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Abstract

In this note, we generalize some apriori estimates from our earlier work concerning two models
of chemotaxis. We also give anew $L^{\infty}$ bound for these models which yields uniqueness for one of
them.
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1Introduction,

Chemotaxis is the directed movement of aliving system in response to achemical $\mathrm{s}\mathrm{t}\mathrm{i}$ mulus. The
first mathematical model for chemotaxis has been proposed by Keller and Segel [20] to describe the
aggregation of the slime mold amoebae Dictyosteliuzn discoideum (see also Patlak [25] for an earlier
model and [19], [21] for various assessments). Since then, the mathematical description and analysis
of the biological phenomenon has attracted alot of attention. Indeed, this biochemical process has
been involved in so many medical and biological applications. Moreover, from amathematical point
of view, the model has arich structure and remains very challenging. See Horstmann [16] and [17] for
areview on the subject.

This paper is concerned with asimplified version of the Keller-Segel model but however rather
general, namely

$\{$

$\partial_{t}n=\nabla\cdot$ $[\kappa\nabla n-n\chi(c)\nabla c]$ , $t>0$ , $x\in\Omega$ ,

$\epsilon\partial_{t}c=\eta\Delta c+g(n, c)$ , $t>0$ , $x\in\Omega$ ,

$n(0, x)=\mathrm{n}\mathrm{o}(:\mathrm{r})$ , $c(0, x)=c_{0}(x)$ ,

(1)

where $\Omega$ i $\mathrm{s}$

$\mathbb{R}^{d}$ , $n(x, t)$ is the density of the population moving under chemotaxis and $\mathrm{c}(x, t)$ is the
density of the chemical substance. The function $\chi$ is the chemotactic sensitivity of the species that
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plays a crucial role in the chemotaxis process. Indeed, $\mathrm{X}(\mathrm{c})>0$ leads to positive chemotaxis (the

population is attracted by the chemical), while $\chi(c)<0$ leads to negative chemotaxis (the population

is repelled by the chemical). Moreover, in a mathematical language, $\chi$ measures the balance between

the diffusion effect of the Laplace term and the hyperbolic effect of the drift term and we tried to

understand its impact on the dynamics. The function $g(n, c)$ contains the production and decay rate

terms of the chemical and is generally taken of the form

$g(n, c)$ $=\beta(n, c)n-\gamma(n, c)c$ (2)

Finally, we take the diffusion coefficient $\kappa$ of the population $n(x, t)$ constant with respect to $n$ and $c$ .
The diffusion coefficient of the chemical $\eta$ is non-negative and the parameter $\epsilon$ $\in\{0,1\}$ . Obviously,

$\eta$ arld $\epsilon$ are not equal to zero at the same time. This means that system ( $1_{/}^{\backslash }$ contains the extreme

case of a parabolic-elliptic system ( $\epsilon$ $=0$ and $\eta>0$ ) and a parabolic-degenerate system ( $\epsilon$ $=1$ and

$\eta=())$ . The goal of this paper is to summarize some ideas previously used by the authors to obtain

global existence results for these two extreme cases of system (1) (see [10], [11]) and to give some hint

to apply these ideas to the more general system (1) together with new results.

The parabolic-elliptic system has been extensively studied by many authors and a huge quantity

of mathematical results on the existence of global in time solutions and on the blow-up of local in

time solutions, have been produced. We refer to [16] and [17] for a quite complete bibliography.

The parabolic-degenerate system has been much less studied than the previous one, except in one

space dimension. One reason to be interested in this kind of system is that it arises in modelling

the initiation of angiogenesis, a kind of chemotaxis process that occurs in the development of a new
capillary network from a primary vascular network $([8],[9], [10], [13], [23])$ . Moreover, it is now clear

that the asymptotic behavior of $n$ depends strongly on the coupling effects of the dynamics of $c$ and the

chemotactic sensitivity $\chi(c)$ and that is the reason why chemotaxis systems of parabolic-degenerate

type have been analyzed in [22], [24], [26], [27].
Most of the analysis presented in [11] about the parabolic-elliptic system was known before, unlike

our analysis for the parabolic-degenerate system which we would like to put fomaxd. The parabolic-

degenerate system we are interested in is :

$\{$

$\frac{\partial}{\partial t}n=\kappa\Delta n$ $-\nabla\cdot[n\chi(c)\nabla c]$ , $t>0$ , $x\in \mathbb{R}^{d}$ ,

$\partial \mathrm{i}^{c=}\partial-nc^{m}$ , $t>0$ , $x\in \mathbb{R}^{d}$ ,

$n(0, x)=n\mathrm{o}(x)_{\backslash }$ $c(0, x)=\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{e})$ , $x\in \mathbb{R}^{d}$

(3)

where $m\geq 1$ and the sensitivity function $\chi(c)$ is a given positive function on $\mathbb{R}_{+}$ . Our main result for

this system is the following:

Theorem 1 (Existence for the angiogenesis system (3)). Assume $d\geq 2$ , $m\geq 1$ and $\chi(c)$ a positive

say continuous function on $[0, \infty)$ . Consider $som$ $n0\in L^{1}(\mathbb{R}^{d})$ and $c0\in L^{\infty}(\mathbb{R}^{d})$ such that $n_{0}\geq 0$
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and $c0\geq 0$ . There $ex$$\dot{u}ts$ a constant $K_{0}(\kappa, \chi, d, ||c0||_{L\infty(1\mathrm{R}^{d})})$ such that if $||n0||Lq_{(\mathrm{R}^{d})}\leq \mathrm{K}\mathrm{q}$, then system

(3) has a global (in time) weak solution $(’n, c)$ such that $n\in L^{\infty}(\mathbb{R}^{+}, L^{1}\cap L^{\frac{d}{2}}(\mathbb{R}^{d}))$, $c\in L^{\infty}(\mathbb{R}^{+}\cross \mathbb{R}^{d})$

and for any fixed $\max\{1;\frac{d}{2}-1\}\leq p^{*}<\infty$ ,

$||n(t)||_{L^{\mathrm{p}}(\mathbb{R}^{d})}\leq C(t, K_{0}, p^{*}, ||n_{0}||_{L^{\mathrm{p}}(\mathrm{R}^{d})})$, $\forall\max\{1;\frac{d}{2}-1\}\leq p\leq p^{*}$ .

