A characterization of coactions which fix Cartan subalgebras

（Joint work with Takehiko YAMANOUCHI）

> 北海道大学大学院理学研究科 青井久（Hisashi AOI）
> Department of Mathematics Faculty of Science，
> Hokkaido University

1 Preparation

In this section，we summarize the basic facts about measured groupoids and von Neumann algebras associated to them．Further details regarding these objects can be found in［3］，［8］，［9］．We also briefly discuss actions of locally compact quantum groups on von Neumann algebras．

We assume that all von Neumann algebras in this paper have separable preduals，and

$$
\begin{aligned}
(X, \mu) & : \text { standard Borel space }, \\
\mathcal{R}: & \text { discrete measured equivalence relation on }(X, \mu), \\
\nu & : \text { left counting measure on } \mathcal{R}, \\
\sigma & : \text { normalized 2-cocycle on } \mathcal{R}, \\
\mathcal{R}(x):= & \{y \in X:(x, y) \in \mathcal{R}\}, \\
{[\mathcal{R}]:=} & \{\varphi: \text { bimeasurable nonsingular transformations } \\
& \text { such that } \varphi(x) \text { is in } \mathcal{R}(x) \text { for a.e. } x \text { in } X\}, \\
\Gamma(\varphi):= & \{(x, \varphi(x)): x \in \operatorname{Dom}(\varphi)\} \quad(\varphi \in[\mathcal{R}]) .
\end{aligned}
$$

Definition 1. (1) We define a von Neumann algebra $W^{*}(\mathcal{R}, \sigma)$ and a von Neumann subalgebra $W^{*}(X)$ which act on $L^{2}(\mathcal{R}, \nu)$ by the following:

$$
\begin{aligned}
W^{*}(\mathcal{R}, \sigma) & :=\left\{L^{\sigma}(f): f \text { is a left finite function on } \mathcal{R}\right\}^{\prime \prime}, \\
W^{*}(X) & :=\left\{L^{\sigma}(d): d \in L^{\infty}(X, \mu)\right\}
\end{aligned}
$$

where we regard $L^{\infty}(X, \mu)$ as functions on the diagonal of \mathcal{R}, and $L^{\sigma}(f)$ is defined by

$$
\left\{L^{\sigma}(f) \xi\right\}(x, z):=\sum_{y:(y, x) \in \mathcal{R}} f(x, y) \xi(y, z) \sigma(x, y, z)
$$

(2) Let A be a von Neumann algebra and D be a subalgebra of A. We call D is a Cartan subalgebra of A if D satisfies the following:
(i) D is maximal abelian in A,
(ii) D is regular in A, i.e., the normalizer $\mathcal{N}_{A}(D)$ generates A, where

$$
\mathcal{N}_{A}(D):=\left\{u \in A: u \text { is unitary and } u D u^{*}=D\right\}
$$

(iii) there exists a faithful normal conditional expectation E_{D} from A onto D.

Theorem 2 ([3, Theorem 1]). For each inclusion of a von Neumann algebra A and a Cartan subalgebra D of A, there exists a standard Borel space (X, μ) and a discrete measured equivalence relation \mathcal{R} on X with a normalized 2-cocycle σ such that $(D \subseteq A)$ is isomorphic to $\left(W^{*}(X) \subseteq W^{*}(\mathcal{R}, \sigma)\right.$).

Theorem 3 ([1, Corollary 3.5]). Suppose A is a von Neumann algebra with a Cartan subalgebra D of A such that $A=W^{*}(\mathcal{R}, \sigma)$ and $D=W^{*}(X)$. Then there exists a bijective correspondence between the set of Borel subrelations \mathcal{S} of \mathcal{R} on (X, μ) and the set of von Neumann subalgebras B of A which contain D :

$$
\begin{aligned}
& B \mapsto \mathcal{S}_{B} \subseteq \mathcal{R} \\
& \mathcal{S} \mapsto W^{*}(\mathcal{S}, \sigma):=\left\{L^{\sigma}(f) \in A: \operatorname{supp}(f) \subseteq \mathcal{S}\right\} \subseteq A
\end{aligned}
$$

