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1Introduction
All spaces considered are completely regular $T_{1}$ -spaces and all maps are continuous.
For aspace $X$ , let $\mathcal{B}X$ denote the $\check{\mathrm{C}}\mathrm{e}\mathrm{c}\mathrm{h}$-Stone compactification of $X$ and $\mu X$ the
Dieudonn\’e completion (i.e., the completion with respect to the finest uniformity) of
$X$ . For aspace X. $C(X)$ denotes the set of all real-valued, continuous functions on
$X$ and asubset $A$ of $X$ is said to be bounded (or relatively $pseudocompact^{\backslash }$) in $X$

if every $f\in C(X)$ is bounded on $A$ . A zerO-set in a space $X$ is a set of the form
$f^{-1}(0)$ for so me $f\in C_{(}^{(}X$ ) . We now call a zer0-set $Z$ in $X$ a full zerO-set if $\mathrm{c}1_{\beta X}Z$ is

azer0-set in $\beta X$ . Such azer0-set was studied by Rudd $\lceil 15_{\rfloor}^{\rceil}$ in the context of rings

of continuous functions.
In this paper, we study basic properties of full zer0-sets and consider the problem

when abounded, full zer0-set is compact. In particular, we prove that:

$\backslash /\mathrm{i})$ Let $X$ be aspace with aregular $G_{\delta}$-diagonal. Then every bounded, full zer0-set
in $X$ is compact and metrizable.

(ii) Let $X$ be aBaire space such that every open cover has aa-point-finite open
refinement. Then, every bounded, full zer0-set in $X$ is compact.

(iii) Let $X$ be aBaire space with aa-point-finite base. Then, every bounded, full
zer0-set in $X$ is compact and metrizable.

$1^{\backslash }11\mathrm{e}$ above results are generalizations of the following theorems:

(1) (McArthur [11]) Every pseudocompact space with aregular $G_{\delta}$ -diagonal is

metrizable.

(2) (Uspenskii [16]) Every pseudocompact space such that every open cover has a
cr-point-finite open refinement is compact.

(3) (Uspenskii [16]) Every pseudocompact space with aa-point-finite base is metriz-
able.
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Throughout this paper, $\mathrm{N}$ denotes the set of positive integers, $\omega$ denotes the first
infinite ordinal, and $\omega_{1}$ denotes the first uncountable ordinal. As usual, an ordinal
is identified with the set of smaller oridnals. For a set $A$ , $|A|$ denotes the cardinality
of $A$ . For $f\in C(X)$ and $n\in \mathrm{N}$ , we write $U(f, n)=\{x\in X : |f(x)|<1/n\}$ and
$Z(f)=\{x\in X : f(x)=0\}$ . A cozerO-set is a set which is the complement of a
zer0-set.

2 Full zer0-sets
In this section, we study basic properties of full zer0-sets. The following two lemmas
will be often used in our discussion. In the first one, the equivalence of (1) and (2)
was proved by Morita [13, Lemma 2.5] and that of (1) and (3) is well-known and
easily proved.

Lemma 2.1 For a subset $A$ of a space $X_{j}$ the follow$mg$ conditions are equivalent:

(1) $A$ is bounded in $X_{\}}$
.

(2) $\mathrm{c}1_{\beta X}A\subseteq\mu X$ ;

(3) there exists no locally fifinite family $\{G_{n} : n\in \mathrm{N}\}$ of non-empty open sets in $X$

such that $G_{n}\cap A\neq\emptyset$ for each $n\in \mathrm{N}$ .

Lemma 2.2 (Rudd [15]) A subset $Z$ of a space $X$ is a full zerO-set in $X$ if
$\cdot$

and
only if there exists $f\in C(X)$ such that $Z$ $=Z(f)$ and $(^{*})$ for every cozerO-set $1/^{r}$ in
$X$ with $Z\subseteq V$ , there exists $n\in \mathrm{N}$ such that $U(f, n)\subseteq V$

By Lemma 2.2, every open-closed set in a space $X$ is a full zer0-set in $X$ . If $Z=Z(f)$
is a full zer0-set in $X$ and $f$ satisfies $(^{*})$ , then $\{U(f, n) : n<\mathrm{N}\}$ is a neighborhood
base of $Z$ proivided that either $X$ is normal or $Z$ is compact.