Moreover, if $||n \mathrm{o}||L\mathrm{z}(\mathit{1}\mathrm{R}^{d})d\leq\frac{K}{2}\mathrm{A}$ and $n0\in L^{\infty}(\mathbb{R}^{d})$ , then

$||n(t)\}|_{L^{\infty}}\leq C(\kappa,$ $\chi$ , $||n_{0}||_{L^{d}(1\mathrm{R}^{d})}) \max\{||n_{0}||_{L}\propto, ||n_{0}||_{L^{1}}\}$ .

The same conclusion holds with less regular $\chi(c)$ at $c=0$ (see [11]). Moreover, since the goal of
this note is to give a general idea of the method we use to obtain the global existence of the solution
of (1), we consider the system on the whole spac$\mathrm{e}$

$\mathbb{R}^{d}$ together with ad hoc decay condition at infinity
on the densities $n$ and $c$ . In this way, the conservation of the initial mass is assured,

$\int_{\mathrm{J}\mathrm{R}^{d}}n(t)=\int_{\mathrm{N}^{d}}n_{0}=:M_{7}$ $\forall t\geq 0$ .

In the case of a bounded domain $\Omega$ , the boundary conditions for $n$ and $c$ can be homogeneous $\backslash \mathrm{A}$JeumanIl
boundary conditions or the n0-flux boundary condition, so that the conservation of the initial mass is
again assured and the results given here can be applied.

All the results $\mathrm{w}\mathrm{i}\mathrm{U}$ be dimension dependent with $d\geq 2$ , since in one space dimension global existence
of smooth solutions can be obtained by the classical methods of parabolic equations (see for example
[13], [26] $)$ .

The paper is organized as follows. In section 2, we present a priori estimate in weighted $L^{p}$ spaces
for the general system (1). These estimates are valid for a large class of sub-systems, including $\mathrm{t}$ } $\mathrm{l}\mathrm{e}$

extreme cases mentioned before and analyzed in [11]. In sections 3 and 4, we recall results from [11]
in order to show how the a priori estimates of section 2 allow to get the global existence result for
the parabolic-elliptic and the parabolic-degenerate cases respectively. Moreover, for both systems, we
give also the $L^{\infty}$ bound not mentioned in [11] and, as a consequence, the uniqueness of the solution
of the parabolic-elliptic system.

Acknowledgement. The third author presented this work during the conference “The mechanism
of the spati0-temporal pattern arising in reaction diffusion system” which took place in Kyoto Univer-
sity in October 2004. He would like to thank T. Tsujikawa and Y. Kan-0n for their kind invitation, as
well as H. Matano, H. Ninomiya, D. Hilhorst and C. Oikonomides who made his stay in Japan very
fruitffi and pleasant.

2 Differential inequalities in weighted $L^{p}$ spaces.

In this section, we give general differential inequalities for the weighted or not $L^{p}$ norm of the solution
$n$ of (1). These inequalities include ffi the differential inequalities used in [11] and most of the know$\mathrm{n}$
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in the literature for system (1).

Let us define $u= \frac{n}{\phi(c)}$ where the function $\phi$ is such that

for $\mathrm{a}\mathrm{J}1$ $c>0$ , $\phi’(c)=\frac{1}{\kappa}\phi(c)\chi(c)$ and $\phi(0)=1$ , (4)

This means that the sensitivity function $\mathrm{X}(\mathrm{c})$ is necessarily taken to be integrable at $c=0$ . Then, the

change of variable $narrow u$ puts the equation on $n$ in the following divergence form

$\partial_{t}u=\kappa\frac{1}{\phi(c)}\nabla$ . $[ \phi(c)\nabla u]-u\frac{1}{\phi(c)}\partial_{t}\phi(c)$ . (5)

The equation on $u$ suggests naturally to consider the evolution of the quantity $\int_{\mathrm{R}^{d}}G(\phi)F(u)dx$ where

$G$ is a differentiate function on $\mathbb{R}_{+}$ and $F$ is a twice differentiable function on $\mathbb{R}_{+}$ Therefore, using

(5)
$)$ we write

$\frac{d}{dt}\int_{\mathrm{R}^{d}}G(\phi)F(u)dx=$ $- \kappa\int_{\mathrm{R}^{d}}G(\phi)F’(u)|\nabla u|^{2}dx-\kappa\int_{\mathrm{R}^{d}}(\frac{1}{\phi}G(\phi))’ F’(u)\phi\nabla\phi\cdot\nabla udx$

$+ \int_{1\mathrm{R}^{d}}[G’(\phi)F(u)-G(\phi)F’(u)\frac{u}{\phi}]\partial_{t}\emptyset dx$

(6)

$=$ $- \kappa\int_{\mathrm{R}^{d}}G(\phi)F’(u)|\nabla u|^{2}dx+\kappa$ $J_{\mathrm{R}^{d}}F(u)\Delta\psi(\phi)dx$

$+ \int_{\mathrm{R}^{d}}[G’(\phi)F(u)-G(\phi)F’(u)\frac{u}{\phi}]\partial_{t}\phi dx$

where $\psi$ is such that $\psi’(\phi)=\phi(\frac{1}{\phi}G(\phi))’$

$\mathrm{T}\}1\mathrm{e}$ main differential identity (6) shows how the evolution of the chemical of density $c$ influences

the evolution of the population of density $n$ . In order to obtain useful estimates from (6), one has to

handle carefully every term in (6).