Let $\mathbb{G}=(M, \Delta, \varphi, \psi)$ be a locally compact quantum group (M is a von Neumann algebra, $\Delta: M \mapsto M \otimes M$ is a coproduct, φ (resp. ψ) is a left (resp. right) invariant weight on M). A normal unital injective $*$-homomorphism α from A onto $M \otimes A$ is called an action of \mathbb{G} on A if α satisfies the following:

$$
\left(\Delta \otimes i d_{A}\right) \alpha=\left(i d_{M} \otimes \alpha\right) \alpha .
$$

In particular, if \mathbb{G} is cocommutative, i.e., M is equal to the group von Neumann algebra $W^{*}(K)$ which is generated by the left regular representation λ_{K} of a locally compact group K, and Δ is equal to $\hat{\Delta}_{K}: \lambda_{K}(k) \mapsto \lambda_{K}(k) \otimes \lambda_{K}(k)$, then the action α is called a coaction of K.

2 A reduction to coaction case

In the discussion that follows, we fix a von Neumann algebra A and a Cartan subalgebra D of A with an equivalence relation \mathcal{R} on (X, μ) and a normalized 2-cocycle σ of \mathcal{R} such that the pair $(D \subseteq A)$ is equal to $\left(W^{*}(X) \subseteq W^{*}(\mathcal{R}, \sigma)\right.$).

We assume that the action α fixes D, i.e., $\alpha(d)$ is equal to $1 \otimes d$ for each $d \in D$. It follows that the fixed-point algebra $A^{\alpha}:=\{a \in A: \alpha(a)=1 \otimes a\}$ is an intermediate subalgebra for $D \subseteq A$.

We will prove that each such a action should be a coaction.
Proposition 4. Under the situation as above, the von Neumann subalgebra $\left\{\left(i d_{M} \otimes \omega\right)(\alpha(a)): a \in A, \omega \in A_{*}\right\}^{\prime \prime}$ of M is contained in $\operatorname{IG}(\mathbb{G})^{\prime \prime}$, where

$$
\operatorname{IG}(\mathbb{G}):=\{u \in M: u \text { is unitary and } \Delta(u)=u \otimes u\}
$$

is the intrinsic group of \mathbb{G}.
In particular, if α is faithful, then α is a coaction of some locally compact group.

Proof. For each $u \in \mathcal{N}_{A}(D)$, set $w:=\alpha(u)\left(1 \otimes u^{*}\right) \in M \otimes A$. Since u normalizes D, for any $d \in D$, we have

$$
\begin{aligned}
w(1 \otimes d) & =\alpha(u)\left(1 \otimes u^{*}\right) d=\alpha(u)\left(1 \otimes u^{*} d u\right)\left(1 \otimes u^{*}\right) \\
& =\alpha(u) \alpha\left(u^{*} d u\right)\left(1 \otimes u^{*}\right)=\alpha(d u)\left(1 \otimes u^{*}\right) \\
& =(1 \otimes d) w .
\end{aligned}
$$

Hence w belongs to $(M \otimes A) \cap(\mathbf{C} \otimes D)^{\prime}=M \otimes D$. So we may and do assume that w is an M-valued function. Moreover, we have

$$
\begin{aligned}
\left(\Delta \otimes i d_{A}\right)(w) & =\left(\Delta \otimes i d_{A}\right)\left(\alpha(u)\left(1 \otimes u^{*}\right)\right) \\
& =\left(\Delta \otimes i d_{A}\right)(\alpha(u))\left(1 \otimes 1 \otimes u^{*}\right) \\
& =\left(i d_{M} \otimes \alpha\right)(\alpha(u))\left(1 \otimes 1 \otimes u^{*}\right) \\
& =\left(i d_{M} \otimes \alpha\right)\left(\alpha(u)\left(1 \otimes u^{*}\right)\right)(1 \otimes \alpha(u))\left(1 \otimes 1 \otimes u^{*}\right) \\
& =w_{12} w_{23}
\end{aligned}
$$

Hence w is an $I G(\mathbb{G})$-valued function. So we have that $\alpha(u)=w(1 \otimes u)$ belongs to $I G(\mathbb{G})^{\prime \prime} \otimes A$. Since $\mathcal{N}_{A}(D)$ generates A, we get the conclusion.

