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Special bounded zero-sets and their applications
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1 Introduction

All spaces considered are completely regular T;-spaces and all maps are continuous.
For a space X, let X denote the Cech-Stone compactification of X and pX the
Dieudonné completion (i.e., the completion with respect to the finest uniformity) of
X . For a space X, C(X) denotes the set of all real-valued, continuous functions on
X, and a subset A of X is said to be bounded (or relatively pseudocompact) in X
if every f € C(X) is bounded on A. A zero-set in a space X is a set of the form
F7YH0) for some f € C(X). We now call a zero-set Zin X a full zero-set if clgx Z is
a zero-set in BX. Such a zero-set was studied by Rudd [15] in the context of rings
of continucus functions.

In this paper, we study basic properties of full zero-sets and consider the problem
whern a bounded, full zero-set is compact. In particular, we prove that:

(i) Let X be a space with a regular Gs-diagonal. Then every bounded, full zero-set
in X is compact and metrizable.

(ii) Let X be a Baire space such that every open cover has a o-point- finite open
refinement. Then, every bounded, full zero-set in X is compact.

(iii) Let X be a Baire space with a o-point- finite base. Then, every bounded, full
zero-set in X is compact and metrizable.

The above results are generalizations of the following theorems:

(1) (McArthur [11]) Every pseudocompact space with a regular Gs-diagonal is
metrizable.

(2) (Uspenskii [16]) Every pseudocompact space such that every open cover has a
o-point-finite open refinement is compact.

(3) (Uspenskii [16]) Every pseudocompact space with a o-point-finite base is metriz-
able.



Throughout this paper, N denotes the set of positive integers, w denotes the first
infinite ordinal, and w; denotes the first uncountable ordinal. As usual, an ordinal
is identified with the set of smaller oridnals. For a set A4, |A| denotes the cardinality
of A. For f € C(X) and n € N, we write U(f,n) = {z € X : |f(z)] < 1/n} and
Z(f) ={x € X : f(z) = 0}. A cozero-set is a set which is the complement of a
zero-set.

2 Full zero-sets

In this section, we study basic properties of full zero-sets. The following two lemmas
will be often used in our discussion. In the first one, the equivalence of (1) and (2)
was proved by Morita [13, Lemma 2.5] and that of (1) and (3) is well-known and
easily proved.

Lemma 2.1 For a subset A of a space X, the following conditions are equivalent:
(1) A is bounded in X;
(2) cloxA C pX;

(3) there exists no locally finite family {G, : n € N} of non-empty open sets in X
such that G, N A # O for each n € N.

Lemma 2.2 (Rudd [15]) A subset Z of a space X is a full zero-set in X if and
only if there exists f € C(X) such that Z = Z(f) and (*) for every cozero-set V in
X with Z C 'V, there exists n € N such that U(f,n) C V.

By Lemma 2.2, every open-closed set in a space X is a full zero-set in X. If Z = Z(f)
is a full zero-set in X and f satisfies (*), then {U(f,n) : n < N} is a neighborhood
base of Z proivided that either X is normal or Z is compact.

Proposition 2.3 The union of finitely many full zero-sets is a full zero-set. The
intersection of finitely many full zero-sets is a full zero-set.

Example 2.4 The intersection of countably many full zero-sets is not necessarily
a full zero-set. To show this, let S, be the sequential fan, i.c., the quotient space
obtained from the product space X = (w+ 1) x w by collapsing the set {w} X w to a
pointp € S,. Let v : X — S, be the quotient map and put

Fo=y[{a:n<a<w}xuw]

for each n < w. Then each F, is a full zero-set in S,, since it is open-closed in S,
but {p} = Nnco, Fn s not a full zero-set in S,, since it has no countable neighborhood
base.
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Lemma 2.5 Let F = Z(f) be a full zero-set in a space X such that f satisfies (*)
in Lemma 2.2. Then, there exists no locally finite family {Gn : n € N} of non-empty
open sets in X such that G, CU(f,n) \ F for each n € N. If F is bounded in X in
addition, then there exists no locally finite family {G, : n € N} of non-empty open
sets in X such that G, C U(f,n) for each n € N.

