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1 Introduction

In a binary linear code, a zero neighbor is a codeword whose Voronoi region shares a
facet with that of the all-zero codeword [2]. The local weight distribution [1, 12] (or local
distance profile [2, 3, 4, 5, 11]) of a binary linear code is defined as the weight distribution
of zero neighbors in the code. Knowledge of the local weight distribution of a code is
valuable for the error performance analysis of the code. For example, the local weight
distribution gives a tighter upper bound on error probability for soft decision decoding
over AWGN channel than the usual union bound [5].

Formulas for local weight distribution are only known for certain classes of codes,
Hamming codes and second-order Reed-Muller codes. Although an efficient method to .
examine zero neighborship of codeword is presented in [2], the computation for obtaining
the local weight distribution is a very time-consuming task. As Agrell noted in [2], the
automorphism group of the code can help reduce the complexity. Using the group of
cyclic permutations, Mohri et al. devised a computation algorithm for cyclic codes. We
call the algorithm the MHM algorithm in this resume. By using the algorithm, they
obtained the local weight distributions of the (63, %) binary primitive BCH codes with
k < 45 [3, 4]. They also obtained the distirubutions for ¥ = 51,57 by their another
algorithm [3]. The MHM algorithm reduces the computational complexity by using the
following invariance property [2]: Any cyclic permutation of a codeword is a zero neighbor
if and only if the codeword is a zero neighbor. It generates the representative codeword
and the number of the equivalent codewords, which are able to be cyclic-permuted into
the representative one, and checks whether each of the representatives is a zero neighbor
or not. The key subalgorithm in the algorithm is the generation of the representative
codewords.

The MHM algorithm can also be applied straightforwardly to compute the local
weight distribution of extended cyclic codes (see Corollary 2). Extended primitive BCH
codes are closed under the affine group of permutations, which is larger than the cyclic
group of permutations. The invariance property for the cyclic permutations can be
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generalized to that for any group of permutations {2]. Using the invariance property
for the larger group of permutations, we may reduce the number of the representative
codewords. However, it is not easy to obtain the representative codewords and the
number of the equivalent codewords.

In this resume, we give some of our results on the local weight distributions, presented
in [11, 12, 13, 14]. Frist, we give an algorithm for computing the local weight distribution
of binary linear codes which are closed under any group of permutations. To use the
invariance property, we will apply the invariance property to the set of cosets of a subcode
rather than the set of codewords. The representative cosets and the number of equivalent
cosets are computed in the proposed algorithm. This reduces the complexity of finding
the representatives, which is much smaller than that for checking the zero neighborship
for every representative codewords. This idea was introduced in [7] for computing the
weight distributions of extended binary primitive BCH codes. We show that the idea can
also be applied for the local weight distribution. To reduce the complexity more, we use
the trellis structure of the code, in checking the zero neighborship.

We apply the proposed algorithm to extended binary primitive BCH codes and
obtain the local weight distributions of the (128, k) extended binary primitive BCH code
for k < 50 [11],[12]. The complexity of the proposed algorithm is about 1/64 as much
as that of the MHM algorithm for the codes of length 128. Furthermore, we obtain the
local weight distributions of the third-order Reed-Muller code of length 128.

However, for cyclic codes, the complexity is not reduced. Then, the local weight
distributions of the (127, k) primitive BCH codes for k£ > 36 were not obtained although
those of the corresponding (128, k) extended primitive BCH codes are obtaiend for & < 50.
.A method for obtaining the local weight distribution of a code from that of its extended
code should be considered.

For this purpose, relations between local weight distributions of a binary linear code
and its extended code are derived. A concrete relation is presented for the case that the
extended code is transitive invariant and contains only codewords with weight multiple
of four. Extended binary primitive BCH codes and Reed-Muller codes are transitive
invariant codes.

