A special value of the spectral zeta function of the non－commutative harmonic osci．．lators （非可換調和振動子のゼータの特殊値）

Hiroyuki Ochiai（落合啓之）＊

Abstract

The non－commutative harmonic oscillator is a 2×2－system of harmonic oscil－ lators with a non－trivial correlation．We write down explicitly the special value at $s=2$ of the spectral zeta function of the non－commutative harmonic oscillator in terms of the complete elliptic integral of the first kind，which is a special case of a hypergeometric function．

1 Introduction

The non－commutative harmonic oscillator $Q=Q\left(x, \partial_{x}\right)$ is defined to be the second－ order ordinary differential operator

$$
Q\left(x, \partial_{x}\right)=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left(-\frac{\partial_{x}^{2}}{2}+\frac{x^{2}}{2}\right)+\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left(x \partial_{x}+\frac{1}{2}\right) .
$$

The first term is two harmonic oscillators，which are mutually independent，with the scaling constant $\alpha>0$ and $\beta>0$ ，while the second term is considered to be the correlation with a self－adjoint manner．The spectral problem is a 2×2 system of the ordinary differential equations

$$
Q\left(x, \partial_{x}\right) u(x)=\lambda u(x)
$$

with an eigenstate $u(x)=\left[\begin{array}{l}u_{1}(x) \\ u_{2}(x)\end{array}\right] \in L^{2}(\mathbf{R})^{\oplus 2}$ and a spetrum $\lambda \in \mathbf{R}$ ．It is known［8］that under the natural assumption $\alpha \beta>1$ on the positivity，which is also

[^0]assumed in this paper, the operator Q defines a positive, self-adjoint operator with a discrete spectum
$$
(0<) \lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty
$$

The corresponding spectral zeta function is defined to be

$$
\zeta_{Q}(s)=\sum_{n=1}^{\infty} \lambda_{n}^{-s} .
$$

An expression of the special value $\zeta_{Q}(2)$ is obtained in [2] in terms of a certain contour integral using the solution of a singly confluent type Heun differential equation. It would be indicated that these special values are complicated enough and highly transcendental as reflecting the transcendence of the spectra of the non-commutative harmonic oscillator.

However, in this paper, we prove the following simple expression:

$$
\begin{equation*}
\zeta_{Q}(2)=\frac{\pi^{2}}{4} \frac{\left(\alpha^{-1}+\beta^{-1}\right)^{2}}{\left(1-\alpha^{-1} \beta^{-1}\right)}\left(1+\left(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}}{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ; \frac{1}{1-\alpha \beta}\right)\right)^{2}\right) \tag{1}
\end{equation*}
$$

where ${ }_{2} F_{1}$ is the Gauss hypergeometric series. We also have an expression by using the complete elliptic integral of the first kind as

$$
\begin{equation*}
\zeta_{Q}(2)=\frac{\pi^{2}}{4} \frac{\left(\alpha^{-1}+\beta^{-1}\right)^{2}}{\left(1-\alpha^{-1} \beta^{-1}\right)}\left(1+\left(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}} \int_{0}^{2 \pi} \frac{d \theta}{2 \pi \sqrt{1+(\cos \theta) / \sqrt{1-\alpha \beta}}}\right)^{2}\right) \tag{2}
\end{equation*}
$$

In this sense, the special value $\zeta_{Q}(2)$ is written in terms of a hypergeometric series, which is much tractable and known. Note that each spectrum is related with the monodromy problem of Heun's differential equation, which is far from hypergeometric, see [5], [6]. Only the total of spectra has an extra simple form in some sense.

Here is a brief organization of the paper; In Section 2, we recall the expression of $\zeta_{Q}(2)$ given in [2], and derive more explicit formula of the generating function appearing in that expression. We prove in Section 3 our main results, the equations (1) and (2). The proof depends on several formulae of hypergeometric series not only for ${ }_{2} F_{1}$ but also for ${ }_{3} F_{2}$ such as Clausen's identity.

