = Ia(p;Uy,U;) for any (y,z) € Q] x Q7

and

(B1(p; Uy), B2(p; Uz)) = (y,2) for any (y,2) € Q] x Q5.

Let p1 and A; be constants given in Proposition 3.6. For any p € [p1, %_Lg) and A > A,
we define two maps by

a(y7z) = (Uya Uz) : Ql_ X Q; - [Jr\(p;vlv'UQ) < ZCP(BT)]ELA,+ DL2,x 49
B(v1,v2) = (61(p;v1), B2(p;v2))
: [‘])\(p; ’01,’1)2) S 2CP(BT)]Z31,A,+@232,A,+ - QT X Qg-

By Proposition 3.6, we have these maps well defined and Boa(y, 2) : Q] xQ; — QF xQf
is a identity. Therefore, from Lemma 3.8 we find

cat([JA(p; Ul,'U2) < QCP(BT)]Zx,A,+&>>-32,x,+) > Cat(Q; X Qz—)
= cat(Ql X Qg)

27
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By Lusternik-Schnirelmann theory, we can show that, for any p € [p1,, %) and A > Aq,
J has at least cat(§2; x Q) critical points. By Lemma 3.1, these critical points correspond

to positive solutions. |

Finally, we can show that (P)) possesses at least cat(Q1 U Qg) = cat(Q1) + cat(Q2)
positive solutions by using Bartsch and Wang’s argument in Bartsch and Wang [BW2]. Let
u € H'(R") be critical points of ¥ corresponding to Bartsch and Wang's solutions. Then
these u satisfy ¥, (u) < cp(B,). On the other hand, let v € H'(R") be critical points of ¥
corresponding to Theorem 3.9. By Lemma 3.7, these v satisfy ¢p(Br) < ¥a(v) < 2¢5(Br).
Consequently, we get Theorem 1.1.
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