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1 Introductaon

The field of exponential asymptotics deals with the inclusion of exponentially small terms in
singular perturbative expansions. Such terms would usually be neglected for reasons of numerical
insignificance and a perception that their contribution to an expansion is far outweighed by the
difficulty in their calcuiation. Work in the field of exponential asymptotics over the past two
decades has shown that these Leading order attitudes may not always be correct.

This is the first of three sequential articles dealing with a recent development in the field.
These papers arose from a lecture course given at the meeting Recent Trends in Emponential
Asymptotics at RIMS, Kyoto in July 2004.

It is worth recalling briefly why someone might wish to modify an expansion of the form

$y( \mathrm{a})\sim\sum_{n=0}^{\infty}a_{n}(\mathrm{a})\epsilon^{n}$ (1.1)

to include exponentially small contributions of the form

$y( \mathrm{a})\sim\sum_{n=0}^{\infty}a_{\mathrm{n}}(\mathrm{a})\epsilon^{n}+K\exp\{-\frac{f(\mathrm{a})}{\epsilon}\}\sum_{n=0}^{\infty}b_{n}(\mathrm{a})\epsilon^{n}$ (1.2)

where a $=$ { $a_{1)}$ a2 , .. .} $a_{i}\in c$ .

. The small exponentials can be used to remove the ambiguities associated with the definition
of a Poincare expansion.
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. The inclusion of sm all exponentials can remove the confusion over the Stokes phenomenon,
whereby asymptotic expansions appear to change abruptty in form as a parameter (here
a or $\epsilon$ ) change smoothly. Depending on the size of $f(\mathrm{a})/\epsilon$ inclusion of an exponentially small term can increase
numerical accuracy of the solution.. Analytically, inclusion of an exponentially small term $\mathrm{s}$ can be used to increase the range
of validity of the original approximation to regions where $e^{-f(a)/\epsilon}$ may be $O(1)$ .. The presence of exponentialiy small terms is a consequence of the theory of resurgence
and provides additional information that aids rigorous work. Terms that are initially exponentially sm all may actualiy grow to dominate as $a$ varies.
They are thus often key to understanding the stability of a system.

Several introductory articles, covering the various approaches to the subject, have appeared
and, for example, a flavour of sone of these approaches can be found in papers contained within
Howls et $al$ (2000).

We shall be concerned with a developm ent that has a significance that spills over from the
cormnunity of researchers in asymptotics to wider areas of applied mathematics. Specifically
we shall discuss the existence, analysis and importance of the so-called “higher order Stokes
phenomenon”.

We shall discuss a variety of system $\mathrm{s}$ that contain finite param eters a $=\{a_{1}, a_{2}, \ldots\}a_{i}\in c$ in
addition to the asymptotic variable $\epsilonarrow$ Q. For example the a-parameters may be just a single
spatial dimensions $x$ or it may represent spatio-temporal coordinates $(x$ , ? $)$ . The asym ptotic anal-
ysis of these systems is not only affected by the Stokes phenomenon, but also by more dramatic
coalescence phenomena where underlying singularities generating the asymptotic expansions co-
alesce at caustics. On caustics the terms themselves in the simple asymptotic expansions become
singular and more complicated uniform expansions are required. Such catastrophic effects have
been extensively studied asymptotically by (for example) Chester, et al. (1957), Berry (1969),
Olver (1974), Wong (1989), Berry & Howls $(1993, 1994)$ and are also well understood.

The surprising result of recent work is that knowledge of coalescences or Stokes phenomenon
alone is not always sufficient to predict the asymptotic behaviour of functions in different regions
of a-space.

In the context of WKB soiutions of higher order ordinary differential equations it has been known
(Berk et al 1982) that when more than two possible asymptotic behaviours are present, so-called
“new Stokes lines” must be introduced to fully describe the analytic continuation (Aoki et $al$

1994, 2001, 2002). These “new Stokes lines” are actually ordinary Stokes lines, that nevertheless
can change their strength in the sense that the Stokes constant itself changes i) abruptiy and
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$\mathrm{i}\mathrm{i})$ along the Stokes line. Hence the Stokes line may even vanish at finite and perfectly regular
points in a-space,

The “higher order Stokes phenomenon” is one explanation of the mechanism for this change.
In the absence of knowledge of the existence of a higher order Stokes phenomenon, it possible
to draw incorrect conclusions from a naive approach as to the existence of Stokes lines or
coalescences as one traverses a space.

As we shalt see, the higher order Stokes phenomenon is more subtle than the Stokes phenomenon.
However its presence nevertheless can lead to the generation of terms elsewhere in a-space that
can grow to dominate the asymptotics and also affect whether a caustic phenomenon can occur
or not.