Lemma 2.6 Let F' = Z(f) be a bounded, full zero-set in a space X such that f
satisfies (*) in Lemma 2.2. Let Z be a zero-set in X and let {G, : n € N} be a
decreasing sequence of open sets in X such that Z = [),enClxGn and Z C G, C
U(f,n) for each n € N. Then, for each cozero-set V in X with Z C'V, there exists
n € N such that G, C V. Moreover, if Z is compact, then {G, : n € N} is a
neighborhood base of Z in X.

Proposition 2.7 Let F be a bounded, full zero-set in a space X and Z a zero-set
in X. Then FN Z is a full zero-set in X.

For every space X, the subspace X U (8X \ pX) of 8X is pseudocompact,
because it is Gs-dense in BX (i.e., it intersects every non-empty Gs-set in 8X). The
following proposition shows that a bounded, full zero-set is precisely a zero-set in
some pseudocompact space.

Proposition 2.8 Every zero-set in a pseudocompact space X is a bounded, full
zero-set in X . Conversely, every bounded, full zero-set in a space X is a zero-set in
the pseudocompact space Y = X U (8X \ uX).

A full zero-set in a space X is not necessarily bounded in X since every space 1s
a full zero-set of itself. We, however, have the following result.

Proposition 2.9 The boundary of a full zero-set in a space X is bounded in X.

Remark 2.10 One might ask if a bounded (or pseudocompact) zero-set is a full
zero-set. The answer is negative, because Example 2.4 shows that a compact zero-
set need not be a full zero-set.

We conclude this section by considering small, bounded, full zero-sets. Before
stating the results, let us agree on some terminology from [3]. Let “w be the set
of all functions from w to w. For s,t € “w, we write s <* ¢ if s(n) < t(n) for
all but finitely many n < w. Recall from [3] that a subset A of “w is unbounded
if there is no upper bound of A in (*w,<*), and is dominating if it is cofinal in
(“w, <*). Following (3], let b = min{|B| : B is an unbounded subset of “w}, and
? = min{|D| : D is a dominating subset of “w}. Clearly, w; < b <0 < ¢(= [“wl).
A space X is called [b,d]-compact if every open cover U of X with || < 0 has a
subcover V with |V| < b. In particular, X is [b,0]-compact if |X| < b. We now
call a space X nearly countably compact if there is no infinite, locally finite family
of non-empty zero-sets in X.



Proposition 2.11 Let F be a [b,0]-compact, bounded, full zero-set in a space X .
Then, F' is nearly countably compact.

Remark 2.12 All countably compact spaces are nearly countably compact and all
nearly countably compact spaces are pseudocompact, but both converses do not hold
in general. For example, it is easily checked that the Tychonoff plank ((wy + 1) X
(W + D)\ {{wy,w)} is nearly countably compact but not countably compact and the
space ¥ in [7, 5I] is pseudocompact but not nearly countably compact.

Corollary 2.13 Let X be a space in which every point is a Gs-set and F' a bounded,
Jull zero-set in X with |F| < b. Then F is countably compact.

Corollary 2.14 (van Douwen) Every first countable, pseudocompact space X with
|X| < b is countably compact.

3 Compactness of full zero-sets

In this section, we attempt to generalize the theorems (1) and (2) stated in the in-
troduction to theorems on bounded, full zero-sets in not necessarily pseudocompact
spaces. First, we consider the theorem (1) by McArthur. Recall from [8] that a
space X has a regular Gs-diagonal if the diagonal A = {{z,2) : £ € X} is the inter-
section of the closures of countably many open sets in X x X including A. By [17]
a space X has a regular G;-diagonal if and only if there is a sequence {G, : n € N}
of open covers of X such that if z,y € X and 2 # y, then there exist n € N and
open neighberhoods U and V' of z and y, respectively, such that no member of G,
intersects both U and V.

Theorem 3.1 Let X be a space with a regular Gs-diagonal. Then every bounded,
full zero-set in X is compact and metrizable.