Proposition 2.3 The union of finitely many full zerO-sets is a full zerO-set The
intersection of fifinitely many full zerO-sets is a full zerO-set

Example 2.4 The intersection of countably many full zerO-sets is not necessarily
a full zerO-set. To show this, let $S_{\omega}$ be the sequential fan, $i$ . $e_{\rangle}$. the quotient space
obtained from the product space $X=(\omega+1)\cross\omega$ by collapsing the set $\{\omega\}\cross\omega$ to $a$

point $p\in S_{\mu J}$ . Let $\varphi$ : $Xarrow S_{\mathrm{t}d}$ be the quotient map and put

$F_{n}=\varphi[\{\alpha : n<\alpha \leq\omega\}\cross\omega]$

for each $n<\omega$ . Then each $F_{n}$ is a full zerO-set in $S_{\omega}$ since it is open-closed in $S_{\omega}$ ,
but $\{p\}=\bigcap_{n<\omega}F_{n}$ is not a full zerO-set $m$ $S_{\omega}$ since it has no countable neighborhood
base



Lemma 2.5 Let $F=Z(f)$ be a full zerO-set in a space $X$ such that $f$ satisfies $(^{*})$

in Lemma 2.2. Then, there exists no locally fifinite family $\{G_{n} : n\in \mathrm{N}\}$ of non-empty
open sets in $X$ such that $G_{n}\underline{\subseteq}\mathrm{U}\{\mathrm{f}$) $n$ ) $\backslash F$ for each $n\in \mathrm{N}$ . If $F$ is bounded in $X$ in
addition, then there exists no locally finite family $\{G_{n} : n\in \mathrm{N}\}$ of non-empty open
sets in $X$ such that $G_{n}\underline{\subseteq}U(f, n)$ for each $n\in \mathbb{N}$ .

Lemma 2.6 Let $F=Z(f)$ be a bounded, full zerO-set in a space $X$ such that $f$

satisfifies $(^{*})$ in Lemma 2.2. Let $Z$ be a zerO-set in $X$ and let $\{G_{n} : n\in \mathrm{N}\}$ be $a$

decreasing sequence of open sets in $X$ such that $Z= \bigcap_{n\in \mathrm{N}}\mathrm{c}1_{X}G_{n}$ and $Z\subseteq G_{n}\subseteq$

$U(f, n)$ for each $n\in \mathrm{N}$ . $Then_{f}$ for each cozerO-set $V$ in $X$ with $Z\subseteq V$ . there exists
$n\in \mathrm{N}$ such that $G_{n}\subseteq V$ Moreover, if $Z$ is compact, then $\{G_{n} : n\in \mathrm{N}\}$ is $a$

neighborhood base of $Z$ in $X$ .

Proposition 2.7 Let $F$ be a bounded, full zerO-set in a space $X$ and $Z$ a zerO-set
in X. Then $F\cap Z$ is a full zerO-set in $X$ .

For every space $X$ , the subspace $X\cup(\beta X\backslash \mu X)$ of $\beta X$ is pseudocompact,
because it is $G_{\delta}$-dense in $\beta X$ (i.e., it intersects every non-empty $G_{\delta}$ set in $\beta X$ ). The
following proposition shows that a bounded, full zer0-set is precisely a zer0-set in
some pseudocompact space.

Proposition 2.8 Every zerO-set in a pseudocompact space $X$ is a bounded full
zerO-set in $X$ $Conversely_{f}$ every bounded full zerO-set in a space $X$ is a zerO-set in
the pseudocompact space $Y=X\cup(\beta X\backslash \mu X)$ .

A full zer0-set in a space $X$ is not necessarily bounded in $X$ since every space is
a full zer0-set of itself. We, however, have the following result.

Proposition 2.9 The boundary of a full zerO-set in a space $X$ is bounded in $X$ .

Remark 2.10 One might ask if a bounded (or pseudocompact) zerO-set is a full
zerO-set The answer is negative, because Example 2.4 shows that a compact zerO-

set need not be a full zerO-set.