For $\epsilon$ $=1$ and $\eta>0$ , one has to balance the second term in the right hand side of (6) with the third

term. For example, for $G(\phi)=\phi^{q}$ and $F(u)=u^{p}$ we have

$\int_{1\mathrm{R}^{d}}F(u)\Delta\psi(\phi)dx=\frac{q-1}{q}\int_{\mathrm{J}\mathrm{R}^{d}}u^{p}\Delta\phi^{q}dx=(q-1)^{2}\int_{\mathrm{R}^{d}}u^{p}\phi^{q-2}|\nabla\phi|^{2}+(q-1)\int_{\mathbb{R}^{\mathrm{d}}}u^{p}\phi^{q-1}\Delta\phi dx(7)$

and

$\int_{\mathrm{R}^{d}}[G’(\phi)F(u)-G(\phi)F’(u)\frac{u}{\phi}]\partial_{t}\phi dx=(q-p)\int_{\mathbb{R}^{d}}u^{p}\phi^{q-1}[\eta(\Delta\phi-\phi’|\nabla c|^{2})+\phi’ g(n, c)]dx$ (8)
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Then, using (7) and (8) in (6) we obtain

$\frac{d}{dt}\int_{\mathrm{R}^{d}}\phi^{q}u^{p}dx=$ $- \kappa p(p-1)\int_{\mathrm{R}^{d}}\phi^{q}u^{p-2}|\nabla u|^{2}dx$

$+[ \kappa(q-1)+\eta(q-p)]\int_{\mathrm{J}\mathrm{B}^{d}}u^{p}\phi^{q-1}\Delta\phi dx$

(9)

$+ \int_{\mathrm{R}^{d}}u^{p}\phi^{q-2}[\kappa(q-1)^{2}\phi^{a}-\eta(q-p)\phi\phi’]|\nabla c|^{2}dx$

$+(q-p) \int_{1\mathrm{R}^{d}}u^{p}\phi^{q-1}\phi’g(n, c)dx$ .

In order to eliminate the second term in the right-hand side of (9), we choose $p$ and $q$ such that
$\kappa(q-1)+\eta(q-p)=0$, $\mathrm{i}.\mathrm{e}$ . $q=p+_{2}\gamma\mp 1$ with $\gamma=\frac{\kappa}{\eta}$ , and (9) becomes

$\frac{d}{dt}\int_{1\mathrm{R}^{d}}\phi^{\frac{\mathrm{p}}{\gamma}}\mp 1u^{p}dx=+\lrcorner$ $-4 \kappa\frac{(p-1)}{p}\int_{\mathrm{R}^{d}}|\nabla u^{p/2}|^{2}dx$

$+ \frac{1}{\gamma+1}(p-1)f_{\mathrm{N}^{d}}u^{p^{\mathrm{L}+_{f}}}\phi^{\gamma+1}[\chi’(c)+\frac{1}{\kappa}\frac{p+\gamma}{\gamma+1}\chi^{2}(c)]|\nabla c|^{2}dx$ (10)

$- \frac{1}{\kappa}f\overline{\gamma}+\overline{1}(p-1)\int_{1\mathrm{R}^{d}}u^{p^{\mathrm{L}+}}\phi^{\gamma^{\frac{\gamma}{+1}}}\chi(c)g(n, c)dx$ .

Next, let us suppose that for the initial density $c\mathrm{o}$ non-negative and bounded, the density $c$ stays
non-negative and bounded. Let us suppose also that there exists $\overline{p}’-\backslash 1$ such that

$\chi’(c)+\frac{1}{\kappa}\frac{p+\gamma}{\gamma+1}\chi^{2}(c)\leq 0$ for all $p\in[1,\overline{p}]$ and $c\in[0,$ $||c||_{L}\infty|$ . (11)

Then, for my $p\in[1,\overline{p}]$ , the following differential inequality for the weighted $L^{p}$ norm of $u$

$\frac{d}{dt}\int_{\mathrm{N}^{d}}\phi^{\mathrm{L}2}\gamma\mp 1u^{p}dx+\leq-4\kappa\frac{(p-1)}{p}\int_{\mathrm{R}^{d}}|\nabla u^{\mathrm{p}/2}|^{2}dx-\frac{1}{\kappa}\frac{\gamma}{\gamma+1}(p-1)\int_{\mathrm{R}^{d}}u^{p}\phi^{\gamma\{1}\chi(c)g(n, c)\epsilon\pm fdx$ (12)

holds true. Finally, if the range $[1, \overline{p}]$ of $p$ is sufficiently large with respect to to the dimension $d$ , (12)
gives us the estimate of some $L^{\mathrm{p}}$ norms of $n$ under a smallness condition on the initial density no (see

subsection 3.1). The dependence of $g$ on $n$ is obviously crucial.
Please note that (11) implies that $\chi(c)$ must be decreasing and in particular that $\chi(c)$ cannot be

identically constant.
Let us also observe that, without any hypothesis on $\chi(c)$ , letting $\etaarrow 0^{+}$ so that $\gammaarrow+\infty$ in (10),

we obtain the differential identity below for the parabolic-degenerate case already used in [11]

$\frac{d}{dt}\int_{\mathrm{N}^{d}}\phi(c)u^{p}dx=-4\kappa\frac{(p-1)}{p}\int_{\mathbb{R}^{d}}|\nabla u^{p/2}|^{2}dx-\frac{1}{\kappa}(p-1)\int_{\mathbb{R}^{d}}u^{\mathrm{p}}\phi(c)\chi(c)g(n, c)dx$. (13)
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For $\epsilon$ $=0$ , the third term in the right hand side of (6) has to be eliminated. This is possible for

example taking $G(\phi)=\phi^{\rho}$ and $F(u)=u^{p}$ . With this choice and after some computation, (6) becomes

nothing else than the evolution equation for the $L^{p}$ norm of $n$

$\frac{d}{dt}\int_{1\mathrm{R}^{d}}n^{p}dx$ $=- \kappa p(p-1)\int_{\mathrm{N}^{d}}\phi^{\mathrm{p}}u^{p-2}|\nabla u|^{2}dx-\kappa p(p-1)\int_{\mathrm{I}\mathrm{R}^{d}}n^{p-1}\nabla\phi\cdot$ $\nabla udx$

(14)

$=-4 \kappa\frac{(p-1)}{p}\int_{\mathrm{R}^{d}}|\nabla n^{p/2}|^{2}dx+(p-1)\int_{\mathrm{R}^{d}}\chi(c)\nabla n^{p}$ . $\nabla cdx$ .