We turn to a generalization of Uspenskii’s theorem (2). The following lemma is
due to Fletcher and Lindgren [6] (see also [2, Lemma 8.2]). Recall that a space X
is & Baire space if the intersection of every sequence {U, : n € N} of open dense
subsets of X is dense in X.

Lemma 3.2 Let X be a Baire space. Then, for every point-finite collection U of
open sets in X, the set {x € X : U is locally finite at x} is dense and open in X .

Theorem 3.3 Let X be a Baire space such that every open cover has a o-point-
finite open refinement. Then, every bounded, full zero-set in X is compact.

Proof.  Let F = Z(f) be a bounded, full zero-set in X such that f satisfies
(*) in Lemma 2.2. Suppose on the contrary that F is not compact. Then, there
exists a family K of closed sets in F' with the finite intersection property such that
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M{K : K € K} = (. We may assume that K is closed under finite intersection. By
the assumption, there exists a o-point-finite open cover V = ;e Vi of X such that
{cIxV : V € V} refines {X \ K : K € K}, where V; C V;11 and Vi is point-finite for
each i € N. By Lemma 3.2, the set 4; = {z € X : V} is locally finite at z in X} is
dense and open in X for each i € N.

By induction, we shall construct a sequence {H, : n € N} of non-empty open
sets in X such that, for each n € N, H, satisfies the following conditions:

(i) Hn S U(f,n),
(ii) {V € V,: H,NV # 0} is finite, and
(iti) H, N elx(U;e, St(H: Vi) = 0.

For n = 1, since A, is dense and open in X, we can take a non-empty open set
H, C U{f,1) such that {V € V; : H; NV # 0} is finite. Let n > 1 and assume that
open sets H; satisfying (i)~(iii) have been defined for all ¢ < n. Since {clxV : V € V}
refines {X \ K : K € K} and K is closed under finite intersection, it follows from
(ii) that

clx (U St(Hi,Vz-)) NK = § for some K € K.
i<n

Thus, U(f.n)\ clx(U;<, St(H:, Vi) # 0. Since A, is dense and open in X, we can

take a non-empty open set H, such that

N\

H, CU(f,n)\clx (U St(Hi,Vi)\
i<n /
and {V €V, : H, NV # ¢} is finite. The induction is complete.

To show that {H, : n € N} is locally finite in X, let z € X. Then, z € V
for some V € V. and some k € N. If V intersects some H, with n > k, then
V € Uscngr St(H:, Vi) since Vi C V. Hence, by (iil), V N Hy, = 0 for each m > n,
which implies that {H, : n € N} is locally finite in X. By (i), this contradicts the
second statement of Lemma 2.5. Hence, F'is compact.

Corollary 3.4 Let X be a metacompact, Baire space. Then, every bounded, full
zero-set in X s compact.

We do not know if Theorem 3.3 and Corollary 3.4 hold without assuming that
X is a Baire space. The following example, however, shows that they fail to be true
if “full’ is removed. For ordinals k and A, kX denotes the ordinal multiplication of x
and \; on the other hand, x x A denotes the product set of x and A, where £ and A
are identified with the sets of smaller ordinals. *

Example 3.5 There exists a metacompact, Baire space X, with a o-point-finite
base, which has a non-compact, bounded, zero-set.



Proof.  Let ¢ be the cardinality of the continuum and let kK = cw;. Define
X =rUD, where D = kX k X w. For each o < k and n < w, let Up(a) =
{a} U S,(a) UT,(a), where S,(a) and T,(c) are subscts of D defined as follows:
For each a < k, define

Sp(a) ={a} xkx (w\n), n<w.

For each i < &, let 3, denote the set of all increasing sequences in x, where by an
increaing sequence in 4, we mean a map o : w —  such that o(7) < o(j) whenever
i < j. For each A < w; with A > 1, since | x X, = ¢, there exists a bijection
ox: A+ 1)\ ed— X x X, Let a < k. Then, @ € ¢(A+ 1)\ ¢ for some A < wy.
If A=0 (i.e, o < ¢}, then we define 7,,(a) = 0 for each n < w. If A > 1 and

oa(@) = (o, f) € X x X, then we define

To(a) ={{c(i),q, f(@) :n<i<w}, n<w.