A relation between local weight distributions of a binary linear code and its even
weight subcode is also given. By using the relations, the local weight distributions of
the (127, %) binary primitive BCH codes for 36 < k& < 50, the punctured third-order
Reed-Muller code of length 127, and their even weight subcodes are obtained from the
local weight distributions of the (128, k) primitive BCH codes for 36 < k < 50 and the
third-order Reed-Muller code of length 128.
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2 Local Weight Distribution

Let C be a binary (n, k) linear code. Define a mapping s from {0, 1} to R as s(0) = —1
and s(1) = 1. The mapping s is naturally extended to one from {0,1}" to R". Zero

neighbor is defined as follows:

Definition 1 (Zero neighbor) For v € C, define mo € R™ as myg = 3(s(0) + s(v)),
where 0 = (0,0,...,0). The codeword v is a zero neighbor iff

dr(mo, s(v)) = dg(mo, 5(0)) < dg(mo, s(v'),
for any v’ € C\ {0, v}, (1)

where dp(x,1y) is the squared Fuclidean distance between x and y in R".
The local weight distribution is defined as follows:

Definition 2 (Local weight distribution) Let L, be the number of zero neighbors
with weight w in C. The local weight distribution of C is defined as the (n + 1)-tuple
(Lo, Ly,. .., Ly).

The following lemma is useful to check whether a given codeword is a zero neighbor or

not.

Lemma 1 /2] v € C is a zero neighbor if and only if there does not exist v’ € C'\ {0}
such that Supp(v’) C Supp(v). Note that Supp(v) is the set of support of v, which is the
set of positions of nonzero elements in v = (vy, v, ..., 0,).

Let A, (C) be the number of codewords with weight w in C. For the local weight -
distribution and the (global) weight distribution (Aq(C), A1(C), ..., A.(C)), we have
the following lemma [1, 6].

Lemma 2 Let d be the minimum distance of C. Then, we have that

Lu(C) = { AW(C), w < 2d, @)

0, w>n—k+1.
When the weight distribution is known, only L,,(C) with 2d < w <n —k 4 1 need to be
computed to obtain the local weight distribution. Generally, the complexity for comput-
ing the local weight distribution is larger than that for computing the weight distribution.
Therefore, Lemma 2 is useful for obtaining local weight distributions. Moreover, when
all the weights w in a code is confined in w < 2d and w > n—k+ 1, the local weight dis-
tribution can be obtained from the weight distribution straightforwardly. For example,
the local weight distribution of the (n, k) primitive BCH code of length 63 for & < 18, of
length 127 for £ < 29, and of length 255 for £ < 45 can be obtained from their weight
distributions.

The MHM algorithm proposed in 4] uses the following invariance property under
cyclic permutations, as well as Lemma 1.
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Theorem 1 [4] Let C be a binary cyclic code. Any cyclic permuted codeword of v is a
zero neighbor if a codeword v € C is a zero neighbor.

Corollary 1 Let C be a binary cyclic code, and o'v be an i times cyclic permuted
codeword of v € C. Consider a set S = {v,0v,0%,...,07"" v}, where p(o,v) is the
period of o, which is the minimum i such that o*v = v. Then, (1) if v is a zero neighbor,
all codewords in the set S are zero neighbors; and (2) otherwise, all codewords in S are
not zero neighbors.

In the MHM algorithm, all codewords are partitioned into the sets described in
Corollary 1. Only one representative codeword in each sets is generated and checked
whether it is a zero neighbor or not.

We can easily modify the MHM algorithm to compute the local weight distribution
of the extended cyclic code using the following corollary:

Corollary 2 Let C and Ce be a binary cyclic code and its extended code, respectively.
Forv € O, let ex(v) be the corresponding codeword in Cec. Then, for any cyclic permauted
codeword v of v, ex(v') is a zero neighbor in Ce if ex(v) 4s a zero neighbor in Ce.

As mentioned in Section 1, the extended primitive BCH codes are closed larger class of
permutations, and Theorem 1 can be generalized to any group of permutations of the
automorphisim group of the code [2]. In the following section, we review the invariance
property under a group of permutation, and present a coset partitioning technique to use

the property effectively.

3 Coset Partitioning for Computing the Local Weight
Distribution of Codes Closed under a Group of

Permutations

3.1 An invariance property under permutations

For a permutation 7 and a set of vectors D, the set of the permuted vectors w[D] is
defined as

7[D] = {mv :v € D}. (3)

The automorphism group of a code C' is the set of all permutations by which C' is
permuted into C, and denoted by Aut(C), ie., Aut(C) ={m: 7|C] = C}.
An invariance property under the automorphism group is given in the following

theorem.

Theorem 2 For 7 € Aut(C) and v € C, mv is a zero neighbor if v is a zero neighbor.
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This theorem extends Corollary 1 as follows: .

Corollary 3 For v € C, consider a set S = {mv : Vrm € Awt(C)}. Then, (1) if v isa
zero neighbor, all codewords in S are zero neighbors; and (2) otherwise, all codewords in

S are not zero neighbors.