Iu the ca $\mathrm{e}$ of constant sensitivity, ffom (14), one obtains an estimate on the $L^{p}$ norm of $n$ . See Section

3 below.

Remark. Following [15], one can also obtain Lyapunov functions for the system (1) with $\eta>0$ .

Indeed, for $G(\phi)=\phi$ and if $[F(u)-uF’(u)]\phi’=-g(n, c)$ , then the function

$H(n(t).c(t))= \int_{\mathrm{R}^{d}}\mathrm{X}(\mathrm{c})$ $( \frac{n}{\phi(c)})dx+\frac{\eta}{2}\int_{\mathrm{R}^{d}}|\nabla c|^{2}dx$

is a Lyapunov function since from (6) we have

$\frac{d}{dt}H(r\iota(t), c(t))$ $=- \kappa\int_{\mathrm{R}^{d}}\phi F’’(u)|\nabla u|^{2}dx-\int_{\mathrm{R}^{d}}g(n, c)\partial t^{C}dx-\eta\int_{1\mathrm{R}^{d}}\Delta c\partial tcdx$

(15)

$=- \kappa\int_{\mathrm{R}^{d}}\phi F’(\frac{n}{\phi(c)})|\frac{\nabla n}{\phi}-\frac{n}{\phi^{2}}\nabla\phi|^{2}dx-\epsilon$ $\int_{\mathrm{J}\mathrm{R}^{d}}(\partial_{t}c)^{2}dx\leq 0$ .

3 The parabolic-elliptic system.

In this paragraph, we consider the parabolic-elliptic system given by (1) when $\xi$ $=0$ , i.e.

$\{$

$\mathcal{T}\iota\partial n=\kappa\Delta n-\chi\nabla\cdot[n\nabla c]$ , $t>0$ , $x\in\Omega$ ,

$-\Delta c=n-cf(c)$ , $t>0$ , $x\in\Omega$ ,

$n(0, x)=n_{0}(x)$ , $x\in\Omega$ .

(16)

where $f$ is a non-negative function, $\mathrm{X}(\mathrm{c})$ is constant with respect to $c$ and for simplicity in the notations,

we take $\eta=1$ .
When $f(c)\equiv 0$ , the validity of (16) in the framework of chemotaxis is supported by some experiments

on the Escherichia Coli bacterium (see [6] and the references therein), even if this model does not seem

to reproduce some of the observed chemotactic movement. Moreover, in this case $(f\equiv 0)$ , system (16)

has other interesting physical interpretations. For example, it arises in astrophysics and in statistical

mechanics (see [2], [3], [4] and the references therein).

Concerning the chemotaxis system (16), the situation is $\mathrm{w}\mathrm{e}\mathrm{U}$ established and we recall the following

results
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Theorem 2 (Existence and uniqueness for the chemotam system (16)) Assume $d\geq 2$ and consider
some $n_{0}\in L^{1}(\mathbb{R}^{d})$ such that $n_{0}\geq 0$ . There exists a constant Ko(k, $\chi$ , $d$ ) such that if $||n_{0}||L^{d}2(\mathrm{R}^{d})\leq K_{0}$ ,
then system (16) has a global (in time) weak solution $(n, c)$ such that for all $t>0$

$||n(t\}||_{L^{1}(\mathrm{R}^{d})}=||n_{0}||_{L^{1}(\mathrm{N}^{d})}, ||n(t)||_{L^{\mathrm{p}}(\mathrm{N}^{d})}\leq||n_{0}||_{L^{p}(1\mathrm{R}^{d})}$ $\max\{1;\frac{d}{2}-1\}\leq p\leq\frac{d}{2}$ ,

and
$||n(t)||_{L^{\mathrm{p}}(\mathrm{F})}\leq C(t, K\circ, ||n0||_{L^{\mathrm{p}}(\mathrm{R})}d)$ $\frac{d}{2}<p<\infty$ .

Moreover, if $||n_{0}||L \not\in(\mathrm{R}^{d})\leq\frac{K}{2}\mathrm{A}$ and if $n0\in L^{\infty}(\mathbb{R}^{d})$ , then the solution is unique with

$||n(t)||_{L^{p}(\mathrm{R}^{d})}\leq||n_{0}||_{L^{\mathrm{p}}(\mathrm{R}^{d})}$ . $\max\{1;\frac{d}{2}-1\}\leq p\leq d$ .

and
$||n(t)||_{L^{\infty}}\leq C(\kappa,$ $\chi$ , $||n0||_{L^{d}(\mathrm{R}^{d})}) \max\{||n_{0}||_{L^{1}}, ||n_{0}||_{L^{\infty}}\}$ .

The results of this theorem were known before the authors’ paper [11], except for three facts :
(i) the smalhess condition for the global existence is needed only in the critical norm $||n_{0}||L^{d}2(\mathrm{R}^{d})$ ’

(ii) the $L^{\infty}$ bound of $n$ ,
(i\"u) the uniqueness of the solution in the case of bounded initial data $n_{0}$ .

We established (i) in the proof of Theorem 2 given in [11]. Therefore, we will give only some
comments about the existence issue (for the whole proof, please see [11]). Let us just remark that
a smallness assumption is nevertheless necessary in the above theorem. Indeed, it is known since
[18] that blow-up may occur in two space dimensions for large initial data. The $L^{\infty}$ bound $\epsilon 1r\mathrm{n}\mathrm{d}$ the
uniqueness $\mathrm{r}\mathrm{e}\mathrm{s}\iota \mathrm{d}\mathrm{t}$ were not mentioned in [11], hence we will give the proof later in this section.

