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1 Preparation

In this section, we summarize the basic facts about measured groupoids and
von Neumann algebras associated to them. Further details regarding these
objects can be found in (3], [8], [9]. We also briefly discuss actions of locally
compact quantum groups on von Neumann algebras.

We assume that all von Neumann algebras in this paper have separable
preduals, and

(X, i) : standard Borel space,
R : discrete measured equivalence relation on (X, u),
v : left counting measure on R,
o
Riz)={ye X : (z,y) € R},
[R] := {¢ : bimeasurable nonsingular transformations
such that p(z) is in R(z) for a.e. z in X},
I'(p) = {(z, ¢(z)) : © € Dom(p)} (¢ € [R]).

: normalized 2-cocycle on R,
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Definition 1. (1) We define a von Neumann algebra W*(R, o) and a von
Neumann subalgebra W*(X) which act on L*(R, v} by the following:

W*(R, o) == {L°(f) : f is a left finite function on RY,
WHX) = {L7(d) s d € L=(X, )},

where we regard L°(X, 1) as functions on the diagonal of R, and L7( f)is
defined by

(LM, 2) = > f@,9)E(y, 2)o(z,y,2).

y:(y,z)ER

(2) Let A be a von Neumann algebra and D be a subalgebra of A. We call
D is a Cartan subalgebra of A if D satisfies the following:

(i) D is maximal abelian in A,
(i) D is regular in A, i.e., the normalizer N4(D) generates A, where

Na(D) := {u € A:uis unitary and uDu* = D}.

(iii) there exists a faithful normal conditional expectation Ep from A onto
D.

Theorem 2 ([3, Theorem 1]). For each inclusion of a von Neumann al-
gebra A and a Cartan subalgebra D of A, there exists a standard Borel space
(X, 1) and a discrete measured equivalence relation R on X with a normal-
ized 2-cocycle o such that (D € A) is isomorphic to (W*(X) C W*(R,0)).

Theorem 3 ([1, Corollary 3.5]). Suppose A is a von Neumann algebra with
a Cartan subalgebra D of A such that A = W*(R,0) and D = W*(X). Then
there ezists a bijective correspondence between the set of Borel subrelations

S of R on (X,pu) and the set of von Neumann subalgebras B of A which
contain D:

B— SB g R
S = W*(S,0) = {L°(f) € A:supp(f) € S} S A.



Let G = (M, A, p,9) be a locally compact quantum group (M is a von
Neumann algebra, A : M — M®M is a coproduct, ¢ (resp. ) is a left (resp.
right) invariant weight on M). A normal unital injective *-homomorphism a
from A onto M @ A is called an action of G on A if « satisfies the following:

(A ® z'dA)a = (ZdM & Ol)O:.

In particular, if G is cocommutative, i.e., M is equal to the group von Neu-
mann algebra W*(K') which is generated by the left regular representation Ax
of a locally compact group K, and A is equal to Ak : Ak (k) — Ak (k)RAk (k),
then the action « is called a coaction of K.

2 A reduction to coaction case

In the discussion that follows, we fix a von Neumann algebra A and a Cartan
subalgebra D of A with an equivalence relation R on (X, 1) and a normalized
2-cocycle o of R such that the pair (D C A) is equal to (W*(X) C W*(R, 0)).
We assume that the action a fixes D, i.e., a(d) is equal to 1 ® d for each
d € D. It follows that the fixed-point algebra A® := {a € A: afa) = 1® a}
is an intermediate subalgebra for D C A.
We will prove that each such a action should be a coaction.

Proposition 4. Under the situation as above, the von Neumann subalgebra
{(idy ®w)(ala)) :a€ A, we A} of M is contained in IG(G)”", where

IG(G) :={u€e M : u is unitary and A(u) = u @ u}

18 the intrinsic group of G.
In particular, if o 1s faithful, then « is a coaction of some locally compact
group.