It is not easy to devise a similar algorithm as the MHM algorithm, since for almost
all group of permutations, no efficient way is known for generating the representative
codewords and obtaining the number of the equivalent codewords. To use this invariance
property, we apply the invariance property to the set of cosets of a subcode rather than

the set of codewords.

3.2 Local weight subdistribution for a coset
For a binary (n,k) linear code C' and its linear subcode with dimension &', let C/C"
denote the set of cosets of €’ in C, that is, C/C’' = {v+ C": v € C}. Then,
iC/C'| =2, and C= [] D. (4)
pec/c

Definition 3 {(Local weight subdistribution for a coset) The local weight subdis-

tribution for a coset D € C/C' is the weight distribution of zero neighbors of C in D.

The local weight subdistribution for D is (|LSo(D)|, |LS1(D)|,...,|LS.(D)}), where
LS,(D) = {v e D:Supp(v') € Supp(v) for any v' € C'\ {0, v},

and the Hamming weight of v is w}, (5)
with 0 < w < n.

Then, from (4), the local weight distribution of C' is given as the sum of the local weight
subdistributions for the cosets in C'/C", that is,

Ly= Y |LS,(D)]. (6)
Dec/c’

The following theorem gives an invariance property under permutations for cosets.

Theorem 3 For Dy, Dy € C/C’, the local weight subdistribution for Dy and that for Dy
are the same if there exists m € Aut(C) such that w[D;] = Ds.

3.3 Partitioning the set of cosets with the same local weight
subdistribution
We give a condition for cosets having the same local weight subdistribution. The following

lemma gives the set of all permutations by which every coset in C/C’ is permuted into
one in C/C".
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Lemma 3 For a linear code C and its linear subcode C',
{r:7[D] € C/C’ for any D € C/C"} = Aut(C) N Aut(C").

Aut(C) N Aut(C") (or even Aut(C)) is generally not known. Only subgroups of
Aut(C) N Aut(C’) are known. Therefore, we use a subgroup.

Definition 4 Let II be a subset of Aut(C) N Aut(C"). For Dy, D, € C/C', we denote
Dy ~u Do if and only if there exists w € II such that n[D:] = Ds.

Lemma 4 The relation “~g” is an equivalence relation on C/C' if II forms a group.

When the set of cosets are partitioned into the equivalence classes by the relation “~y”,
the local weight subdistributions for cosets which belong to the same equivalence class

are the same.
We give a useful theorem for partitioning the set of cosets into equivalence classes

by the relation “~p.”

Theorem 4 Let 1T be a subset of Aut(C) N Aut(C"). For Dy, Dy € C/C" and w € 11, we
have Dy ~p Do if mv; € Do for any v1 € Dy.

From Theorem 4, to partition the set of cosets into equivalence classes, we only
need to check whether the representative codeword of a coset is permuted into another
coset. After partitioning into equivalence classes, the local weight subdistribution for only
one coset in each equivalence class needs to be computed. Thereby the computational
complexity is reduced.

4 An Algorithm for Computing the Local Weight
Distribution

4.1 Outline of the algorithm

On the basis of the method of partitioning the set of cosets described in the previous
section, we propose an algorithm to compute the local weight distribution as follows:

1. Choose a subcode C' and a subgroup II of permutations of Aut(C) N Aut(C”).

9. Partition C/C' into equivalence classes with permutations in II, and obtain the

number of codewords in each equivalence class.

3. Compute the local weight subdistributions for the representative cosets in each

equivalence class.

4. Sum up all the local weight subdistributions.
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4.2 Computational complexity

Here, we analyze computational complexity of the proposed algorithm for the binary
(n, k) linear code C, assuming that the subcode C” with dimension &’ is given. Also, to
check whether a codeword is a zero neighbor or not, the procedure presented in [2] is
used as in the MHM algorithm. The procedure uses Lemma 1, and its computational
complexity to check one codeword is O(n2k).

Since the number of codewords in each cosets is 2¥', the total number of codewords to
be checked by the procedure is e2*', where e is the number of the equivalence classes. The
computational complexity to check one codeword is O(n%k). Hence, the time complexity
of Step (3) of the proposed algorithm is O(n%k - €2*'). The time complexity of Step (2),
partitioning the set of cosets, is O(n(k — k')2*—*|I1[) [11].