We conclude this section by considering small, bounded, full zer0-sets. Before
stating the results, let us agree on some terminology from [3]. Let $\omega\omega$ be the set
of all functions from $\mu j$ to $\omega$ . For $s_{j}t\in\omega\omega$ , we write $s\leq*t$ if $s(n)\leq t(n)$ for
all but finitely many $n<\omega$ . Recall from [3] that a subset $A$ of $\omega\omega$ is unbounded
if there is no upper bound of $A$ in $\langle^{\omega}\omega, \leq^{*}\rangle$ , and is dominating if it is cofinal in
$\langle^{\omega}\omega, \leq^{*}\rangle$ . Following [3], let $\mathrm{b}$ $= \min${ $|B|$ : $B$ is an unbounded subset of $\omega\omega$ } $)$ and
$0= \min$ { $|D|$ : $D$ is a dominating subset of $a)\omega$ }. Clearly, $\omega_{1}\leq \mathrm{b}$ $\leq 0$ $\leq \mathrm{c}$ $(=|^{\omega}\omega|)$ .
A space $X$ is called $[\mathrm{b}, V]$ -compact if every open cover $\mathcal{U}$ of $X$ with $|\mathcal{U}|\leq 0$ has a
subcover $\mathcal{V}$ with $|\mathcal{V}|<\mathrm{b}$ . In particular, $X$ is $[b, 0]$ compact if $|X|<\mathrm{b}$ . We now
call a space $X$ nearly countably compact if there is no infinite, locally finite family
of non-empty zer0-sets in $X$ .
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Proposition 2.11 Let $F$ be $a[\mathfrak{d}, 0]- compact_{J}$ bounded, full zerO-set in a space $X$

Then, $F$ is nearly countably compact.

Remark 2.12 All countably compact spaces are nearly countably compact and all
nearly countably compact spaces are pseudocompact, but both converses do not hold
in general For $example_{J}$ it is easily checked that the Tychonoff plank $((\omega_{1}+1)\cross$

$(\omega+1))\backslash \{\langle\omega_{1}, \omega\rangle\}$ is nearly countably compact but not countably compact and the
space $\Psi$ in [7, $\mathit{5}If$ is pseudocompact but not nearly countably compact.

Corollary 2.13 Let $X$ be a space in which every point is a $G_{\delta}$ -set and $F$ a bounded,
full zerO-set in $X$ with $|F|<\mathrm{b}$ . Then $F$ is countably compact.

Corollary 2.14 (van Douwen) Every fifirst countable, pseudocompact space $X$ with
$|X|<\mathrm{b}$ is countably compact.

3 Compactness of full zer0-sets
In this section, we attempt to generalize the theorems (1) and (2) stated in the in-
troduction to theorems on bounded, full zer0-sets in not necessarily pseudocompact
spaces. First, we consider the theorem (1) by McArthur. Recall from [8] that a
space $X$ has a regular $G_{\delta}$ -diagonal if the diagonal $\triangle=\{\langle x, x\rangle : x\in X\}$ is the inter-
section of the closures of countably many open sets in $X\cross X$ including $\triangle$ . By [17]
a space $X$ has a regular $G_{\delta}$-diagonal if and only if there is a sequence $\{\mathcal{G}_{n} : n\in \mathrm{N}\}$

of open covers of $X$ such that if $x$ , $y\in X$ and $x\neq y$
) then there exist $n\in \mathrm{N}$ and

open neighberhoods $U$ and $V$ of $x$ and $y$ , respectively, such that no member of $\mathcal{G}_{n}$

intersects both $U$ and $V$

Theorem 3.1 Let $X$ be a space with a regular $G_{\delta}$ -diagonal Then every bounded,
full zerO-set in $X$ is compact and metrizable.

We turn to a generalization of Uspenskii’s theorem (2). The following lemma is
due to Fletcher and Lindgren [6] (see also $[^{1}2$ , Lemma 8.2]). Recall that a space $X$

is a Baire space if the intersection of every sequence $\{U_{n}\cdot n\in \mathrm{N}\}$ of open dense
subsets of $X$ is dense in $X$ .

Lemma 3.2 Let $X$ be a Baire space. Then, for every point-fifinite collection $\mathcal{U}$ of
open sets in $X_{f}$ the set { $x\in X$ : $\mathcal{U}$ is locally fifinite at $x$ } is dense and open in $X$

Theorem 3.3 Let $X$ be a Baire space such that every open cover has a $\sigma$ point
finite open refinement. Then, every $bounded_{f}$ full zerO-set in $X$ is compact.

Proof. Let $F=Z(f)$ be a bounded, full zer0-set in $X$ such that $f$ satisfies
$(^{*})$ in Lemma 2.2. Suppose on the contrary that $F$ is not compact. Then, there
exists a family $\mathcal{K}$ of closed sets in $F$ with the finite intersection property such that
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$\cap\{K : K\in \mathcal{K}\}=\emptyset$ . We ma.v assume that $\mathcal{K}$ is closed under finite intersection. By
the assumption, there exists a $\sigma$-point-finite open cover $\mathcal{V}=\bigcup_{i\in \mathrm{N}}\mathcal{V}_{i}$ of $X$ such that
$\{\mathrm{c}1_{X}V : V\in \mathcal{V}\}$ refines $\{X\backslash h^{\nearrow} : K\in \mathcal{K}\}$ , where $\mathcal{V}_{i}\subseteq \mathcal{V}_{i+1}$ and $\mathcal{V}_{i}$ is point-finite for
each $i\in \mathbb{N}$ . By Lemma 3.2, the set $A_{i}=$ { $i\Gamma$ $\in X$ : $\mathcal{V}_{i}$ is locally finite at $x$ in $X$ } is
dense and open in $X$ for each $i\in \mathrm{N}$ .