By the definitions, for each «, 8 < &,

if  # (3, then for each m,n < w,
Sm{a) N Sp(B) = 0 and Tr(a) N TR(B) = 0. (1)

Now, we topologize X by letting sets of the form U,(a) be basic open neighborhoods
of @ € k and declaring points of D to be isolated. Then, X is a Baire space since
every dense open set in X indcludes D. For each n < w, if we put B, = {U,(«) :
a < K}, then B, is point-finite by (1). Thus, |, B. U {{p} : p € D} is a o-
point-finite base of X. Similarly, we can show that X is metacompact by (1). The
set Kk € X is a zero-set in X since it is the intersection of countably many open-
closed sets kU (k X kK X (w\ ), n < w, of X. It remains to show that x C X is
bounded in X. If « is not bounded, then there exist o € ¥, and f € ¥, such that
{Utmy(o(n)) : n < w} is discrete in X. By choosing A < wy with sup,,., o(n) < ¢,
we can consider o € Xy, and hence, px(a) = (o, f) for some a € ¢(A+ 1)\ cA.
Then, {Uspny(o(n)) : n < w} accumulates the point a since each 5, () intersects
infinitely many Sy(n)(o(n))’s, which is a contradiction. Hence, x is a non-compact,
bounded, zero-set in X.

4 M'-spaces

M'-spaces were first studied by Isiwata [10] as a generalization of pseudocompact
spaces and M-spaces. A space X is called an M'-space if there is a normal sequence
{U;}ien of open covers of X satisfying the following condition: if {K;}en is a de-
creasing sequence of non-empty zero-set of X such that K; C St(z,U;) foreachi € N
and for a fixed point z in X, then ;o5 K; # 0+

We apply the results in the previous sections to generalize McArthur’s theorem
(1) and Uspenskii’s theorem (3) stated in the introduction to theorems on an M'-
space X. It is known that X is an M’-space if and only if pX is a paracompact
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M-space [12]. A space X is a paracompact M-space (or equivalently, paracompact
p-space) if there exists a perfect map from X to a metric space.

Amap f: X — Y is said to be 2-closed if f(Z) is closed in Y for every zero-set
Zin X.

Theorem 4.1 (Morita) X is an M'-space if and only if there exists a z-closed map
f from X to a metric space M such that f~1(t) is bounded in X for eacht € M.

Lemma 4.2 Let X be an M'-space and let f : X — M be a map stated in Theorem
4.1. Then, f~'(t) is a full zero-set in X for each t € M. Moreover, if f7'(t) is
compact for each t € M, then f is a perfect map, and hence, X is a paracompact
M -space.

Proof. To prove the first statement, fix t € M and put Z = f~!(t). Let d be
the metric on the metric space M and define g € C(X) by g(z) = d(¢, f(z)) for
r € X. Then, g and Z satisfy the condition (*) in Lemma 2.2, because f is z-closed.
Hence, Z is a full zero-set in X. The second statement follows from the facts that
f is z-closed and every open set containing a compact f~!(¢) includes a cozero-set
containing f~1(¢).

Since every M-space with a Gs-diagonal is metrizable (see [8, Corollary 3.8]), the
following theorem, which is a generalization of McArthur’s theorem, immediately
follows from Theorem 3.1 and Lemma 4.2.

Theorem 4.3 M’-space with a reqular Gs-diagonal is metrizable.

Theorem 4.4 Let X be a Baire space. If X is an M'-space with a o-point-finite
base, then X 1is metrizable.

Proof. By Theorem 3.3 and Lemma 4.2, X is a paracompact M-space. Since
every M-space with a point-countable base is metrizable (see [8, Corollary 7.11]),
X is metrizable.

Since every pseudocompact space is a Baire space, Theorem 4.4 can be seen as
a generalization of Uspenskii’s theorem. We do not know if Theorem 4.4 remains
true if the assumption that X is a Baire space is removed.
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