In this the first paper of the trilogy, we introduce the concept of the higher order Stokes phe-
nomenon and the reason for it. In subsequent papers we deal with the practicalities of seeking

out the higher order Stokes phenomenon and its influence on real-parameter situations, in par-
ticular time evolution problem $\mathrm{s}$ . Most of the ideas have already appeared elsewhere (Howls et at
2004, Chapman & Mortimer 2004). However here we present it in a different form to emphasise
the breadth of application of the concept of the higher order Stokes phenomenon.

Hence in 52 of this paper we introduce the higher order Stokes phenom enon (HOSP) by means
of an example involving a simple canonical integral. In section j3 we show how the higher order
Stokes phenomenon is conveniently understood 1n terms of the remainder terms of asymptotic
expansions obtained via a hyperasymptotic procedure.

2The Higher Order Stokes Phenomenon in a Simple Integral

To illustrate the concept of a higher order Stokes phenomenon, we shall study the integral

$I( \epsilon;a)=\int_{C}\exp\{\epsilon^{-1} (\frac{1}{4}z^{4}+\frac{1}{2}z^{2}+az)\}dz$ , (2.1)

where $C$ is a contour that starts at $V_{1}=\infty$ exp $(-3\pi \mathrm{i}/8)$ and ends at $V_{2}=\infty\exp(\pi \mathrm{i}/\mathrm{S})$ and,

without loss of generality, $\epsilon$ is a small positive asymptotic parameter. The parameter $a$ is a
complex variable.

Using the definition
$f(z;a)=-( \frac{1}{4}z^{4}+\frac{1}{2}z^{2}+az)$ , (2.2)

there are three saddlepoints, $z_{0},$ $z_{1},$ $z_{2}$ which satisfy $df/dz=0$ , that is

$z_{n}^{3}+z_{n}+a=0$ , $n=0,1,2$. (2.3)
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The paths of steepest descent through the saddles $z_{n}$ are the connected paths passing through
$z_{n}$ that satisfy

$C_{n}=\{z\in C : k\{f(z;a)-f_{n}(a)\}\geq 0\}$ . (2.4)

The function $I(\epsilon;a)$ is related to the Pearcey function (Berry & Howls 1991). We choose this
integral to explain the higher order Stakes phenonenon because it contains the key ingredients
of the higher order Stokes phenomenon:

. it contains 3 possible asymptotic contributions one from each of the saddles;. these contributions depend on a (non-asymptotic) parameter $a$ ;

Furthermore, the integral nature allows for a better geometric explanation of the phenomenon.

We now examine the behaviour or the asymptotic expansions as $a$ varies smoothly in the complex
plane. First consider a point $a=a_{1}$ in figure 1. The corresponding steepest descent paths in the
$z$-plane are shown in the same diagram in the box labeled $a_{1}$ . in this case we can take $C=C_{0}$

as the contour of integration so that only the saddle at $z_{0}$ contributes to the $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}-\epsilon$ asymptotics
of $I(\epsilon;a)$ .

As we cross a Stokes curve in the a-plane defined by

$s_{i>_{J}}=\{a : \epsilon^{-1}(f_{j}(a)-f_{i}(a))>0\}$ . (2.5)

a Stokes phenomenon may occur and the number of asymptotic contributions may change. For
example, at $a=a_{2}$ which is a point on such a curve, the steepest descent contours of integration
is that part of $C_{0}$ that runs from $V_{1}$ to $z_{1}$ and the part of $C_{1}$ that runs from $z_{1}$ to $V_{2}$ . Hence
an extra, exponentially subdominant, contribution from $z_{1}$ is said to be switched on by the
dominant contribution from $z_{0}$

At $a=a\mathrm{s}$ the steepest descent contour of integration deform $\mathrm{s}$ to $C=C_{0}\cup C_{1}$ . Hence saddles
at $z0$ and $z_{1}$ now both contribute to the small-c asymptotics.

Since the definition of Stokes curves involves the values of the saddle heights it is convenient
to display the corresponding values $f_{j}(a)$ in the Borel plane (or complex $f$-plane) for the three
points above in figure 2. The form of the mapping from the $z$ to $f$ plane here generates branch-
cut singularities at the images $f_{j}(a)$ . The Borel plane thus possesses a Riemann sheet structure.