By induction, we shall construct a sequence $\{H_{n} : n\in \mathrm{N}\}$ of non-empty open
sets in $X$ such that, for each $n\in \mathrm{N}$ , $H_{n}$ satisfies the following conditions:

(i) $H_{n}\subseteq U(f, n)$ ,

(ii) $\{V\in \mathcal{V}_{r\iota} : H_{n}\cap V\neq\emptyset\}$ is fi–ite, and

(iii) $fI_{n}\cap \mathrm{c}1_{X}$ ( $\bigcup_{i<n}$ St ( $H_{i}$ , $\mathcal{V}_{i})$ ) $=\emptyset$ .

For $n=1$ , since $A_{1}$ is dense and open in X. we can take a non-empty open set
$H_{1}\subseteq \mathrm{t}1(\mathrm{f}, 1)$ such that $\{V\in \mathcal{V}_{1} : H_{1}\cap V\neq\emptyset\}$ is finite. Let $n>1$ and assume that
open sets $H_{i}$ satisfying $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ have been defined for all $i<n$ . Since $\{\mathrm{c}1_{X}V:V\in \mathcal{V}\}$

refines $\{X\backslash K : K\subset\prime \mathcal{K}\}$ and $\mathcal{K}$ is closed under finite intersection, it $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}[perp] \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}$

$(\mathrm{i}\mathrm{i})$ that

$\mathrm{c}1_{X}(i<\cup \mathrm{S}\mathrm{t}(H_{i}, \mathcal{V}_{\dot{f}}))n\cap K=\emptyset$ for some $K\in \mathcal{K}$ .

Thus, $U(f\backslash n)\backslash \mathrm{c}1_{X}$ ( $\bigcup_{\tau<n}$ St(H^\psi \ $\mathcal{V}_{i})$ ) $\neq\emptyset$ . Since $A_{n}$ is dense and open in X. we can
take a non-empty open set $H_{n}$ such that

$H_{n}\subseteq U(f, n)\backslash \backslash \mathrm{c}1_{X}(i<\mathrm{U}^{\mathrm{S}\mathrm{t}(H_{i},\mathcal{V}_{i}))}/n\backslash$

$\acute{\mathrm{c}}\iota\ddagger \mathrm{l}\mathrm{d}\{\mathrm{I}^{\mathit{1}}\in \mathcal{V}_{n} : H_{n}\cap 1/^{7}\neq\phi\}$ is finite. The induction is complete.
$\ulcorner 1^{\urcorner}0$ show that $\{H_{n} : n\in \mathrm{N}\}$ is locally finite in $X$ , let $x\in X$ Then, $x\in V$

$\mathrm{f}\mathrm{o}\mathrm{I}\supset \mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}V$ $\in \mathcal{V}_{k}$ and some $k\in \mathrm{N}$ . If $V$ intersects some $H_{n}$ with $n\backslash \prime k$ , then
$\dot{\ovalbox{\tt\small REJECT}}’\underline{\subseteq}\bigcup_{i<n+^{1}}[perp]$ St $(’H_{i}, \mathcal{V}_{\dot{\mathrm{t}}})$ since $\mathcal{V}_{k}\underline{\subseteq}\mathcal{V}_{7l}$ . Hence, by $(\mathrm{i}\mathrm{i}_{1}^{j})$ , $V\cap H_{m}=\emptyset$ for each $m>n_{\backslash }$

which implies that $\{H_{n} : n\in \mathrm{N}\}$ is locally finite in $X$ . By (i), this contradicts the
second statement of Lemma 2.5. $\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}_{j}F$ is compact.

Corollary 3.4 Let $X$ be a metacompact, Baire space $T[perp] hen.$ every bounded, full
zerO-set in $X$ is compact.