3 Coactions derived from 1-cocycles

Let K be a locally compact group. A Borel map $c: \mathcal{R} \rightarrow K$ is called a 1-cocycle if c satisfies the following:

$$
\begin{aligned}
c(x, x)=1_{K} & \text { for a.e. } x \in X \\
c(x, y) c(y, z)=c(x, z) & \text { for a.e. }(x, y, z) \in \mathcal{R}^{2} .
\end{aligned}
$$

Each 1-cocycle c into K determines a unitary U_{c} on $L^{2}(K) \otimes L^{2}(\mathcal{R})$ by $\left\{U_{c} \xi\right\}(k, x, y):=\xi\left(c(x, y)^{-1} k, x, y\right)$. Since c is a 1-cocycle, the map

$$
\alpha_{c}(a):=U_{c}(1 \otimes a) U_{c}^{*} \quad(a \in A)
$$

is a coaction of K. In fact, α_{c} is defined by the following:

$$
\left\{\alpha_{c}\left(L^{\sigma}(f)\right) \xi\right\}(k, x, z):=\sum_{y:(y, x) \in \mathcal{R}} f(x, y) \xi\left(c(x, y)^{-1} k, y, z\right) \sigma(x, y, z) .
$$

By the definition of α_{c}, we have that the fixed-point algebra $A^{\alpha_{c}}$ is equal to $W^{*}(\operatorname{Ker}(c), \sigma)$.

We claim that the converse also holds.
Theorem 5. For each coaction α of K on A which satisfies $D \subseteq A^{\alpha} \subseteq A$, there exists a Borel 1-cocycle $c: \mathcal{R} \rightarrow K$ such that α is equal to α_{c}.

Proof. Suppose u is in $\mathcal{N}_{A}(D)$. By the definition, $\operatorname{Ad} u$ determines an automorphism $\rho \in[\mathcal{R}]$. Set $w:=\alpha(u)\left(1 \otimes u^{*}\right)$. By using the same argument as in the proof of Proposition 4, w is a $W^{*}(K)$-valued function. Moreover, for almost all $x \in X, w(x)$ is equal to $\lambda_{K}(k(x))$ for some $k(x) \in K$. We note that the map k depends only on ρ. Now, we define a map c from the graph $\Gamma\left(\rho^{-1}\right)$ to K by the following:

$$
c(\rho(x), x):=k(x) \quad(x \in \operatorname{Dom}(\rho))
$$

By using this construction, we can define a map c from \mathcal{R} to K. We note that the map c is well-defined, i.e., if there exists ρ_{1} and ρ_{2} in $[\mathcal{R}]$ and a measurable subset $E \subseteq X$ such that $\rho_{1}(x)=\rho_{2}(x)$ for all $x \in E$, then there exists null set $F \subseteq X$ such that $c\left(\rho_{1}(x), x\right)=c\left(\rho_{2}(x), x\right)$ for all $x \in E \backslash F$. It is easy to check that c is a 1-cocycle. Moreover, we have that $\alpha(u)$ is equal to $\alpha_{c}(u)$ for all $u \in \mathcal{N}_{A}(D)$. Hence we conclude that α is equal to α_{c}.

By using the above characterization, we will develop a theory of coactions in terms of 1-cocycles.