The steepest descent contours map to horizontal loop contours starting and finishing at infinity,
encircling the corresponding saddlepoint-images. (Once the integral is written in an $f$-plane
representation it is possible to deduce that it is precisely the presence of other such singularities
that is responsible for the divergence of the local asymptotic expansions about the $f_{j}(a)$ see
e.g., Olde Daalhuis 1998, Howls 1991.) The main purpose of plotting the Borel plane is that
we now see from (2.5) that, in general, a Stokes phenomenon corresponds to the branch-point
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Figure 1: The Stokes curves in the $a$ plane and the steepest descent contours of integration in
the integrand $z$-plane passing over saddles 0, 1 and 2 for selected values $a_{i}$ for integral (2.1).
The dashed Stokes line passing through $a_{9}$ is active, but irrelevant to the function defined by
the integral.
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Figure 2: Sketches of the Borel planes for (2.1) at values of the $a_{i}$ corresponding to those in
figure 1. In each Borel plane the solid dot is the image of saddle 0. The other dots are the images
of saddles 1 and 2. At a Stokes phenomenon two or more solid dots are horizontally collinear as
the steepest paths map to horizontal lines. At a higher order Stokes phenomenon ($a_{1}$ and $a_{6}$ )
three or more are collinear in any direction. The higher order Stokes line is dravn in bold and
runs between the turning points (TP) passing through the Stokes crossing point (SCP).
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$f_{j}(a)$ passing through the horizontal contour of integration emanating from $f_{i}(a)$ , to the right
of $f_{i}(a)$ . Hence at $a_{2},$ $f_{1}(a)$ crosses the $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}-\mathrm{c}\mathrm{u}\mathrm{t}$ emanating from $f_{0}(a)$ this being the image
of $C_{0}$ .

To obtain the location of all the Stokes curves and hence deduce the asym ptotic expansion
in each sector of the complex $a$-plane it seems that all we have to do is to study the relative
alignment of the $fj(a)$ in the complex $f$-plane. By consideration of point $a4$ , it is not difficult
to see that this is not sufficient.

The steepest descent contours suggests that no Stokes phenomenon occurs at $a_{4}$ . However in
the Borel plane $f_{i}(a_{4})$ , that $f_{2}(a_{4})$ is actually crossing the horizontal half-line emanating from
$f_{0}(a_{4})$ . Thus when viewed in the $f$-plane a Stokes phenomenon should be occurring.

The resolution of this paradox is that although there is a branch point at $f_{2}(a_{4})$ , when seen
from $f_{0}(a_{4})$ this branch point is not on the principal Riemann sheet. The saddle $z_{1}$ is “not
adjacent” to $z_{0}$ at $a=a_{4}$ . Hence knowledge of the Riemann sheet structure of the Borel plane
is also required to establish whether a Stakes phenomenon takes place.

Continuing round in the a-plane, we see that at $a=a_{5}$ a Stakes phenomenon occurs between
saddles $z_{1}$ and $z_{2}$ , so that when $a=a\epsilon,$ $C=C_{0}\cup C_{1}\cup C_{2}$ and aU three saddles contribute to
the $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}arrow\epsilon$ asymptotics. At $a=a7$ a Stakes phenomenon switches off the contribution from $z_{1}$

so that $C=C\mathit{0}\cup C_{2}$ in the sector between a7 and $a8$ .

To complete the a-circuit back to $a_{1}$ we now notice that the contribution from saddle $z_{2}$ must
be switched off since $I(\epsilon;a)$ single-valued in $a$ . This cannot occur at $a=a_{9}$ , which is a typical
point on the continuation of the Stokes curve $S_{1>2}$ , since saddle $z_{1}$ no longer contributes to the
asymptotics of $I(\epsilon;a)$ . For this reason the corresponding part of that Stokes curve in the central
box of figures 1 and 2 is dashed, since it is irrelevant for the function defined by our choice of
contour in (2.1). (It would have been relevant for a different choice of vaUeys for the contour
of integration in (2.1) $)$ . Hence another Stokes curve must be crossed somewhere on the circuit
between $a_{7}$ and $a_{1}$ . Consideration of the $f$-plane shows that an obvious choice is at $a=a_{8}$ , that
is as $f_{2}(a_{8})$ crosses the horizontal half-line emanating from $f\mathrm{o}(a_{8})$ . This is easily confirmed by
examination of the steepest descent paths in the box labeled $a_{8}$ in figure 1.

Having completed the circuit in $a$ space we now encounter a surprise.