2 An expression of the generating function

We start from the series-expression of the special value $\zeta_{Q}(2)$ of the non-commutative harmonic oscillator given in [2, (4.5a)]

$$
\zeta_{Q}(2)=Z_{1}(2)+\sum_{n=0}^{\infty} Z_{n}^{\prime}(2)
$$

We introduce notations. Recall that $\alpha>0, \beta>0$ with $\alpha \beta>1$. Let us introduce the parameters $\gamma=1 / \sqrt{\alpha \beta}$ and $a=\gamma / \sqrt{1-\gamma^{2}}=1 / \sqrt{\alpha \beta-1}$ as in [2, (4.1)]. Note that they satisfy $0<\gamma<1$ and $a>0$.

The term $Z_{1}(2)$ is given in [2, (4.5b)] and $Z_{n}^{\prime}(2)$ are given in [2, (4.9)] as

$$
\begin{align*}
& Z_{1}(2)=\frac{\left(\alpha^{-1}+\beta^{-1}\right)^{2}}{2\left(1-\gamma^{2}\right)} 3 \zeta(2), \tag{3}\\
& Z_{n}^{\prime}(2)=(-1)^{n} \frac{\left(\alpha^{-1}-\beta^{-1}\right)^{2}}{\left(1-\gamma^{2}\right)}\binom{2 n-1}{n}\left(\frac{a}{2}\right)^{2 n} J_{n} \tag{4}
\end{align*}
$$

The values $\left\{J_{n}\right\}_{n=1,2, \cdots}$ are specified by the generating function

$$
w(z):=\sum_{n=0}^{\infty} J_{n} z^{n}
$$

The function $w(z)$ is a solution of the ordinary differential equation

$$
\begin{equation*}
z(1-z)^{2} \frac{d^{2} w}{d z^{2}}+(1-3 z)(1-z) \frac{d w}{d z}+\left(z-\frac{3}{4}\right) w=0 \tag{5}
\end{equation*}
$$

which is given in [2, Theorem 4.13] and called a singly confluent Heun's differential equation. The constant term is given by $w(0)=J_{0}=3 \zeta(2)=\pi^{2} / 2$. It is easy to see that there exists a unique power-series solution of this homogeneous differential equation (5) with the initial condition $w(0)=\pi^{2} / 2$. The final target $\zeta_{Q}(2)$ involving these J_{n} 's with an infinite sum seemed to have no closed expression.

In this section, we give a simple expression of the generating function $w(z)$. We denote by $\partial_{z}=\partial / \partial z$.

Lemma 1 The differential equation (5) is equivalent to

$$
\begin{equation*}
4(1-z) \partial_{z} z \partial_{z}(1-z) w+w=0 \tag{6}
\end{equation*}
$$

Proof: This directly follows from Leibniz rule. QED
Lemma 2 Let $t=z /(z-1)$ be a new independent variable, and $\eta(t)=(1-z) w(z)$ a new unknown function. Then the differential equation (6) is equivalent to

$$
\begin{equation*}
t(1-t) \partial_{t}^{2} \eta+(1-2 t) \partial_{t} \eta-\frac{1}{4} \eta=0 \tag{7}
\end{equation*}
$$

Proof: The differential equation (6) is equivalent to

$$
4(z-1)^{2} \partial_{z} z \partial_{z}(z-1) w+(z-1) w=0
$$

Note that $(z-1)(t-1)=1$ and $\partial_{t}:=\partial / \partial t=-(z-1)^{2} \partial_{z}$. Then

$$
4 \partial_{t} t(t-1) \partial_{t} \eta+\eta=0
$$

By Leibniz rule, this is equivalent to (7). QED

Proposition 3

$$
w(z)=\frac{J_{0}}{1-z} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{z}{z-1}\right)
$$