We do not know if Theorem 3.3 and Corollary 3.4 hold without assuming that
$X$ is a Baire space. The following example, however, shows that they fail to be true
if (full’ is removed. For ordinals $\kappa$ and $\lambda$ , $\kappa\lambda$ denotes the ordinal multiplication of $\kappa$

and $\lambda$ : on the other hand, $\kappa$
$\cross\lambda$ denotes the product set of $\kappa$ and $\lambda$ , where $\kappa$ and $\lambda$

are identified with the sets of smaller ordinals. $\epsilon$

Example 3.5 There exists a metacompact, Baire space $X$ , with a $\sigma- p_{\mathit{0}\dot{i}}nt- fifinite$

base, which has a non-compact, bounded, zerO-set
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Proof. Let $\mathrm{c}$ be the cardinality of the continuum and let $\kappa$ $=\mathrm{c}\omega_{1}$ . Define
$X=\kappa$ $\cup D$ , where $D=\kappa$ $\cross\kappa$ $\cross\omega$ . For each $\alpha<\kappa$ and $n<\omega$ , let $U_{n}(\alpha)=$

$\{\alpha\}\cup S_{n}(\alpha)\cup T_{n}(\alpha)$ , where $S_{n}(\alpha)$ and $T_{n}(\alpha)$ are subsets of $D$ defined as follows:
For each $\alpha<\kappa$ , define

$S_{n}(\alpha)=\{\alpha\}\cross\kappa \mathrm{x}$ $(\omega\backslash n)$ , $n<\omega$ .

For each $\mu<\kappa$ , let $\Sigma_{\mu}$ denote the set of all increasing sequences in $\mu$ , where by an
increaing sequence in $\mu$ , we mean a map $\sigma$ : $\omegaarrow\mu$ such that $\sigma(i)<\sigma(j)$ whenever
$i<j$ . For each $\lambda<\omega_{1}$ with $\lambda\geq 1$ , since $|\Sigma_{\sigma\lambda}\cross\Sigma_{\omega}|=\mathrm{C}_{\}}$ there exists a bijection
$\varphi_{\lambda}$ : $\mathrm{c}(\lambda+1)\backslash \mathrm{c}\lambda$ $arrow\Sigma_{\mathrm{c}\lambda}\mathrm{x}$ $\Sigma_{\omega}$ . Let $\alpha$ $<\kappa$ . Then, $\alpha\in \mathrm{c}(\lambda+1)\backslash \mathrm{c}\lambda$ for some $\lambda<\omega_{1}$ .
If $\lambda=0$ (i.e., $\alpha<\mathrm{c}$), then we define $T_{n}(\alpha)=\emptyset$ for each $n$ $<\omega$ . If $\lambda\geq 1$ and

$\varphi_{\lambda}(\alpha)=\langle\sigma, f\rangle\in\Sigma_{\mathrm{c}\lambda}\cross\Sigma_{\omega}$, then we deffie

$T_{n}(\alpha)=\{\langle\sigma(i), \alpha f\}(i)\rangle$ : $n<i<\omega$ }, $n<\omega$ .

By the definitions, for each $\alpha$ , $\beta<\kappa$ ,

if $\alpha\neq\beta$ , then for each $m$ , $n<\omega$ ,
$S_{m}(\alpha)\cap S_{n}(\beta)=\emptyset$ and $T_{m}(\alpha)\cap T_{n}(\beta)=\emptyset$ . (1)

Now, we topologize $X$ by letting sets of the form $U_{n}(\alpha)$ be basic open neighborhoods
of $\alpha\in\kappa$ and declaring points of $D$ to be isolated. Then, $X$ is a Baire space since
every dense open set in $X$ indcludes $D$ . For each $n<\acute{\alpha}J$ , if we put $B_{n}=\{U_{n}(\alpha)$ :
$\alpha$ $<\kappa\}$ , then $B_{n}$ is point-finite by (1). Thus, $\bigcup_{n<\omega}B_{n}\cup\{\{p\} : p\in D\}$ is a $\sigma-$