The Stokes curves in the central box of figures 1 and 2 all cross at a particular point in the
a-plane, which we call the Stokes crossing point (SCP). In the analysis above we have shown
that the part of the positive real $a$-axis $(S0>2)$ from the origin to the SCP is not an active Stokes
curve, Now we see that the part of $S_{0>2}$ to the right of the SCP is an active Stokes curve.
When $a\in S_{0>2}$ is on either curve in the corresponding $f$-plane, $f_{2}(a)$ is actually crossing the
horizontal $\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{f}\sim \mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}$ emanating from $f_{0}(a)$ . As mentioned above, for $a$ to the left of the SCP the
point $f_{2}(a)$ is not on the principal Riemann sheet seen from $f\mathrm{o}(a)$ . For $a$ to the right of the
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SCP it is.

To explain the change in Riemann sheet structure we introduce the concept of a “higher order
Stokes phenomenon” that takes place across a new curve in the complex a-plane passing through
the SCP that we call a “higher order Stokes curve” (HSC). In the example above, we have chosen
$a_{1}$ to lie on the HSC and from figure 2 we see that nothing of interest happens here to the steepest
descent paths. However in the complex $f$-plane, something significant is happening.

Let $a_{1}^{+}$ and $a_{1}^{-}$ be $a$-values slightly to the right and left of $a_{1}$ respectively. The values of $f_{J}(a)$

are displayed in figure 3. It is clear from this figure that at $a=a1,$ $f2(a)$ is actually crossing the
continuation of the line from $f_{0}(a)$ to $f_{1}(a)$ . On the HSC $f\mathrm{o}(a),$ $f_{1}(a),$ $f_{2}(a)$ are collinear in
the complex $f$-plane. When viewed ffom $f\mathrm{o}(a)$ , this continuation of the line is a radial branch
cut extending from $f_{1}(a)$ (Olde Daalhuis 1998). Thus as colinearity of all three $f_{j}(a)$ occurs,
the Riemann sheet structure of the Borel plane in fact changes. For $a=a_{1}^{+}$ the point $f_{2}(a)$ is
on the principal Riemann sheet as seen from $f_{0}(a)$ , but for $a=a_{1}^{-}$ it is not. In the latter case
to walk from $f_{0}(a_{1}^{-})$ to $f_{2}(a_{1}^{-})$ one would first have to walk around $f_{1}(a_{1}^{-})$ .

A higher order Stokes phenomenon is thus said to occur when at least three of the $f_{j}(a)$ are
collinear in the $f$-plane. In turn, collinearity occurs at set of points in the a-plane that we define
to be the higher order Stakes curve:

Higher Order Stokes Curve:

A higher order Stokes phenomenon takes place across a higher order Stokes curve, which is
defined by the set of points:

$\frac{f_{j}(a)-f_{i}(a)}{f_{k}(a)-f_{j}(a)}\in R$ . (2.6)

We now make the following observations.

. On a Stokes curve, at least two of the $f_{j}(a)$ differ by only a real number and so can be
joined by a horizontal line in the Borel-plane, Stokes curves are only active when the
relevant $f_{j}(a)$ are on the same Riemann sheet. Since the Riemann sheet structure changes
as a higher order Stokes curve is crossed, the activity of a Stokes line (and therefore the
Stokes constants) changes across a higher order Stokes curve.. As one crosses a Stokes line, an series prefactored by an exponential small term appears
(or disappears) in the full expansion. However as one crosses a higher order Stokes curve
there is no obvious such change in the asymptotic expansion. What has changed is the
existence of a term in the remainder of the truncated expansion. This will be explained
below.



$a_{1}^{-}$ $a_{1}$ $a_{1}^{+}$

Figure 3: The higher order Stokes phenomenon in the Borel plane for values of $a$ near to $a_{1}$ . At
the higher order Stokes phenomenon $f_{1}$ eclipses $f2$ when viewed ffom $f_{0}$ . The Riemann sheet
structure of the Borel plane changes as $f_{2}$ passes through a radial cut from $f1$ . At $a_{1}^{-},$ $f_{2}$ is
invisible from $f_{0}$ and so no Stokes phenomenon between $f_{0}$ and $f_{2}$ can take place. At $a_{1}^{+},$ $f_{2}$ is
visible and so a Stoke phenomenon is then possible.