Therefore, the time complexity of the entire algorithm is O(n%k - €2* + n(k ~
EN2F¥|II|). When &' is chosen as k' > k/2, then 2 > 2% and the complexity of
partitioning the set of cosets is much smaller than of computing the local weight subdis-
tributions for cosets.

The space complexity of the entire algorithm is O((k — k')2**") [11], since the space
complexity for computing the local weight subdistributions is much smaller than that for
partitioning the set of cosets.

4.3 Selection of the subcode

We should choose the subcode to make the number of permutations in IT large.

If there are several subcodes with the same II, then the subcode with the smaller
dimension should be chosen to minimize the number of codewords that need to be checked,
as long as the complexity of partitioning the set of cosets is relatively small.

4.4 A method for checking the zero neighborship using the trel-
lis structure

We comnsider reducing the complexity of checking whether a codeword is a zero neighbor
or not.

Forv € C, let C(v) = {ulu € C\ {0}, Supp(u) C Supp(v)}. Checking whether
a codeword v is a zero neighbor or not is examining whether the dimension of C(v),
denoted by dim(C(v)}, is zero or not [2]. For v € C and i with 1 < i < n, let S(v,1) =
{(u1,u9,...,upn) € Clu; =v; with 1 < j <1} and Clv,) = {u|u € S(v,1), Supp(u) N
{1,...,4} € Supp(v) N {1,...,4}}. A typical implimentation to check whether v is a
zero neighbor or not computes C(v, %) for i = 1,2,...,n, where C(v,n) = C(v). For any
u,u’ € S(v,1), C(u,i) = C(v,7). That is, if we generate C(u, ) once, we does not need
to generate C(u, ) for each u € S(w, ) later. By this, the computational complexity is
reduced. We should choose 7 properly, say n/2 or n/4, in order to make S(v,3) large
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and C(u,i)(u € S(v,%)) small. To obtain S(v,1), we use the trellis structure of cosets.
This method does not make the space complexity much larger, since a codeword in
S(w,4) is generated successively. The advantage of this method depends on the code.
For extended binary primitive BCH codes, permuting the symbol positions of codewords
properly makes S(v, 1) larger [9].

It is not easy to estimate precisely how the computational complexity is reduced.
We will estimate the effect roughly in the case of the (128,50} extended BCH code. In
this case, the (128,29) code is chosen as the subcode and the number of representative
cosets is 258. We pick up 2! x 258 codewords by choosing 2'* codewords randomly
from each of the 258 representative coset. For every codeword v in such codewords, we
examined a position at which the dim(C(v)) is found out to be zero or not. Then, the
average was 100. Assuming that the complexity of obtaining C(v,4 + 1) from C(w,1)
is proportional to the dimension of C(v,7), we estimated the relative computational
complexity to that without using the above technique when g is chosen as ¢ (0<i<n):
((100 — 49)/100)% + (1 — ({100 — 49)/100)?) /2%, where k; is the dimension of S(w, 4g).
It turned out that the complexity would reduced mostly by 1/2 for ¢ = 32,46, and 47.
Therefore, we choose 32 as i for the (128,50) code. Actually, for the (128,50) extended
BCH code and the (128, 29) extended BCH subcode, the complexity is reduced by about
1/2. ‘

In the proposed algorithm, since the codewords that need to be checked are generated
coset by coset, the subset of S(v, ) in a coset is used instead of S(v, 7). If the dimension
of the subcode is small, k, may become small and the effect of using the trellis structure is
small. We should choose the subcode considering the effect of using the trellis structure.

5 Relations of Local Weight Distributions

5.1 General relation

Consider a binary linear code C of length n, its extended code Ce, and its even weight
subcode Coyen. For a codeword v € C, let wt(v) be the Hamming weight of v and vlex)
be the corresponding codeword in Cy, that is, »(®9 is obtained from v by adding the
over-all parity bit.

If v € C can be represented as v = v; + vy, where v1,v2 € C' and Supp{vi) N
Supp(vs) = @, v is said to be decomposable. From Lemma 1, v is not a zero neighbor if
and only if v is decomposable. To consider a relation between C and Cg, with respect to
zero neighborship, for even weight codewords, we refine the notion, decomposable, and
introduce only-odd-decomposable and even-decomposable.