Proof. For each u € Nx(D), set w := a(u)(l1 ® u*) € M ® A. Since u
normalizes D, for any d € D, we have

w(l®d) = a(u)(l @ u*)d = alu)(l @ u*du)(l ®u*)
= a(u)a(u*du)(1 @ u*) = a(du)(1 ® u*)
= (1 ®d)w.
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Hence w belongs to (M ® A)N(C®D) = M®D. So we may and do assume
that w is an M-valued function. Moreover, we have

(A ®@ida)(w) = (A @ ida)(a(u)
= (A ®ida)(a(w)
= (idy ® a)(a(u)
= (idy ® ar)(eu)

= W12Wa3

1®u"))

NI1eu’)

1®1xu")

lou))(18 a(w)(181ou)

A\_/\./A

Hence w is an IG(G)-valued function. So we have that a(u) = w(l ® u)
belongs to IG(G)"® A. Since Na(D) generates A, we get the conclusion. U

3 Coactions derived from 1-cocycles

Let K be a locally compact group. A Borel map ¢ : R — K is called a
1-cocycle if ¢ satisfies the following:

c(z,x) = 1k for a.e. z € X,
c(z,y)cly, z) = c(x, 2) for a.e. (x,y,2) € R2.

Fach l-cocycle ¢ into K determines a unitary U. on L?(K) @ L*(R) by
(U)K, x,y) = E(c(z,y) 'k, z,y). Since c is a 1-cocycle, the map

acla) = U@ aQ)U:  (a€A)

is a coaction of K. In fact, a. is defined by the following;:

(o L7 (MY, 2) = S J(@y)Elelz,y) "k y, 2)0(@,9, 2),

y:(y,c)ER

By the definition of ., we have that the fixed-point algebra A% is equal to
W*(Ker(c), o).
We claim that the converse also holds.

Theorem 5. For each coaction a of K on A which satisfies D C A% C A,
there exists a Borel 1-cocycle ¢ : R — K such that o is equal to a.



Proof. Suppose u is in N4(D). By the definition, Ad % determines an auto-
morphism p € [R]. Set w := a(u)(1 ® v*). By using the same argument as
in the proof of Proposition 4, w is a W*(K)-valued function. Moreover, for
almost all r € X, w(z) is equal to Ak (k(x)) for some k(x) € K. We note
that the map k depends only on p. Now, we define a map ¢ from the graph
[(p™!) to K by the following:

c(p(x),x) == k(z)  (z € Dom(p))

By using this construction, we can define a map ¢ from R to K. We note
that the map c is well-defined, i.e., if there exists p; and p; in [R] and a
measurable subset E C X such that pi(x) = p2(x) for all x € E, then there
exists null set F' C X such that c(p,(z),z) = c(pa(z).z) forallz € E\ F. It
is easy to check that c is a 1-cocycle. Moreover, we have that a(u) is equal
to a.(u) for all u € Ny(D). Hence we conclude that « is equal to a.. O

By using the above characterization, we will develop a theory of coactions
in terms of 1-cocycles.

In the rest of this paper, we fix a coaction a of K on A and a 1l-cocycle
¢: R — K which satisfies o = o. We denote by G(K) . x W*(R,0) the
crossed product of A by «, i.e,

G(K)a.x W*(R,0) := (L®(K) ® CV a.(W*(R,0))".

We recall that a unitary V € W*(K) ® A is called an a-1-cocycle if V
satisfies the following:

(Ax ® ida)(V) = Vas(idy ® a)(V).

Another coaction o/ of K on A is said to be cocycle conjugate to « if there
exists an a-1-cocycle V and a *-automorphism 6 of A such that

(idy @) o’ 00! = AdV o a.

For each Borel map ¢ : X — K, aunitary (Vi€)(k, z,y) := &(¢(x) 'k, z,y)
is an a-1-cocycle. So we get the following

Proposition 6. , Suppose a Borel 1-cocycle ¢ : R — K is cohomologous to
another Borel 1-cocycle ', i.e., there exists a Borel map ¢ : X — K such
that ¢/(x,y) = ¢(x)c(x,y)d(y)~" for a.e. (x,y) € R. Then the coaction a. is
cocycle conjugate to o . Hence the crossed product G(K) o, X A ts isomorphic
to G(K) a, X A
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4 Connes spectrum and asymptotic range

Let ¢: R — K be a Borel 1-cocycle from an equivalence relation R into a
locally compact group K. Again we consider the coaction . of K on the von
Neumann algebra A := W*(R, o). We will show that the Connes spectrum
of the coaction a, can be described in terms of the 1-cocycle c.