. Traditionally one expected that in the $a$-plane Stakes curves could only emanate from
turning points, where two or more $f_{j}(a)$ coalesce, or ffom other singularities. However we
now see that Stokes curves may start and end ffom other regular points in the $a$-plane (the
SCP), where two or more other Stokes curves may cross. This effect has been observed
before by Berk et al (1982) and Aoki et $al$ (1994, 2001, 2002).. It is important to note the difference between a Stokes curve being inactive and a Stokes
curve being irrelevant. In the example above no Stokes curve has been drawn between
$a=0$ and the SCP. Nor has one been sketched from the SCP along the continuation of the
Stokes curve $S_{1>2}$ in the direction of $a_{9}$ . Jn the first case a Stokes phenomenon could have
occurred, but it didn’t because $f_{2}(a)$ was not on the principal Riemann sheet as viewed
from $f_{0}(a)$ (i.e., they were not adjacent). This Stokes curve was therefore inactive. In the
second case a Stokes phenomenon does in fact take place between the saddles at $z_{1}$ and $z_{2}$ .
However this particular phenomenon is irrelevant to the saddlepoint asymptotics of the
specific function $I(\epsilon$ ;a as defined by our choice of valleys in (2.1): in the neighbourhood
of this curve, $z_{1}$ is not contributing to the asym ptotics of $I(\epsilon;a)$ anyway. If we had been
interested in a different function $\tilde{I}(\epsilon;a)$ defined by (2.1) but with $C$ running between
different valleys, then this curve could have been relevant whereas the first Stokes curve
would still be inactive.. At a higher order Stokes phenomenon at least three of the $f_{j}(a)$ are collinear in the $f$-plane.
At a traditional Stokes phenomenon a minimum of only two of the $f_{j}(a)$ are required to
differ by a real number. At a higher order Stokes phenomenon there is no actual constraint
on the relative positioning of the first two $f_{j}(a)$ in the $f$-plane (a straight line can join
any two points in the a-plane). Hence a traditional Stokes curve and a higher-order Stokes
curve (involving three $fj(a)$ ) have the same codimensionality.
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. As the asymptotic parameter $\epsilon$ changes in phase, the location of Stokes curves vary. How-
ever the colinearity condition that gives rise to the definition of a higher order Stokes
curve is independent of $\epsilon$ . Thus the location of the higher order Stokes curve is invariant
under changes of the asymptotic parameter. This is illustrated in figure 4 for $\arg\epsilon=0$

and $\arg\epsilon=-\pi/4$ .. A higher-order Stokes curve will emanate from the same points as traditional Stokes curves.
These points are turning points or singularities of the phase function $f$ .. The concept of a higher-order Stokes curve has been couched above in terms of asymptotic
expansions arising from saddle point integrals. However since we have expressed everything
in terms of the $f_{j}(a)$ , the ideas introduced are much more generally applicable. All that
is required to apply these definitions is the ability to determine all the different types of
exponential asymptotic behaviours $\exp(-kf_{J}(a))$ associated with an expansion, regardless
of its origin. The only property peculiar to the saddlepoint integral that we have used above
is the facility to determine the activity of Stokes curves from the steepest descent contours
in the $z$-plane of the integrand. A more general way of achieving this is to compute the
“Stokes multipliers” $K_{ij}$ . If a Stokes multipler has a zero value the corresponding Stokes
curve is inactive. As long as it is possible to compute the coefficients $T_{r}^{(J)}$ in the asym ptotic
expansions, the computation of Stokes multipliers is a solved problem, see Olde Daalhuis
(1998), Howls (1997) for details.. A higher-order Stokes curve requires collinearity of at least three $f_{j}(a)$ . It is thus likely
to occur in any expansion that involves more than two different asymptotic behaviours
depending on a set of additional parameters $\mathrm{a}$ . A higher order Stakes phenomenon could
thus occur in expansions resulting from integrals involving three or more critical points (of
any dimensionality), inhomogeneous second-order linear ordinary differential equations,
higher order linear o.d.e.s, nonlinear o.d.e.s, and partial differeriial equations.

In the next section we give an explanation of how hyperasymptotic analysis is a natural way
to calculate not only the required Stokes multipliers in a more general problem, but also to
quantify precisely the effects of a higher-order Stokes phenomenon.

3 Explanation of Higher Order Stokes Phenomenon

The change in activity of Stokes line has been noticed or discussed by several authors Berk et
al (1982), Aoki et al (1994, 2001, 2002), Chapman & Mortimer (2004). Here explain how and
why a higher order Stokes phenomenon gives rise to such a fundamental change in the analytic
structure of an expansion by reference to the exact remainder terms derived by hyperasymptotic
procedures (Berry & Howls 1991, Olde Daalhuis & Olver 1995, Howls 1997 Olde Daalhuis 1998
Delabaere & Howls 2002). Again we will start from an integral representation involving only



Figure 4: The Stokes geometry for $\arg\epsilon=0$ (left) and $\arg\epsilon=-\pi/4$ (right). The thin curves are
the normal Stokes curves, and the bold curves are the Higher order Stokes curves. This diagram
is typical of all the examples we study in this trilogy of papers.

contributions from simple saddles. However what follows can be easily extended to any function
that possesses a Borel transform.