point-finite base of $X$ . Similarly, we can show that $X$ is metacompact by (1). The
set $\kappa$ $\subseteq X$ is a zer0-set in $X$ since it is the intersection of countably many open-
closed sets $\kappa$ $\cup$ $(\kappa\cross\kappa \cross(\omega\backslash n))\backslash n<\omega$ , of $X$ . It remains to show that $\kappa$ $\subseteq X$ is
bounded in $X$ . If $\kappa$ is not bounded, then there exist $\sigma\in\Sigma_{\kappa}$ and $f\in\Sigma_{\omega}$ such that
$\{U_{f(n)}(\sigma(n)) : n<\omega\}$ is discrete in $X$ . By choosing $\lambda<\omega_{1}$ with $\sup_{n<\mathrm{t}_{A})}\sigma(n)<\mathrm{c}\lambda$ ,
we can consider $\sigma\in\Sigma_{\mathrm{c}\lambda}$ , and hence, $\varphi_{\lambda}(\alpha)=\langle\sigma, f\rangle$ for some $\alpha\in \mathrm{c}(\lambda+1)\backslash \mathrm{c}\lambda$ .
Then, $\{U_{f(n)}(\sigma(n)) : n<\omega\}$ accumulates the point $\alpha$ since each $T_{m}(\alpha)$ intersects
infinitely many $S_{f(n)}(\sigma(n)))\mathrm{s}$ , which is a contradiction. Hence, $\kappa$ is a non-compact,
bounded, zer0-set in $X$ .

4 $M’$ spaces
$M’$-spaces were first studied by Isiwata [10] as a generalization of pseudocompact
spaces and $M$-spaces. A space $X$ is called an $M’$-space if there is a normal sequence
$\{\mathcal{U}_{i}\}_{i\in \mathrm{N}}$ of open covers of $X$ satisfying the following condition: if $\{K_{i}\}_{i\in \mathrm{N}}$ is a de-
creasing sequence of non-empty zer0-set of $X$ such that $K_{i}\subseteq \mathrm{S}\mathrm{t}(x,\mathcal{U}_{\mathrm{i}})$ for each $i\in \mathrm{N}$

and for a ffied point $x$ in $X$ , then $\bigcap_{i\in \mathrm{N}}K_{i}\neq\emptyset.|$

We apply the results in the previous sections to generalize McArthur’s theorem
(1) and Uspenskii’s theorem (3) stated in the introduction to theorems on an $M’-$

space $X$ . It is known that $X$ is an $M’$-space if and only if $\mu X$ is a paracompac
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$M$-space [12]. A space $X$ is a paracompact $M$ -space (or equivalently, paracompact
$p$ -space) if there exists a perfect map from $X$ to a metric space.

A map $f$ : $Xarrow Y$ is said to be $z$-closed if $f(Z)$ is closed in $Y$ for every zer0-set
$Z$ in $X$ .

Theorem 4.1 (Morita) $X$ is an $M’$ -space if and only if there exists a $z$-closed map
$f$ from $X$ to a metric space $M$ such that $f^{-1}(t)$ is bounded in $X$ for each $t\in \mathit{1}\mathcal{V}I$ .

Lemma 4.2 Let $X$ be an $M’$ -space and let $f$ : $Xarrow M$ be a map stated in Theorem
4.1. Then, $f^{-1}(t)$ is a full zerO-set in $X$ for each $t\in M$ . $Moreover_{f}$ if $f^{-1}(t)$ is
compact for each $t\in M$ , then $f$ is a perfect map, and hence, $X$ is a paracompact
M-space.

Proof. To prove the first statement, fix $t\in M$ and put $Z=f^{-1}(t)$ . Let $d$ be
the metric on the metric space $fvI$ and define $g\in C(X)$ by $g(x)=d(t.f(x))$ for
$x\in X$ Then, $g$ and $Z$ satisfy the condition $(^{*})$ in Lemma 2.2, because $f$ is z-closed.
Hence, $Z$ is a full zer0-set in $X$ . The second statement follows from the facts that
$f$ is $z$-closed and every open set containing a compact $f^{-1}(t)$ includes a cozer0-set
containing $f^{-1}.(t)$ .

Since every $M$-space with a $G_{\delta}$ -diagonal is metrizable (see [8, Corollary 3.8]), the
following theorem, which is a generalization of McArthur’s theorem, immediately
follows from Theorem 3.1 and Lemma 4.2.

Theorem 4.3 $M’$ -space with a regular $G_{\delta}$ -diagonal is metrizable.

Theorem 4.4 Let $X$ be a Baire space. If $X$ is an $M’$ -space with a $\sigma- point- fifinite$

base, then $X$ is metrizable.

Proof. By Theorem 3.3 and Lemma 4.2, $X$ is a paracompact $M$ space. Since
every $M$-space with a point-countable base is metrizable (see [8, Corollary 7.11]),
$X$ is metrizable.

Since every pseudocompact space is a Baire space, Theorem 4.4 can be seen as
a generalization of Uspenskii’s theorem. We do not know if Theorem 4.4 remains
true if the assumption that $X$ is a Baire space is removed.
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