Definition 5 Let v € C be a decomposable codeword with even wt(v). That is, v is not
a zero neighbor in C. v is said to be only-odd-decomposable, if all the decomposition of



158

Table 1: Zero neighborship of v in a linear block code, v., in its extended code, and v
in its even weight subcode.

vin C &%) in Cox v in Ceven
Zero Weight Decomposability Zero Theorem 5 Zero Theorem 8
neighborship neighborship neighborship

Odd N/A N/A
Yes Even Not decomposable Yes 1 Ves 1

Odd Decomposable No 2-(a) N/A N/A
No Even | Only-odd-decomposable Yes Yes

Even Even-decomposable No 2(b) No 2

v is of the form vy + vy with the odd weight codewords vy and vy. Otherwise, v is said

to be even-decomposable.

When v is even-decomposable, there is a decomposition of v, v; + v, such that
both wt(wv;) and wt(v,) are even. The relation between C' and Ce, with respect to zero
uneighborship is given in the following theorem, which is also summarized in Table 1.
Theorem 5 1. Fora zero neighbor v in C, v is a zero neighbor in Ce.

2. For a codeword v which is not a zero neighbor in C, the following a) and b) hold.

(a) When wt(v) is odd, v*® is not a zero neighbor in Cey.

(b) When wt{v) is even, v is a 2ero neighbor in Cuy if and only if v is only-
odd-decomposable in C.

For the local weight distributions of a code and its extended code, we have the
following theorem, which is a direct consequence of Theorem 5.

Theorem 6 If there is no only-odd-decomposable codeword in C,

Lyi(Ce) = Lgir(C) + Ly(C), 0<4< n/2. (7)

From Theorem 6, the local weight distributions of C,, are obtained from that of
C. Next, we give a useful sufficient condition under which no only-odd-decomposable
codeword exists.

Theorem 7 If all the weights of codewords in Cuy are multiples of four, no only-odd-
decomposable codeword exists in C.
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For example, all the weights of codewords in the (128, %) extended primitive BCH
code with £ < 57 are multiples of four. The parameters of Reed-Muller codes with which
all the weights of codewords are multiples of four are given by Corollary 13 of Chapter
15 in [15]. The third-order Reed-Muller code of length 128, 256, and 512 are true for the
case.

Although the local weight distribution of Ce for these codes can be obtained from
that of C by using Theorem 6, what we need is a method for obtaining the local weight
distribution of C from that of Ce. We need to know the number of zero neighbors with
parity bit one. In the next section, we will show a method to obtain the number of zero
neighbors with parity bit one for a class of transitive invariant codes.

A similar relation as that between C and C. holds between C and Ceyen. This
relation is given in Theorem 8.

Theorem 8 1. For an even weight zero neighbor v in C, v is a zero neighbor in Ceven-

9. For an even weight codeword v which is not a zero neighbor in C, v 1s a zero
neighbor if and only if v is only-odd-decomposable in C.

From Theorem 8, we have Theorem 9.

Theorem 9 If there is no only-odd-decomposable codeword in C,

Loi(Ceven) = Lai(C), 0<i<n/2 (8)

5.2 Relation for transitive invariant extended codes

A Transitive invariant code is the code which is invariant under a transitive group of
permutations. A group of permutations is said to be transitive if for any two symbols
in a codeword there exists a permutation that interchanges them [16]. The extended
primitive BCH codes and Reed-Muller codes are transitive invariant codes. For a tran-
sitive invariant C.y, a relation between the (global) weight distributions of C and C i
presented in Theorem 8.15 in [16]. A similar relation holds for local weight distribution.
The following lemma can be proved in a similar way as the proof of Theorem 8.15.

Lemma 5 If Cey is a transitive invariant code of lengthn+1, the number of zero neigh-

bors with parity bit one is =25 Ly, (Cex).

It is clear that there are 3521, (Ce) zero neighbors with weight w whose parity

bit is zero from this lemma. The following theorem is obtained from Theorem 5 and

Lemma 5.
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Theorem 10 [f Co is a transitive invariant code of length n+1,

1 +1

Li(C) = mLz’-z—l(Cex), for odd 1, 9)
n+1—1 .

; < — 1 . 10

L(C) < o Li(Cy), for even i (10)

If there is no only-odd-decomposable codeword in o transitive invariant code Cey, the
equality of (10} holds. That 1s, in this case, we have that
n+1—1

o] Li(Cy), for even i. (11)

Li(C) =

Therefore, for a transitive invariant code Ce, having no only-odd-decomposable code-
word in C, the local weight distributions of C' can be obtained from that of C, by using
(9) and (11) in Theorem 10. After computing the local weight distribution of C, that of
Ceoven can be obtained by using Theorem 9.