We shall start from an integral involving the asymptotic parameter $6arrow 0$ of the form

$I^{(n\rangle}( \epsilon;\mathrm{a})=\int_{C_{n}\{\theta_{\mathrm{g}j}\mathrm{a}\}}e^{-f\langle z_{j}\mathrm{a})/\epsilon}g(z;\mathrm{a})dz$ . (3.1)

We assume that $f$ possesses at least three saddlepoints situated at $z=z_{n}(n=0,1,2)$ , where
$df/dz=0$. Again, we take $f_{n}=f_{n}(\mathrm{a})=f(z_{n};\mathrm{a})$ . We assume that the range of values of a are
such that the saddles are simple so that $d^{2}f/dz^{2}\neq 0$ , however this is a technical restriction to
simplify the discussion and can be removed later. The contour $C_{n}(\theta_{\epsilon};\mathrm{a})$ is then the steepest
descent path satisfying $\epsilon^{-1}\{f(z)-f_{n}\}>0$ and running through (in general) a single specific
saddle at $z_{n}$ , between specified asymptotic valleys of $\Re\{f(z) - f_{n}\}$ at infinity (de Bruijn (1958)
$\mathrm{c}\}_{1}$ . 5, Copson (1965) $\mathrm{c}\mathrm{h}$ . 7). The functions $f(z;\mathrm{a})$ and $g(z;\mathrm{a})$ are analytic, at least in a
strip including $C_{n}(\theta_{\epsilon};\mathrm{a})$ and in the range of a values considered. As $\arg\epsilon$ varies, $C_{n}(\theta_{\epsilon\}}.\mathrm{a}]\backslash$

correspondingly deforms and for a set of discrete values of $\arg\epsilon$ it will encounter certain other
saddles $m$ . These are called adjacent saddles, generating an additional contribution to the
asymptotics, prefactored by an exponentially small term: each of these births is an ordinary
Stokes phenomenon. Saddles that do not connect with $n$ as $\arg\epsilon$ varies through $2\pi$ are called
non-adjacent and do not (directly) generate a Stokes phenomenon.

Without loss of generality we order the labelling of the saddles such that $\Re f\mathrm{o}<\Re f1<\Re f_{2}$ for
the values of a under discussion and consider the integral through saddle 0. We shall also choose
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a value of a such that saddle 2 is adjacent to 1, but not to 0.

We decompose the asymptotic expansion into the standard form of a fast varying exponential
prefactor and a slowly varying algebraic part

$I^{(0)}(\epsilon;\mathrm{a})=\exp(-f\mathrm{o}(\mathrm{a})/\epsilon)\sqrt{\epsilon}T^{(0)}(\epsilon;\mathrm{a})$, (3.2)

(In the general case for an arbitrary Borel transform, the prefactor $\sqrt{\epsilon}$ will be replaced by an
arbitrary power $\epsilon_{0}^{\mu}$ , say.) The algebraic part is expanded as a truncated asym ptotic expansion

$T^{\{0\rangle}( \epsilon;\mathrm{a})=\sum_{\mathrm{r}=0}^{N0-1}T_{r}^{(0)}(\mathrm{a})\epsilon^{r}+R_{N_{0}}^{(0)}(\epsilon;\mathrm{a})$. (3.3)

By assumption $T^{(0\rangle}(\epsilon;\mathrm{a})$ is analytic in $\mathrm{a}$ . Consequently a straightforward extension of the work
of Berry & Howls (1991) shows that the remainder term of this expansion may be written exactly
as

$T^{\langle 0)}( \epsilon;\mathrm{a})=\sum_{r=0}^{N_{0}-1}T_{r}^{(0)}(\mathrm{a})\epsilon^{r}+\frac{1}{2\pi \mathrm{i}}\frac{K_{01}\epsilon^{N_{0}}}{F_{01}(\mathrm{a})^{N_{0}}}\int_{0}^{\infty}dv\frac{e^{-v}v^{N_{0}-1}}{1-v\epsilon/F_{01}(\mathrm{a})}T^{\langle 1)}(\frac{F_{01}(\mathrm{a})}{v};\mathrm{a})$ (3.4)

Here we have defined
$F_{nm}(\mathrm{a})=f_{m}(\mathrm{a})-f_{n}(\mathrm{a})$ (3.5)

is defined as the complex difference in heights between saddles $n$ and $m$ . The factor $K_{01}$ is
effectively the Stakes constant relating to the contribution of saddle 1 to the expansion about
saddle 0, We recall that for expansions arising from integrals a Stokes constant $K_{nm}$ is real with
modulus unity if $m$ is adjacent to $n$ and is zero otherwise, as explained 1n Howls (1997). In more
general cases the Stokes constant is a complex number.