In the rest of this paper, we fix a coaction α of K on A and a 1-cocycle $c: \mathcal{R} \rightarrow K$ which satisfies $\alpha_{c}=\alpha$. We denote by $\hat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes W^{*}(\mathcal{R}, \sigma)$ the crossed product of A by α, i.e,

$$
\hat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes W^{*}(\mathcal{R}, \sigma):=\left(L^{\infty}(K) \otimes \mathbf{C} \vee \alpha_{c}\left(W^{*}(\mathcal{R}, \sigma)\right)^{\prime \prime}\right.
$$

We recall that a unitary $V \in W^{*}(K) \otimes A$ is called an α-1-cocycle if V satisfies the following:

$$
\left(\hat{\Delta}_{K} \otimes i d_{A}\right)(V)=V_{23}\left(i d_{M} \otimes \alpha\right)(V)
$$

Another coaction α^{\prime} of K on A is said to be cocycle conjugate to α if there exists an α-1-cocycle V and a *-automorphism θ of A such that

$$
\left(i d_{M} \otimes \theta\right) \circ \alpha^{\prime} \circ \theta^{-1}=\operatorname{Ad} V \circ \alpha
$$

For each Borel map $\phi: X \rightarrow K$, a unitary $\left(V_{l} \xi\right)(k, x, y):=\xi\left(\phi(x)^{-1} k, x, y\right)$ is an α-1-cocycle. So we get the following
Proposition 6., Suppose a Borel 1-cocycle $c: \mathcal{R} \rightarrow K$ is cohomologous to another Borel 1-cocycle c^{\prime}, i.e., there exists a Borel map $\phi: X \rightarrow K$ such that $c^{\prime}(x, y)=\phi(x) c(x, y) \phi(y)^{-1}$ for a.e. $(x, y) \in \mathcal{R}$. Then the coaction α_{c} is cocycle conjugate to $\alpha_{c^{\prime}}$. Hence the crossed product $\hat{\mathbb{G}}(K){ }_{\alpha_{c}} \propto A$ is isomorphic to $\hat{\mathbb{G}}(K){ }_{\alpha_{c^{\prime}}} \ltimes A$.

4 Connes spectrum and asymptotic range

Let $c: \mathcal{R} \rightarrow K$ be a Borel 1-cocycle from an equivalence relation \mathcal{R} into a locally compact group K. Again we consider the coaction α_{c} of K on the von Neumann algebra $A:=W^{*}(\mathcal{R}, \sigma)$. We will show that the Connes spectrum of the coaction α_{c} can be described in terms of the 1-cocycle c.

For each such a 1-cocycle $c: \mathcal{R} \rightarrow K$, the essential range $\sigma(c)$ is the smallest closed subset F of K such that $c^{-1}(F)$ has complement of ν measure zero. It is easy to check that $k \in K$ belongs to $\sigma(c)$ if and only if, for any (compact) neighborhood U of k, one has $\nu\left(c^{-1}(U)\right)>0$. The asymptotic range $r^{*}(c)$ of the 1-cocycle c is by definition $\bigcap\left\{\sigma\left(c_{B}\right): B \subseteq X, \mu(B)>0\right\}$, where c_{B} stands for the restriction of c to the reduction \mathcal{R}_{B} by B.

Theorem 7. The Connes spectrum $\Gamma\left(\alpha_{c}\right)$ of α_{c} is equal to the asymptotic range $r^{*}(c)$.

To prove this theorem, we use the following
Lemma 8. Let $L^{\sigma}(f) \in A$ and $\omega \in A(K)$, where $A(K)$ is the Fourier algebra $W^{*}(K)_{*}$ of K. Then $\left(\alpha_{c}\right)_{\omega}\left(L^{\sigma}(f)\right):=(\omega \otimes i d)\left(\alpha_{c}\left(L^{\sigma}(f)\right)\right.$ equals $L^{\sigma}((\omega \circ c) f)$

Proof. We may and do assume that ω has the form $\omega=\omega_{\eta_{1}, \eta_{2}}$ for some η_{1}, $\eta_{2} \in L^{2}(K)$. For any $\zeta_{1}, \zeta_{2} \in L^{2}(\mathcal{R})$, we have