Proof: Since any power-series solution of (7) in t is a constant multiple of ${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; t\right)$, we have the conclusion. QED

3 The special value

We introduce the auxiliary series

$$
g(a):=\frac{2}{J_{0}} \sum_{n=0}^{\infty}(-1)^{n}\binom{2 n-1}{n}\left(\frac{a}{2}\right)^{2 n} J_{n}
$$

so that

$$
\begin{align*}
\zeta_{Q}(2) & =\frac{\left(\alpha^{-1}+\beta^{-1}\right)^{2}}{2\left(1-\gamma^{2}\right)} 3 \zeta(2)+\frac{\left(\alpha^{-1}-\beta^{-1}\right)^{2}}{2\left(1-\gamma^{2}\right)} 3 \zeta(2) g(a) \tag{8}\\
& =\frac{\pi^{2}}{4} \frac{\left(\alpha^{-1}+\beta^{-1}\right)^{2}}{\left(1-\alpha^{-1} \beta^{-1}\right)}\left(1+\left(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}}\right)^{2} g(a)\right) \tag{9}
\end{align*}
$$

Theorem 4

$$
g(a)={ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-a^{2}\right)^{2}
$$

Proof: We note that

$$
\binom{2 n-1}{n}\left(\frac{1}{2}\right)^{2 n}=\frac{1}{2} \times \frac{(2 n-1)!!}{(2 n)!!}=\frac{1}{2 \pi} \int_{0}^{1} \frac{u^{n} d u}{\sqrt{u(1-u)}}
$$

Then, the integration by parts implies that

$$
\begin{equation*}
g(a)=\frac{2}{2 \pi J_{0}} \sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} \frac{u^{n} d u}{\sqrt{u(1-u)}} a^{2 n} J_{n}=\frac{1}{\pi J_{0}} \int_{0}^{1} \frac{w\left(-a^{2} u\right) d u}{\sqrt{u(1-u)}} \tag{10}
\end{equation*}
$$

By Proposition 3, the function w is written in terms of hypergeometric series ${ }_{2} F_{1}$. We substitute such an expression into the equation (10), then we obtain

$$
g(a)=\frac{1}{\pi} \int_{0}^{1} \frac{1}{1+a^{2} u}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{a^{2} u}{a^{2} u+1}\right) \frac{d u}{\sqrt{u(1-u)}} .
$$

We introduce a new variable $v=\left(1+a^{2}\right) u /\left(1+a^{2} u\right)$. Then

$$
g(a)=\frac{1}{\pi} \int_{0}^{1}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{a^{2} v}{1+a^{2}}\right) \frac{d v}{\sqrt{v(1-v)\left(1+a^{2}\right)}}
$$

Now we use the formula (2.2.2) of [1]
${ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2} ; x\right)=\frac{\Gamma\left(b_{2}\right)}{\Gamma\left(a_{3}\right) \Gamma\left(b_{2}-a_{3}\right)} \int_{0}^{1} t^{a_{3}-1}(1-t)^{b_{2}-a_{3}-1}{ }_{2} F_{1}\left(a_{1}, a_{2} ; b_{1} ; x t\right) d t$.
This shows

$$
g(a)=\frac{1}{\sqrt{1+a^{2}}} 3 F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1,1 ; \frac{a^{2}}{1+a^{2}}\right) .
$$

By Clausen's identity (in e.g., Exercise 13 of Chapter 2 in [1])

$$
{ }_{2} F_{1}\left(a, b ; a+b+\frac{1}{2} ; x\right)^{2}={ }_{3} F_{2}\left(2 a, 2 b, a+b ; 2 a+2 b, a+b+\frac{1}{2} ; x\right),
$$

we obtain

$$
g(a)=\frac{1}{\sqrt{1+a^{2}}} 2 F_{1}\left(\frac{1}{4}, \frac{1}{4} ; 1 ; \frac{a^{2}}{1+a^{2}}\right)^{2}
$$