6 Obtained Local Weight Distributions

As discussed in the previous section, the local weight distributions of the (127, k) primitive
BCH codes for £ < 57, the punctured third-order Reed-Muller codes of length 127, 255,
and 511, and their even weight subcodes are obtained from those of the corresponding
extended codes by using Theorems 9 and 10. The obtained local weight distributions
are presented in Table 2. Since the local weight distribution for the (128,57) extended
primitive BCH code and the third-order Reed-Muller code of length 256 are unknown,
only the local weight distributions of the (127, k) primitive BCH codes for k = 36, 43, 50,
the punctured third-order Reed-Muller code of length 127 are given in the tables.

7 Conclusion

In this resume, some of our results on the local weight distribution are given. An algo-
rithm is shown for computing the local weight distribution of a code which are closed
under a group of permutations. The algorithm uses an invariance property under the
automorphism group. This property is applied to the set of cosets of a subcode. Some
relations between local weight distributions of a binary linear code, its extended code,
and its even weight subcode are presented. The local weight distributions of the (127, k)
primitive BCH codes for k& = 36,43, 50, the punctured third-order Reed-Muller code of
length 127, and their even weight subcodes are presented.

If the local weight distribution of the (128, 57) extended primitive BCH code and the
third-order Reed-Muller code of length 256 are obtained, we can obtain the local weight
distributions of the (127, 57) primitive BCH code, the punctured third-order Reed-Muller .
code of length 255, and their even weight subcodes.
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Table 2: The local weight distributions of the (127,k) primitive BCH codes for & =
36,43, and 50 and the punctured third-order Reed-Muller code of length 127 .

(127, 38) BCH code

(127,43) BCH code

{127, 50) BCH code

(127, 84) punc. RM code

w Ly w Ly w Ly w Loy
31 2,667 31 31,115 27 40,894 15 11811
32 8,001 32 93,345 28 148,050 16 82677
35 4,572 35 2,478,024 31 4,853,051 23 13889736
36 11,684 36 6,332,728 32 14,559,153 24 60188856
39 640,080 39 82,356,960 35 310,454,802 27 684345088
40 1,408,176 40 181,185,312 36 793,384,494 28 2444089600
43 12,220,956 43 1,5654,145,736 39 10,538,703,840 31 77893639488
44 23,330,916 44 2,967,005,496 40 23,185,148,448 32 233680018464
47 132,560,568 47 16,837,453,752 43 199,123,183,160 35 5007898213632
48 220,934,280 48 28,062,422,920 44 380,144,258,760 36 13027962101504
51 823,021,644 51 106,485;735,720 47 2,154,195,406,104 39 172489248981440
52 1,204,183,172 52 155,632,998,360 48 3,590,325,676,840 40 378476349050168
55 3,157,059,472 55 400,716,792,672 51 13,633,106,229,288 43 3259718804643840
56 4,059,076,464 56 515,207,304,864 52 19,925,309,104,344 44 62230909536138240
59 7,022,797,740 59 905,612,814,120 55 51,285,782,220,204 47 35130035853803520
60 7,959,170,772 60 1,026,361,189,336 56 65,938,862,854,548 48 58550059756339200
63 9,742,066,368 63 1,238,334,929,472 59 115,927,157,830,260 51 218602288622075904
64 9,742,066,368 64 1,238,334,929,472 60 131,384,112,207,628 52 319495652601495552
67 7,959,170,772 87 1,026,345,592,720 63 158,486,906,385,472 55 766899891905495040
68 7,022,797,740 68 905,599,052,400 64 158,486,906,385,472 56 986014146735636480
71 4,059,071,892 71 515,097,101,376 67 131,258,388,369,668 59 1306771964441385200
72 3,157,055,316 72 400,631,078,848 68 115,816,225,032,060 60 1481008226366914560
75 1,204,193,172 75 155,191,535,184 71 64,917,266,933,304 63 258664522171023360
78 823,921,644 76 106,183,681,968 72 50,491 ,207,614,792 64 258664522171023360
79 217,627,200 79 26,980,367,680 75 15,345,182,164,032
80 130,576,320 &0 16,188,220,608 76 10,499,335,164,864
83 23,330,916 83 1,617,588,840
84 12,220,956 84 847,308,440
87 1,408,176
88 640,080
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