$$
\begin{aligned}
& \left(\left(\alpha_{c}\right)_{\omega}\left(L^{\sigma}(f)\right) \zeta_{1} \mid \zeta_{2}\right) \\
= & \left(\alpha_{c}\left(L^{\sigma}(f)\right)\left(\eta_{1} \otimes \zeta_{1}\right) \mid \eta_{2} \otimes \zeta_{2}\right) \\
= & \iint \sum_{y:(y, x) \in \mathcal{R}} \eta_{1}\left(c(x, y)^{-1} k\right) \overline{\eta_{2}(k)} \cdot f(x, y) \zeta_{1}(y, z) \sigma(x, y, z) \overline{\zeta_{2}(x, z)} d \nu(x, z) d k \\
= & \int \sum_{y:(y, x) \in \mathcal{R}} \omega(c(x, y)) f(x, y) \zeta_{1}(y, z) \sigma(x, y, z) \overline{\zeta_{2}(x, z)} d \nu(x, z) \\
= & \left(L^{\sigma}((\omega \circ c) f) \zeta_{1} \mid \zeta_{2}\right) .
\end{aligned}
$$

Thus we are done.
Proof of Theorem 7. Since the center $\mathcal{Z}\left(A^{\alpha}\right)$ is contained in D, we have

$$
\Gamma\left(\alpha_{c}\right)=\bigcap\left\{\operatorname{Sp}\left(\left(\alpha_{c}\right)^{e}\right): e: \text { non-zero projection in } D\right\}
$$

Hence, it suffices to show that $\operatorname{Sp}\left(\alpha_{c}\right)=\sigma(c)$.

Let $k \in \sigma(c)$. Take any compact neighborhood U of k. Since $\nu\left(c^{-1}(U)\right)>$ 0 , there exists a measurable subset $E \subseteq c^{-1}(U)$ such that $\nu(E)>0$ and $L^{\sigma}\left(\chi_{E}\right) \in A$. Then define $a:=L^{\sigma}\left(\chi_{E}\right) \in A \backslash\{0\}$. If $\omega \in A(K)$ vanishes on some neighborhood of U, then, by Lemma 8 , we have $\left(\alpha_{c}\right)_{\omega}(a)=0$. From $[6$, Chapter IV, Lemma 1.2 (ii)], it follows that $\mathrm{Sp}_{\boldsymbol{\alpha}_{c}}(a) \subseteq U$. Hence a belongs to $A^{\alpha_{c}}(U)$. By [6, Chapter IV, Lemma 1.2 (iv)], k lies in $\operatorname{Sp}\left(\alpha_{c}\right)$.

Conversely suppose that $k \in \operatorname{Sp}\left(\alpha_{c}\right)$. We will show that, for each open neighborhood V of $k, c^{-1}(V)$ is not a ν-null set. Indeed, if $\nu\left(c^{-1}(V)\right)$ is equal to 0 for some V, we have $L^{\sigma}(f)=L^{\sigma}\left(f \chi_{c^{-1}(V)^{c}}\right)$ for each $L^{\sigma}(f) \in A$. So, for each $\omega \in A(K)$ such that $\operatorname{supp} \omega \subseteq U$, by Lemma 8, we have

$$
\left(\alpha_{c}\right)_{\omega}\left(L^{\sigma}(f)\right)=L^{\sigma}\left(f \chi_{c^{-1}(V)^{c}}(\omega \circ c)\right)=0 .
$$

So we conclude that $\left(\alpha_{c}\right)_{\omega}(a)=0$ for each $a \in A$ and $\omega \in A(K)$ such that $\operatorname{supp} \omega \subseteq U$. In the meantime, since V is open, for each $h \in V$, there exists $\omega \in A(K)$ such that $\omega(h)=1$ and $\operatorname{supp} \omega \subseteq V$. This shows that for each $a \in A, h \notin \operatorname{Sp}_{\alpha_{c}}(a)$. This contradicts [6, Chapter IV, Lemma 1.2(iv)]. Therefore k belongs to $\sigma(c)$.

By using the above theorem and [4, Lemma 1.13], we get the following
Corollary 9 (cf. [5]). Let A be an AFD type II factor. Suppose that α and α^{\prime} are coactions of a locally compact group K on A such that each of A^{α} and $A^{\alpha^{\prime}}$ contains a Cartan subalgebra of A. If $\Gamma(\alpha)=\Gamma\left(\alpha^{\prime}\right)=K$, then α is cocycle conjugate to α^{\prime}.