Finally, let us remark that in the case of the whole space $\mathbb{R}^{d}$ under consideration and with the ad
hoc decay conditions at infinity on $n$ and $c$ , the chemical density can be represented exactly

$c(t, x)= \int_{1\mathrm{R}^{d}}E_{d}(x-y)n(t, y)dy$ (17)

when $f$ is constant, say $f\equiv\alpha$ , a1ld where $E_{d}$ is the fundamental solution of $(-\Delta+\alpha I)$ . However, we
prove Theorem 2 without using (17). That is the reason why our proof extends naturally to the case
of a non constant $f$ .

Remark. System (16) has the well known conserved energy (see for example [5], [14] and [15]) given
by

$\frac{d}{dt}I\{\kappa n(\ln n-1)$ $- \frac{\chi}{2}(\alpha c^{2}+|\nabla c|^{2})\}dx=-$ ’ $n|\nabla(\kappa\ln n-\chi c)|^{2}dx$ (18)

when $f$ is constant, say $f(c)=\alpha$ . Let us just mention that this energy follows from (6) when we
take $G(\phi)=\phi$ , $F(u)=u\ln u$ and $\chi$ constant. Indeed, in this case $\phi$ defined in (4) is given by
$\phi(c)=\exp(\frac{\chi}{\kappa}c)$ . Therefore, (6) becomes

$\frac{d}{dt}\{\int n\ln n-\frac{\chi}{\kappa}\int nc.\}dx=-\kappa\int n|\nabla(\ln n-\frac{\chi}{\kappa}c)|^{2}dx-\frac{\chi}{\kappa}\int n\partial_{t}cdx$. (19)
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Using the fact that $n=-\Delta c+cf(c)$ (see (16)) in the second term of both the right and left hand side

of (19), we obtain

$\frac{d}{dt}\int\{n\ln n-\frac{\chi}{2\kappa}(|\nabla c|^{2}+\alpha c^{2})+\frac{\chi}{\kappa}[\psi(c)-c^{2}f(c)]\}dx=-\kappa\int n|\nabla(\ln n-\frac{\chi}{\kappa}c)|^{2}dx$ ,

which is precisely (18).

3.1 The existence issue in Theorem 2.

First of all, let us observe that by the maximum principle $n>0$ and $c\geq 0$ if $n_{0}\geq 0$ , while with

the decay at infinity condition on $n$ and $c$ , the initial mass $M=f_{\mathrm{R}^{d}}$ no(x) $dx$ is conserved. Next, for

constant $\chi$ the identity (14) becomes

$\frac{d}{dt}\int_{\mathrm{R}^{d}}n^{p}+4\kappa\frac{p-1}{p}\int_{\mathrm{R}^{d}}|\nabla n^{p/2}|^{2}\leq\chi(p-1)\int_{\mathrm{J}\mathrm{R}^{d}}n^{p+1}$ (20)

Using the GagliardO-Nirenberg-Sobolev inequality (see [7], [12]) in space dimension $d>2$ , we get for

any $p\geq d2$ 1 (so that : $\frac{d}{2}\leq p+1\leq\frac{d\mathrm{p}}{d-2}$)

$\int_{\mathrm{N}^{d}}n^{p+1}\leq||n||^{p}{}_{L}H_{-(\mathrm{R}^{d})}^{d}||n||_{d}L\not\supset(\mathrm{R}^{d})=||n^{p/2}||^{2}L\neq_{-}*(\mathrm{R}^{d})||n||L?(\mathbb{R}^{d})d\leq C(d)||\nabla n^{p/2}||_{L^{2}(\mathrm{R}^{d})}^{2}||n||_{d}L^{\mathrm{g}}(1\mathrm{R}^{d})$

(21)

In dimension $d=2$ , following [18] (see also [7]), we have in a similar way for any $p>0$

$\int_{\mathrm{R}^{2}}n^{p+1}\leq C(\frac{p+1}{p})^{2}||\nabla n^{p/2}||_{L^{2}(1\mathrm{R}^{2})}^{2}||n||_{L^{1}(\mathrm{R}^{2})}$ (22)

Inequalities (21) md (22), together with (20), lead to the main differential inequality in any dimen-

sion $d\geq 2$

$\frac{d}{dt}\int_{\mathbb{R}^{d}}n^{p}-\leq(p-1)||\nabla n^{\mathrm{p}/2}||_{L^{2}(\mathrm{R}^{d})}^{2}[\chi\tilde{C}(d)||n||L\not\in(\mathrm{R}^{d})-\frac{4\kappa}{p}]$ $\forall\max\{1;\frac{d}{2}-1\}\leq p<\infty$ (23)

In dimension $d=2$ , (23) means that if the initial mass $M$ is sufficiently small, in terms of $p\geq 1$ ,

then the $||n(t)||_{L^{p}(\mathrm{R}^{2})}$ norm (for the same $p$) decreases for all times $t\geq 0$ .

In dimension $d>2$ and for $p= \frac{d}{2}$ , (23) gives us that whenever we have initially

$-\underline{8\kappa}<0$ .$\chi\overline{C}(d)||n_{0}||L\not\in(\mathrm{R}^{d})$

$d-$
(24)

the $||n(t)||L^{d}2(\mathrm{R}^{d})$ norm decreases for all times $t\geq 0$ . As a consequence, whenever (24) holds true, all

the $||n(t)||_{L^{\mathrm{p}}(\mathrm{R}^{d})}$ norms, with $\max\{1;\frac{d}{2}-1\}\leq p\leq\frac{d}{2}$ , decrease for all times $t\geq 0$ . In the same way, if

the initial density $7\iota 0$ satisfies
$-\underline{4\kappa}\leq 0$ .$\chi\tilde{C}(d)||n_{0}||L\not\in(\mathrm{R}^{d})$

$p^{*}$

(25)
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for $\frac{d}{2}<p^{*}<\infty$ , then (24) follows again md aU the $||n(t)||_{L^{p}(1\mathrm{R})}d$ norms with $\max\{1j\frac{d}{2}-1\}\leq p\leq p^{*}$

decrease for $\mathrm{a}\mathrm{A}$ times $t\geq 0$ .
In conclusion, a smallness condition depending on $\frac{1}{p}$ with $\max\{1;\frac{d}{2}-1\}\leq p<\infty$ on the initial

density $n_{0}$ is sufficient to get a decreasing $L^{p}$ norm of $n$ , in any dimension $d\geq 2$ . However, if one
writes (20) for $(n-K)_{+}$ with $K>0$ large enough and uses the same techniques, then we get rid of
the dependence of the smallness condition on $p$ (see [11] for details). However, the $L^{p}$ bound we get
this way depends also on $t$ .