For each such a l-cocycle ¢ : R — K, the essential range o(c) is the
smallest closed subset F of K such that ¢! (F) has complement of v measure
zero. It is easy to check that k € K belongs to o(c) if and only if, for any
(compact) neighborhood U of k, one has v(¢™'(U)) > 0. The asymptotic
range r*(c) of the 1-cocycle ¢ is by definition (\{o(cg) : B € X, u(B) > 0},
where cp stands for the restriction of ¢ to the reduction Rp by B.

Theorem 7. The Connes spectrum T'(a.) of a. is equal to the asymptotic
range r*(c).

To prove this theorem, we use the following

Lemma 8. Let L°(f) € A andw € A(K), where A(K) is the Fourier algebra
W*(K). of K. Then (a)o(L7(f)) = (w®id)(ac(L7(f)) equals L7((woc)f)

Proof. We may and do assume that w has the form w = wy, 5, for some
n2 € L*(K). For any (3, (2 € L*(R), we have

(( (L a(f))(ll@)
(el L7(fNm &) | m® (&)

// 2 (el y)" k)RR - £ 9)C (Y, =)o (@, y, 2)Cala, 2)duz, 2)dk

((y,x)ER

[ sl ), 2ole.y. G vz )

y:(y,x)ER

= (L7 ((woc)f)C | ()
Thus we are done. O

Proof of Theorem 7. Since the center Z(A®) is contained in D, we have
MNae) = ﬂ{Sp((ac)e) : e : non-zero projection in D}.

Hence, it suffices to show that Sp(a.) = o(c).



Let k € o(c). Take any compact neighborhood U of k. Since v(c™}(U)) >
0, there exists a measurable subset £ C ¢~ !(U) such that v(E) > 0 and
L°(xg) € A. Then define a :== L?(xg) € A\ {0}. If w € A(K) vanishes on
some neighborhood of U, then, by Lemma 8, we have (a.),(a) = 0. From 6,
Chapter IV, Lemma 1.2 (ii)], it follows that Sp, (a) € U. Hence a belongs
to A%<(U). By [6, Chapter IV, Lemma 1.2 (iv)], k lies in Sp(a.).

Conversely suppose that & € Sp(a.). We will show that, for each open
neighborhood V of k, ¢=1(V) is not a v-null set. Indeed, if v(c™!(V)) is equal
to 0 for some V', we have L?(f) = L?(fXc-1(v)) for each L7(f) € A. So, for
each w € A(K) such that suppw C U, by Lemma 8, we have

() (L7 (f)) = L (f xer(vye(w o €)) = 0.

So we conclude that (a.).(a) = 0 for each a € A and w € A(K) such that
suppw C U. In the meantime, since V is open, for each h € V, there
exists w € A(K) such that w(h) = 1 and suppw C V. This shows that for
each a € A, h & Sp,_(a). This contradicts [6, Chapter IV, Lemma 1.2(iv)].
Therefore k belongs to o(c). O

By using the above theorem and [4, Lemma 1.13], we get the following

Corollary 9 (cf. [53]). Let A be an AFD type 11 factor. Suppose that o
and o' are coactions of a locally compact group K on A such that each of A*
and A% contains a Cartan subalgebra of A. If T'(a) = T'(a/) = K, then « is
cocycle conjugate to o .

Proof. Suppose that A* (resp. A%’) contains a Cartan subalgebra D; (resp.
D;) of A. By [2], there exists a *-automorphism 6 of A such that 6(D;) =
Dsy. Set ap = (idw+x) ® 87') o a0 §. Then we have A* = §(A%). So
Dy = 6(D;) C (A*) = A%. Clearly, oy is cocycle conjugate to a. Hence it
suffices to assume from the outset that Dy = Dy =: D.