The term $T^{\{m)}$
$($ . . . $)$ on the right hand side of (3.5) are the slowly varying parts of integrals over

the subset of the adjacent saddles analogous to the expansion $T^{(0)}$ .

As $\epsilon$ varies in phase, from the definition of a Stokes phenomenon (2.5) between 0 and 1 can occur
whenever $\arg(\epsilon/F_{01})$ is an integer multiple of $2\pi$ . At this phase the exact remainder integral in
(3.4) encounters a pole on the real contour of integration. As the phase of $\epsilon$ advances on, the
contour of integration of the remainder integral (3.4) snags on the pole. In tur$\mathrm{n}$ this introduces
a residue contribution (up to a sign):

$\frac{\epsilon K_{01}}{F_{01}(\mathrm{a})^{N_{0}}}{\rm Res}_{varrow F_{01}(\mathrm{a}\}/\epsilon}\{\frac{e^{-v}v^{N_{0}-1}}{1-v\epsilon/F_{01}(\mathrm{a})}T^{(1)}(\frac{F_{01}(\mathrm{a})}{v};\mathrm{a})\}=K_{01}e^{-F_{01}\{\mathrm{a})/\epsilon}T^{(1)}(\epsilon_{1}.\mathrm{a})$ . (3.6)

When combined with the exponential prefactor $\exp(-f_{0}/\epsilon),$ $(3.6)$ produces an exponentially
small contribution $\exp(-f_{1}(\mathrm{a})/\epsilon)T^{(1)}(\epsilon;\mathrm{a})$ . This is exactly the integral over the steepest con-
tour $C_{1}(\theta_{\epsilon})$ passing through $z_{1}$ that is acquired across the Stokes lime $S_{0>1}$ .
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As it stands, the exact remainder term in (3.6) is implicit. In general we know no more about
$T^{(1)}$ than we did $T^{(0)}$ . To circumvent this problem (Berry & Howls 1991) introduced a hy-
perasymptotic appraoch: an expression for $T^{(1)}$ , analogous to (3.4) can be written down by
inspection, in terms of its own adjacent terms

$T^{(1)}( \xi;\mathrm{a})=\sum_{r=0}^{N_{1}-1}T_{r}^{(1)}(\mathrm{a})\xi^{r}+\frac{1}{2\pi \mathrm{i}}\sum_{m=0,2}\frac{K_{1m}\xi^{N_{1}}}{F_{1m}(\mathrm{a})^{N_{1}}}\int_{0}^{\infty}dw\frac{e^{-w}w^{N_{1}-1}}{1-w\xi/F_{1m}(\mathrm{a})}T^{(m)}(\frac{F_{1m}(\mathrm{a})}{w};\mathrm{a})$ ,

(3.7)
where $\xi=F_{01}(\mathrm{a})/v$ . This corresponds to a $\mathrm{r}\mathrm{e}$-expansion of the remainder in the locality of
saddle 1. Substitution of this expression into (3.4) generates a series of terms that can be
evaluated, together with a new implicit (and vith suitable choice of $N_{0}$ and $N_{1}$ ) exponentially
smaller remainder. The new expression is also valid in a larger sector, see Berry & Howls 1991,
Olde Daalhuis & Olver 1995, Howls 1997 or Olde Daalhuis 1998 for further details.

There are now two contributions to the remainder term of the original expansion (3.4) since 1 is
adjacent to both 0 and 2 by assumption. The first is a “backscatter” contribution from the Borel
singularities corresponding to the saddles $\mathrm{f}i\mathrm{o}\mathrm{m}/\mathrm{t}\mathrm{o}0$ via 1. This contribution to the rem ainder of
the original expansion about from saddle 0 contains no further potential singularities at this first
level of $\mathrm{r}$ -expansion and so is not important for the argument here. However the contribution
from saddle 2, does contain a further possible singularity, as we now outline.