Finally, using a regularizing method, we derive ffom the a priori estimates the existence of solutions
for system (16) and we get the first part of Theorem 2.

3.2 The $L^{\infty}$ bound in Theorem 2.

Let us prove now that it $1\mathrm{S}r$ sufficient to control the $L^{d}$ norm of $n$ in order to obtain the $L^{\infty}$ bound of $n$ ,
whenever $n_{0}\in L^{\infty}$ . Indeed, using straightforward interpolation and the GagliardO-Nirenberg-Sobolev
inequality, we have in dimension $d=2$

$\int_{\mathbb{R}^{d}}n^{p+1}\leq||n||_{L^{2}}||n^{\rho}2||_{L^{4}}^{2}\leq C||n||_{L^{2}}||n^{\frac{p}{2}}||_{L^{2}}||n^{\mathrm{p}}2||_{H^{1}}$ (26)

while in dimension $d>2$ it holds true that

$\int_{\mathrm{R}^{d}}n^{\mathrm{p}+1}\leq||n2||||n^{\epsilon_{+1}}2||_{2d}\mathrm{E}L\mathrm{a}_{-\mathrm{T}}^{\underline{2}d}L^{F\mp 2}\leq C||\nabla n^{l\mathrm{i}}2||_{L^{2}}||n||_{L^{\beta}}^{2}||n||_{L^{d}}\rho$ (27)

Then, putting (26) and (27) in (20) and using the Young’s inequality in an appropriate way, we obtain
in any dilrle1lsion $d\geq 2$

$\frac{d}{dt}\oint_{\mathrm{J}\mathrm{R}^{d}}n^{p}+4\kappa\frac{p-1}{p}\int_{\mathrm{R}^{d}}|\nabla n^{p/2}|^{2}\leq 2\kappa\frac{p-1}{p}\int_{\mathrm{R}^{d}}|\nabla n^{p/2}|^{2}+p(p-1)C(\chi, \kappa, ||n||_{L^{d}}^{2})||n||_{L^{p}}^{p}$ (28)

Finally, taking $n_{0}\in(L^{1}\cap L^{\infty})(\mathbb{R}^{d})$ and the smallness condition (25) on $||n_{0}||_{c^{d}(\mathrm{R}^{d})}2$ so that $||n(t)||_{L^{d}}\leq$

$||n0||_{L^{d}}$ , we have the main differential inequality

$\frac{d}{dt}\int_{\mathbb{R}^{d}}n^{p}+2\kappa\frac{p-1}{p}\int_{\mathrm{R}^{d}}|\nabla n^{p/2}|^{2}\leq Cp(p-1)\int_{\mathbb{R}^{d}}n^{p}$ (29)

giving the following $L^{\infty}$ bound of $n$

$\sup_{t\geq 0}||n(t)||_{L}\infty\leq C\max\{||n_{0}||_{L^{1};}||n_{0}||_{L^{\infty}}\}$ (30)

by the iterative technique of Alikakos [1], where the constant $C$ in the estimate (30) depends on
$\kappa$ , $\chi$ , $||n_{0}||_{L^{d}(\mathrm{R}^{d})}$ .

For the sake of completeness, we present the argument of [1]. The constants may change ffom line
to line. Let define $p_{k}=2^{k}$ , for $k\in \mathrm{N}$ , and $v=n^{pk-1}$ . Then, inequality (29) becomes

$\frac{d}{dt}\int_{\mathrm{R}^{d}}v^{2}+2\kappa\frac{p_{k}-1}{p_{k}}\int_{\mathrm{R}^{d}}|\nabla v|^{2}\leq C_{1}p_{k}^{2}\int_{\mathrm{R}^{d}}v^{2}$ . (31)
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Next, by the GagliardO-Nirenberg-Sobolev inequality and Young’s inequality, we have (without making

any difference between $d=2$ and $d>2$ )

$||v||_{L^{2}}^{2} \leq C_{2}||v||_{L^{1}}^{2\alpha}||v||_{H^{1}}^{2(\alpha-1)}\leq C_{2}(\frac{1}{\epsilon^{\frac{1}{a}-1}}||v||_{L^{1}}^{2}+\epsilon||v||_{H^{1}}^{2})$
$\alpha\in(0,1)$ (32)

and for 6 sufficiently small
$||v||_{L^{2}}^{2} \leq C_{2}(\frac{1}{\epsilon^{\frac{1}{\alpha}-1}}||v||_{L^{1}}^{2}+\epsilon||\nabla v||_{L^{2}}^{2})$

(33)

Multiplying (33) by $(C_{1}p_{k}^{2}+\epsilon)$ and taking $\Xi$ small enough so that

$C_{2}(C_{1}p_{k}^{2}+ \epsilon)\epsilon\leq 2\kappa\frac{p_{k}-1}{p_{k}}$, (34)

we obtain from (31)