We may assume that the inclusion (D C A) is of the form (L>(X) C
W*(R)) for an amenable ergodic type I equivalence relation R on a stan-
dard Borel space (X, u) with an invariant measure p. By Theorem 5 there
exist Borel 1-cocycles c and ¢ from R to K such that o = o, and « = a.. By
Theorem 7, we have 7*(c) = r*(¢) = K. So we may apply [4, Lemma 1.13],
and obtain that there exist cocycles € and ¢ cohomologous to ¢ and ¢ re-
spectively as l1-cocycles on R such that € is equal to ¢ o p for some p € N[R],
the normalizer of R. By Proposition 6, « (resp. ') is cocycle conjugate
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to oz (resp. oz). Furthermore, a direct computation shows that for each
X e W*(R),
aEOp(X) = (1 ® q);l)(aE(ch(X)))a

where ®, is an automorphism on W*(R) which is defined by

Q,(L(f)) = L{f o p).

So we conclude that (1 ®@ ®,)az, = az o ®,, i.e., oz, is conjugate to oz
Hence a is cocycle conjugate to o d

5 Exchangeability for a 1-cocycle with a smaller
range within the cohomology class

Suppose that there exists a closed subgroup H of K which cohomologous to
¢ and the range is contained in H. By regarding ¢ as a l-cocycle into H,
we obtain the crossed product G(H )a, X A and the dual action ag of H.
It follows that the dual action &, of K is induced from az. Namely, there
exists an isomorphism II from G(K) 4, % A onto L*(K/H) ® (G(H) ay X A)
such that Il o (), = 0k o I, where the action § of K is the induced action
of az([7)).
We will show that the converse also holds.

Theorem 10 (cf. [9, Theorem 3.5]). Let ¢: R — K be a Borel 1-cocycle
and H be a closed subgroup of K. Then the following are equivalent:

(1) There exists a Borel 1-cocycle ¢g : R — K, cohomologous to c, such
that the range of ¢y 1s contained in H.

(2) There exists an injective x-homomorphism © from L*=(K/H) into the

center of the crossed product G(K) o, X A such that © o & = (a,), © ©
for all k € K, where €, comes from the left translation by k on K/H.
Equivalently, if Y is the measure-theoretic spectrum of the center of the
crossed product (i.e., the measure space on which the Mackey action

(the Poincaré flow) of K is considered), then it is an extension of the
K-space K/H.

(3) The covariant system {@(K) X A, K, &} is induced from some sys-
tem {P, H, 3}.



If one of (1) ~ (3) occurs, then one can take {P, H, B} to be {G(H) ay X
A, H, as}, where ¢ : R — H is the 1-cocycle obtained by regarding co as an
H-valued 1-cocycle.

Proof. It is easy to check hat the condition (2) follows (1). By using the
Imprimitivity Theorem of [7], (2) is equivalent to (3). So we will prove
(2)=(1).

If such a *-homomorphism O exists, then by using [7], the dual action

——

(ae) is induced from an action 3 of H on a von Neumann algebra P. We
denote the induced action of § by §. By the assumption, there exists a *-
isomorphism II from G(K) o, X A onto L*(K/H)® P such that Il o (a.), =
drollforall k € K.

A direct computation shows that II(a.(A4)) is equal to C® PP. Moreover,
since 3 is defined by f, := Ad(Ag(h) ® 1)|p, there exists a dual action 3
on H which is conjugate to . So there exist a von Neumann algebra B and
a coaction 7 of H on B such that the dual action (a.) is conjugate to the
induced action by 7. In particular, we have

G(K)ax A= L®(K/H)®@G(H),x B

Under the above isomorphism, we have that there exists a isomorphism 7
from A onto B such that the fixed-point subalgebra B™ contains a Cartan
subalgebra n(D). So 7 comes from a 1-cocycle ¢y : R — H. By the construc-
tion, we conclude that ¢y is cohomologous to ¢ as a cocycle into K.
Therefore we complete the proof. O
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