Proof. Suppose that A^{α} (resp. $A^{\alpha^{\prime}}$) contains a Cartan subalgebra D_{1} (resp. D_{2}) of A. By [2], there exists a *-automorphism θ of A such that $\theta\left(D_{1}\right)=$ D_{2}. Set $\alpha_{\theta}:=\left(i d_{W^{*}(K)} \otimes \theta^{-1}\right) \circ \alpha \circ \theta$. Then we have $A^{\alpha_{\theta}}=\theta\left(A^{\alpha}\right)$. So $D_{2}=\theta\left(D_{1}\right) \subseteq \theta\left(A^{\alpha}\right)=A^{\alpha}$. Clearly, α_{θ} is cocycle conjugate to α. Hence it suffices to assume from the outset that $D_{1}=D_{2}=: D$.

We may assume that the inclusion $(D \subseteq A)$ is of the form $\left(L^{\infty}(X) \subseteq\right.$ $W^{*}(\mathcal{R})$) for an amenable ergodic type II equivalence relation \mathcal{R} on a standard Borel space (X, μ) with an invariant measure μ. By Theorem 5 there exist Borel 1-cocycles c and c^{\prime} from \mathcal{R} to K such that $\alpha=\alpha_{c}$ and $\alpha^{\prime}=\alpha_{c^{\prime}}$. By Theorem 7, we have $r^{*}(c)=r^{*}\left(c^{\prime}\right)=K$. So we may apply [4, Lemma 1.13], and obtain that there exist cocycles \bar{c} and $\overline{c^{\prime}}$ cohomologous to c and d^{\prime} respectively as 1 -cocycles on \mathcal{R} such that \bar{c} is equal to $\overline{c^{\prime}} \circ \rho$ for some $\rho \in N[\mathcal{R}]$, the normalizer of \mathcal{R}. By Proposition 6, α (resp. α^{\prime}) is cocycle conjugate
to $\alpha_{\bar{c}}$ (resp. $\alpha_{\bar{c}}$). Furthermore, a direct computation shows that for each $X \in W^{*}(\mathcal{R})$,

$$
\alpha_{\bar{c} \rho \rho}(X)=\left(1 \otimes \Phi_{\rho}^{-1}\right)\left(\alpha_{\bar{c}}\left(\Phi_{\rho}(X)\right)\right),
$$

where Φ_{ρ} is an automorphism on $W^{*}(\mathcal{R})$ which is defined by

$$
\Phi_{\rho}(L(f)):=L(f \circ \rho) .
$$

So we conclude that $\left(1 \otimes \Phi_{\rho}\right) \alpha_{\bar{c} \circ \rho}=\alpha_{\bar{c}} \circ \Phi_{\rho}$, i.e., $\alpha_{\bar{c} \circ \rho}$ is conjugate to $\alpha_{\bar{c}}$. Hence α is cocycle conjugate to α^{\prime}.

5 Exchangeability for a 1-cocycle with a smaller range within the cohomology class

Suppose that there exists a closed subgroup H of K which cohomologous to c and the range is contained in H. By regarding c^{\prime} as a 1-cocycle into H, we obtain the crossed product $\hat{\mathbb{G}}(H)_{\alpha_{c^{\prime}}} \ltimes A$ and the dual action $\widehat{\alpha_{c^{\prime}}}$ of H. It follows that the dual action $\widehat{\alpha_{c}}$ of K is induced from $\widehat{\alpha_{c}}$. Namely, there exists an isomorphism Π from $\hat{\mathbb{G}}(K)_{\alpha_{c}} \times A$ onto $L^{\infty}(K / H) \otimes\left(\hat{\mathbb{G}}(H)_{\alpha_{c^{\prime}}} \propto A\right)$ such that $\Pi \circ{\widehat{\left(\alpha_{c}\right)}}_{k}=\delta_{k} \circ \Pi$, where the action δ of K is the induced action of $\widehat{\alpha_{C^{\prime}}}([7])$.