$\frac{d}{dt}\int_{\mathrm{R}^{d}}v^{2}\leq-\epsilon\int_{1\mathrm{R}^{d}}v^{2}+C_{2}\frac{1}{\epsilon^{\frac{1}{\alpha}-1}}(C_{1}p_{k}^{2}+\epsilon)(\int_{\mathrm{R}^{d}}v)^{2}$ (35)

i.e. using again the function $n$ ,

$\frac{d}{dt}\int_{\mathrm{R}^{d}}n^{pk}\leq-\in\int_{\mathrm{R}^{d}}n^{pk}+C_{2}\frac{1}{\epsilon^{\frac{1}{\alpha}-1}}(C_{1}p_{k}^{2}+\epsilon)(\sup_{t\geq 0}\int_{\mathrm{R}^{d}}n^{pk-1})^{2}$ (36)

and by Gronwall lemma

$\int_{\mathbb{R}^{d}}n^{\mathrm{P}k}\leq\max\{\int_{\mathrm{R}^{d}}n_{0}^{pk} : C_{2}\epsilon^{-\frac{1}{a}}(C_{1}p_{k}^{2}+\epsilon)(\sup_{t\geq 0}\int_{\mathrm{R}^{d}}n^{p_{k-1}})^{2}\}$ , $\forall t\geq 0$ (37)

The estimate of $||n||L^{\mathrm{p}_{k}}$ follows by (37) using an iterative argument and a careful estimate of the

constants in (37). Indeed, (34) gives us that $\epsilon=\epsilon_{k}$ is of order $\overline{\mathrm{p}}_{k}^{T}1$ . Then, let us define

$\delta_{k}=C_{2}\in_{k}-\frac{1}{\alpha}(C_{1}p_{k}^{2}+\epsilon_{k})$ and $L= \max\{||n_{0}||_{L^{1}} ; ||n\circ||_{L^{\infty}}\}$ .

Inequality (37) now reads as

$J_{\mathbb{R}^{d}}n^{\mathrm{P}k} \leq\max\{L^{\mathrm{P}k}$ ; $\delta_{k}(\sup_{t_{-}^{\backslash }\nearrow 0}\int_{1\mathrm{R}^{d}}n^{\mathrm{P}k-1)^{2}\}},$ $\forall t\geq 0$ (38)

Since $\delta_{k}\geq 1$ for any $k\in \mathrm{N}$ , from (38) we obtain recursively

$\int_{\mathrm{J}\mathrm{R}^{d}}n^{\mathrm{P}k}\leq\delta_{k}\delta_{k-1}^{\mathcal{P}1}\delta_{k-\sim 9}^{p_{2}}\cdot*$
$\cdot\delta_{1}^{p_{k-1}}L^{\mathrm{P}k}$ (39)

Finally, let $C$ be a constant such that $\delta_{k}\leq Cp_{k}$

$2( \frac{1}{\alpha}+1)$

. We have

$||n||_{L^{p_{k}}}\leq c_{k}^{(1-\frac{1}{p})}2^{2(\frac{1}{\alpha}+1)\Sigma_{i=1}^{k}\frac{\mathrm{t}}{2’}}L$ (40)

and estimate (30) follows by taking $k$ $arrow+\infty$ .
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3.3 The uniqueness issue in Theorem 2.

In the following, we give the proof of the uniqueness of the global solution in the case of bounded data
$n\circ\cdot$ This proof follows an idea of [14] and was not mentioned in [11],

Let $(n_{1}, c_{1})$ and $(n_{2}., c_{2})$ be two solutions of (16) and let us consider the function

$f(n_{1}, n_{2})=n_{1} \ln n_{1}+n_{2}\ln n_{2}-(n_{1}+n_{2})\ln(\frac{n_{1}+n_{2}}{2})$,

which satisfies
$f(n_{1}, n_{2}) \geq\frac{1}{4}(\sqrt{n_{1}}-\sqrt{n_{2}})^{2}$.

Then, using the second equation in (16) to estimate the $L^{2}$ norm of $\nabla(c_{1}-c_{2})$ , we have

$\frac{d}{dt}\int_{\mathrm{R}^{d}}f(n_{1}.n_{2})$ $=- \kappa\int_{\mathrm{R}^{d}\acute{\mathrm{R}}^{d}}\frac{n_{1}n_{2}}{n_{1}+n_{2}}|\nabla\ln(\frac{n_{1}}{n_{2}})|^{2}+\cdot\frac{n_{1}n_{2}}{n_{1}+n_{2}}\nabla\ln(\frac{n_{1}}{n_{2}})\cdot[\nabla c_{1}-\nabla c_{2}]$

$\leq-\frac{\kappa}{2}\int_{1\mathrm{R}^{d}}\frac{n_{1}n_{2}}{n_{1}+n_{2}}|\nabla\ln\{\frac{n_{1}}{n_{2}})|^{2}+\frac{1}{8\kappa}||n_{1}+n_{2}||_{L^{\infty}}\int_{\mathrm{J}\mathrm{R}^{d}}|\nabla(c_{1}-c_{2})|^{2}$

$(41\rangle$

$\leq\frac{\chi^{2}}{16\alpha\kappa}||n_{1}+n_{2}||_{L}\infty\int_{\mathrm{R}^{d}}(n_{1}-n_{2})^{2}$

$\leq\frac{\chi^{2}}{8\alpha\kappa}||n_{1}+n_{2}||_{L\infty}||\sqrt{n_{1}}-\sqrt{n_{2}}||_{L^{2}}^{2}$ ,

and the Gronwall lemma gives us that $f(n_{1}(t), n_{2}(t))=0$ for any $t>0$ whenever $n_{1}$ and $n_{2}$ have the
same initial data.

4 The parabolic-degenerate system.

In this section, we deal with the parabolic-degenerate system

$\{$

$Ft\partial n=\kappa\Delta n-\nabla$ . $[n\chi(c)\nabla c]$ , $t>0$ , $x\in\Omega$ ,

$\frac{\partial}{\partial t}c=-nc^{m}$ , $t>0$ , $x\in\Omega$ ,

$n(0, x)=n_{0}(x)$ , $c(0, x)=c_{\vee}\mathrm{o}(x)$ , $x\in\Omega$ .