Moreover by Pfaff formula, Theorem 2.2.5 of [1]

$$
{ }_{2} F_{1}(a, b ; c ; x)=(1-x)^{-a}{ }_{2} F_{1}(a, c-b ; c ; x /(x-1)),
$$

we obtain

$$
{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-a^{2}\right)=\left(1+a^{2}\right)^{-1 / 4}{ }_{2} F_{1}\left(\frac{1}{4}, \frac{1}{4} ; 1 ; \frac{a^{2}}{a^{2}+1}\right) .
$$

This shows

$$
g(a)={ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-a^{2}\right)^{2}
$$

QED
Remark 5 In the earlier version of the paper, it was suggested to make use of the hypergeometric series ${ }_{3} F_{2}$ with this special parameter $(1 / 2,1 / 2,1 / 2 ; 1,1)$ by the multi-variable hypergeometric function of type $(3,6)$, especially by its restriction on the stratum called $X_{1 b}$ in [4]. However, we can avoid to use a multi-variable hypergeometric function in the present version as is seen above.

Theorem 4 with the help of the equation (9) shows the equation (1). The equation (2) is shown as follows. By Theorem 3.13 of [1]

$$
{ }_{2} F_{1}(a, b ; 2 a ; x)=\left(1-\frac{x}{2}\right)^{-b}{ }_{2} F_{1}\left(\frac{b}{2}, \frac{b+1}{2} ; a+\frac{1}{2} ;\left(\frac{x}{2-x}\right)^{2}\right)
$$

we have

$$
{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{2 i a}{i a+1}\right)=(1+i a)^{1 / 2}{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-a^{2}\right)
$$

Let us recall the definition of the elliptic integral of the first kind;

$$
K(k)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}=\frac{\pi}{2}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right) .
$$

Then we have

$$
{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-a^{2}\right)=\frac{2}{\pi}(1+i a)^{-1 / 2} K\left(\frac{2 i a}{i a+1}\right)=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1+i a \cos 2 \theta}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{1+i a \cos \theta}},
$$

and the equation (2).

References

[1] G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] T. Ichinoze and M.Wakayama, Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations, to appear in Kyushu Journal of Math., preprint 04-311 avaliable at http://rene.ma.utexas.edu/mp.arc/.
[3] T. Ichinoze and M.Wakayama, Zeta functions for the spectrum of the noncommutative harmonic oscillators, to appear in Comm. Math. Phys., preprint 04-312 at [2].
[4] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of $K 3$ surfaces and the hypergeometric function of type (3, 6), Internat. J. Math. 3 (1992), no. 1, 164 pp.
[5] H. Ochiai, Non-commutative harmonic oscillators and Fuchsian ordinary differential operators, Comm. Math. Phys. 217 (2001), 357-373.
[6] H. Ochiai, Non-commutative harmonic oscillators and the connection problem of the Heun differential equation, preprint, 2004, 6 pages.
[7] A. Parmeggiani and M. Wakayama, Oscillator representations and systems of ordinary differential equations, Proc. Nat. Acad. Sci. U.S.A. 98(2001), 26-30.
[8] A. Parmeggiani and M. Wakayama, Non-commutative harmonic oscillators. I, II. Forum Math. 14 (2002), 539-604, 669-690.

Deparment of Mathematics, Nagoya University
Chikusa, Nagoya 464-8602, Japan.
E-mail: ochiai@math.nagoya-u.ac.jp

[^0]: ＊短期共同研究「Sp（2，R）と $S U(2,2)$ の保型形式 III」（2004．Sep 29－Oct 1）数理解析研究所講究録． The research of the author is supported in part by a Grant－in－Aid for Scientific Research（B） 15340005 from the Ministry of Education，Culture，Sports，Science and Technology． Mathematics Subject Classification；Primary 11M36，Secondary 33C20，33C75．
 Keywords and Phrases：Heun＇s equation，spectral zeta，special values，harmonic oscillator．