We will show that the converse also holds.
Theorem 10 (cf. [9, Theorem 3.5]). Let $c: \mathcal{R} \rightarrow K$ be a Borel 1-cocycle and H be a closed subgroup of K. Then the following are equivalent:
(1) There exists a Borel 1 -cocycle $c_{0}: \mathcal{R} \rightarrow K$, cohomologous to c, such that the range of c_{0} is contained in H.
(2) There exists an injective *-homomorphism Θ from $L^{\infty}(K / H)$ into the center of the crossed product $\widehat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes A$ such that $\Theta \circ \ell_{k}=\widehat{\left(\alpha_{c}\right)_{k}} \circ \Theta$ for all $k \in K$, where ℓ_{k} comes from the left translation by k on K / H. Equivalently, if Y is the measure-theoretic spectrum of the center of the crossed product (i.e., the measure space on which the Mackey action (the Poincaré flow) of K is considered), then it is an extension of the K-space K / H.
(3) The covariant system $\left\{\widehat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes A, K, \widehat{\alpha_{c}}\right\}$ is induced from some system $\{P, H, \beta\}$.

If one of (1) $\sim(3)$ occurs, then one can take $\{P, H, \beta\}$ to be $\left\{\widehat{\mathbb{G}}(H)_{\alpha_{c^{\prime}}} \propto\right.$ $\left.A, H, \widehat{\alpha_{c^{\prime}}}\right\}$, where $c^{\prime}: \mathcal{R} \rightarrow H$ is the 1-cocycle obtained by regarding c_{0} as an H-valued 1-cocycle.

Proof. It is easy to check hat the condition (2) follows (1). By using the Imprimitivity Theorem of [7], (2) is equivalent to (3). So we will prove $(2) \Rightarrow(1)$.

If such a $*$-homomorphism Θ exists, then by using [7], the dual action $\widehat{\left(\alpha_{c}\right)_{k}}$ is induced from an action β of H on a von Neumann algebra P. We denote the induced action of β by δ. By the assumption, there exists a $*-$ isomorphism Π from $\widehat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes A$ onto $L^{\infty}(K / H) \otimes P$ such that $\Pi \circ \widehat{\left(\alpha_{c}\right)_{k}}=$ $\delta_{k} \circ \Pi$ for all $k \in K$.

A direct computation shows that $\Pi\left(\alpha_{c}(A)\right)$ is equal to $\mathbf{C} \otimes P^{\beta}$. Moreover, since β is defined by $\beta_{h}:=\left.\operatorname{Ad}\left(\lambda_{H}(h) \otimes 1\right)\right|_{P}$, there exists a dual action β^{\prime} on H which is conjugate to β. So there exist a von Neumann algebra B and a coaction τ of H on B such that the dual action $\widehat{\left(\alpha_{c}\right)}$ is conjugate to the induced action by $\hat{\tau}$. In particular, we have

$$
\widehat{\mathbb{G}}(K)_{\alpha_{c}} \ltimes A \cong L^{\infty}(K / H) \otimes \widehat{\mathbb{G}}(H)_{\tau} \ltimes B
$$

Under the above isomorphism, we have that there exists a isomorphism η from A onto B such that the fixed-point subalgebra B^{τ} contains a Cartan subalgebra $\eta(D)$. So τ comes from a 1 -cocycle $c_{0}: \mathcal{R} \rightarrow H$. By the construction, we conclude that c_{0} is cohomologous to c as a cocycle into K.

Therefore we complete the proof.

References

[1] H. Aoi, A construction of equivalence subrelations for intermediate subalgebras, Preprint.
[2] A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergod. Th. and Dynam. Sys. 1 (1981), 431-450.
[3] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras. II, Trans. Amer. Math. Soc., 234 (1977), 325-359.
[4] V. Ya. Golodets and S.D. Sinel'shchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal., 121 (1994), 455-485.
[5] Y. Kawahigashi, One-parameter automorphism groups of the hyperfinite type II_{1} factor, J. Operator Theory, 25 (1991), 37-59.
[6] Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Math., 731 (1979), Springer-Verlag.
[7] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
[8] S. Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal., 180 (2001), 426-480.
[9] R. J. Zimmer, Extension of ergodic group actions, Illinois J. Math., 20 (1976), 373-409.