(42)

with $\Omega=\mathbb{R}^{d}$ , $m\geq 1$ and the $\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\overline{\mathrm{l}}\mathrm{t}\mathrm{y}$ function $\chi(c)$ a given positive function on $\mathbb{R}_{+}$ , generally chosen
as a decreasing function since sensitivity is lower for higher concentrations of the chemical because of
saturation effects.

It is interesting to analyze systems of type (42), where the equation on $c$ is a simple ODE, in order
to understand the mechanism of the competition between the chemotactic effects due to the sensitivity
function $\chi(c)$ and the dynamics of $c$ . In this spirit, system (42) with $\chi(c)$ a positive continuous function
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on $[0, \infty)$ has been analyzed in [10] and [11]. In that paper, we prove Theorem 1, except for the $L^{\infty}$

bound which is new. Let us note that the analysis is similar to what we did in Theorem 2 for the

chemotaxis system (16) and founded on the following equivalent of (20) :

$\frac{d}{dt}\int_{\mathrm{R}^{d}}(\frac{n}{\phi(c)})^{p}\phi(c)+4\kappa\frac{p-1}{p}\int_{\mathrm{R}^{d}}\phi(c)|\nabla(\frac{n}{\phi(c)})^{p/2}|^{2}=\frac{1}{\kappa}(p-1)\int_{\mathrm{R}^{d}}\phi^{2}(c)^{\chi}(c)c^{m}(\frac{n}{\phi(c)})^{p+1}$ (43)

This is exactly the identity (13) obtained in section 2. In particular, we get the $L^{\infty}$ bound in Theorem 1

using (43) and the iterative argument of Alikakos [1] (see subsection 3.2). However, since the Alikakos

[1] estimates handle norms with respect to the Lebesgue measure, one should use here the following

norm-equivalence : for ffi $p\geq 1$ , $\alpha\in \mathbb{R}$ and $v\in L^{p}(\mathbb{R}^{d})$ ,

$C_{1}(p, \alpha, ||c_{0}||_{L}\infty)||v||_{L^{p}(\mathrm{R}^{d})}\leq(\int v(x)^{p}\phi(c(x))^{\alpha}dx)\frac{1}{p},$ $\leq C_{2}(p, \alpha, ||c_{0}||_{L}\infty)||v||_{L^{\mathrm{p}}(\mathrm{R}^{d})}$

which comes from the fact that $\phi(c)=\exp(\frac{1}{\kappa}\int_{0}^{\mathrm{c}}\chi(c’)dc’)$ and $0\leq c(x, t)\leq||c0||_{L^{\infty}(1\mathrm{R}^{d})}$ . This way, the

conclusion of Theorem 1 follows without difficulty.

Finally, let us mention that when $\chi(c)$ is such that

$\mu:=\frac{1}{2}\inf_{c\geq 0}\{\frac{c\chi}{\chi}, +m\}>0$ , (44)

it has been proved in [10] that system (42) has an energy structure given by

$\frac{d}{dt}\mathcal{E}(t)\leq-\int_{1?}n[\kappa|\nabla\ln(n)|^{2}+\mu c^{m-1}|\nabla\Phi(c)|^{2}]\leq 0$ , (45)

where
$\mathrm{S}(\mathrm{t}):=\int_{\Omega}[\frac{1}{2}|\nabla\Phi(c)|^{2}+n\ln(n)]$ and $\Phi’(c)=\sqrt{\frac{\chi}{c^{m}}}$.

Note that $\mathrm{S}(\mathrm{t})$ cannot be obtained from the general identity (6) with an appropriate choice of $G$ and $F$ .
We obtain $\mathcal{E}(t)$ directly from system (42) in the $(n, c)$ variables using the function $N(c):=- \int_{0}^{t}n(\tau)d\tau$ .
Indeed,

$\frac{d}{dt}\int n\ln ndx$ $=- \kappa\int n|\nabla\ln n|^{2}dx+\int\chi(c)\nabla n\cdot$ $\nabla cdx$

$=- \kappa\int n|\nabla\ln n|^{2}dx-\int\chi(c)c^{m}\partial_{t}(\frac{|\nabla N|^{2}}{2})dx$

and

$\frac{d}{dt_{J}}\mathcal{E}(t)=\frac{d}{dt}\int[n\ln n+\chi(c)c^{m}\frac{|\nabla N|^{2}}{2}]dx=-\kappa\int n|\nabla\ln n|^{2}dx-\int n(\chi(c)c^{m})’ c^{m}\frac{|\nabla N|^{2}}{2}$.

For $\mathrm{i}$ nitial data with finite energy and $d\geq 2$ , the energy (45) allows to prove the existence of

weak solutions to (42) where the drift term $n\chi(c)\nabla c$ is well defined. This energy also provides equi-

integrability for $n$ , therefore solutions cannot exhibit concentrations. But the question of propagation
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of smoothness of the solutions is largely open. Our result in Theorem 1 is a contribution in this
direction.

Note that the relaxation of the smallness condition in dimension $d\geq 3$ is an open problem. However,
in two space dimensions, we have the following:

Theorem 3 ($L^{p}$ bound for the angiogenesis system (42) in two dimensions). Assume $d=2$ , $m\geq 1$ ,
$\chi$ a positive say continuous differentiable function on $[0, \infty)$ and $\mu>0$ in (44). Consider some
nonnegative initial data $(n_{0}, c_{0})$ with finite energy $i.e$ . $\mathcal{E}(0)<\infty$ , such that $\ln(1+|x|)n_{0}\in L^{1}(\mathbb{R}^{d})$ and
$c_{0}\in L^{\infty}(\mathbb{R}^{d})$ . Then, there is a weak solution $(n, c)$ of system (42) such that for any fixed $1\leq p^{*}<\infty$ ,

$||n(t)||_{L^{\mathrm{p}}(\mathrm{R}^{2})}\leq C(t,p^{*}, ||n0||_{L^{p}(\mathrm{R}^{2})})$ , $\forall 1\leq p\leq p^{*}$

See [11] for details on this theorem.
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