We focus now on the exponentially smaller unevaluated remainder from the term involving
saddle 2. After substitution of (3.6) into (3.4) we discover it to be of the form:

$R^{(012)}( \xi;\mathrm{a})=\frac{1}{(2\pi \mathrm{i})^{2}}\frac{K_{01}K_{12}\epsilon^{N_{0}}}{F_{01}(\mathrm{a})^{N_{0}-N_{1}}F_{12}(\mathrm{a})^{N_{1}}}$

$\mathrm{x}\int_{0}^{\infty}dv\frac{e^{-v}v^{N_{0}-N_{1}-1}}{1-v\epsilon F_{01}(\mathrm{a})}\int_{0}^{\infty}dw\frac{e^{-w}w^{N_{1}-1}}{1-wF_{01}(\mathrm{a})/vF_{12}(\mathrm{a})}T^{(2)}(\frac{F_{12}(\mathrm{a})}{w};\mathrm{a})$ . (3.8)

$R^{(012)}$ clearly has a poie when the Stokes phenomenon takes place where $F_{01}(\mathrm{a})/\epsilon>0$. It must
have this pole as it is a $\mathrm{r}\mathrm{e}$-expansion of the original remainder in (3.4) and so must contain
the Stokes phenomenon that was present in that exact remainder. However, if a is now varied
(independently from $\epsilon$ ), another potential pole in $R^{(012)}$ can occur when

$F_{01}(\mathrm{a})/F_{12}(\mathrm{a})>0$ . (3.9)

Note that this pole condition is identical to the colinearity condition (2.6). The occurrence of
the pole is therefore synonymous with a higher order Stokes phenomenon.

The residue from this pole is (up to a sign)

${\rm Res}_{warrow vF_{12/F_{01}}}R^{(012]}= \frac{K_{01}K_{12}k^{N_{0}}}{2\pi \mathrm{i}F_{02}(\mathrm{a})^{N_{0}}}\int_{0}^{\infty}dv\frac{e^{-v}v^{N_{0}-1}}{1-\frac{v\epsilon}{F_{02}(\mathrm{a})}}T^{(2)}(\frac{F_{02}(\mathrm{a})}{v})$ , (3.10)
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We now observe that as a higher order Stokes curve is crossed, a pole arising in the higher order
hyperasymptotic remainder term switches on a new contribution to the remainder term.

Since $K01$ and $K_{12}$ are $\pm 1$ , a comparison of the form of (3.10) with (3.4) and (3.7) shows that
this new contribution to be precisely the contribution to the remainder term of the expansion
about 0 that one would expect if saddle 2 is adjacent to 0.

Note that now if the parameters a (or $\epsilon$ ) are further varied such that $F_{02}(\mathrm{a})/\epsilon$ becomes real and
positive then integration in the new remainder term (3.10) will encounter a pole and a Stokes
phenomenon wiil now take place between 0 and 2. Prior to the higher order Stokes phenomenon
it could not.

Equally, we note that if 0 and 2 mow coalesce so that $F_{02}(\mathrm{a})=0$ them the form of the ex-
pansion $(cf(3.10))$ breaks down and a caustic takes place. Prior to the higher order Stokes
phenom enon, although there may have been values of a such that $F_{02}(\mathrm{a})=0$ , the corresponding
Borel singularities were actually vertically above each other on different Riemann sheets.

The hyperasym ptotic approach has thus automatically carried out the accounting of all contri-
butions involved during the higher order Stokes phenomenon correctly, conciseiy and exactly.
The changes activity of Stokes lines can be traced to the changes in the presence of terms in
the exact remainder contributions. In turn this can thought of as abrupt changes in the Stokes
constants themselves that prefactor these remainder terms.

Finally, note that in a full hyperasymptotic theory, expressions for $T^{(j)}$ analogous to (3.7) can
be successively substituted into each implicit remainder term, generating a tree like expansion
of self-similiar multiple integral contributions called hyperterminants (which can be straightfor-
wardly evaluated by the methods of Olde Daalhuis (1998b). Each such hyperterminant has a
denominator 1n the integrand of the form $1-wF_{ij}(\mathrm{a})/vF_{jk}(\mathrm{a})$ and so a higher order Stokes
phenom enon wili occur in any branch of the hyperasym ptotic expansion-tree whenever the ap-
propriate condition $F_{ij}(\mathrm{a})/F_{jk}(\mathrm{a})>0$ is satisfied,

Consequently if there are more than 3 singularities the a plane will be interweaved with a warp
and weft of increasingly higher order Stakes curves.

4 Conclusion

In this paper we have introduced the higher order Stakes phenomenon in terms of systems that
have natural integral representations. We have used a hyperasymptotic approach to quantify the
changes in activity of Stakes lines to changes in the Riemann sheet structure of the corresponding
Borei plane. Other explanations of the change in activity of Stokes lines certainly exist and can
be found in Aoki et $al$ (1994, 2001, 2002), Chapman & Mortimer (2004).
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In the next paper of the trilogy we discuss two examples in which we examine how to quantify
the higher order Stokes phenomenon in the absence of convenient integral representations.
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