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On the Structure of integral kernel for the
Borel sum

Kunio Ichinobe (TifE #RK)

Graduate School of Mathematics, Nagoya University
(BILBERI B TR, £ EHBRTF)

1 Introduction

We consider the following quasi-homogeneous linear partial differential operator with con-
stant coefticients

u
(1.1) P=P(8,8,) =[P’ P=0& -
ji=1

where t,z € C, p,q,u,£; € N with p < g and o; € C\ {0} (o # ; (2 # j)). We put
v =) %_4; and we assume that v > 2. Then the order of differentiation with respect to
t for our operator P is pr(> 2).

We consider the following Cauchy problem for a non-Kowalevski equation

PU(t,z) =0,
(1.2) BU0,2) =0 (0<k<pv—2),
&F U0, z) = p(z),

where the Cauchy data () is assumed to be holomorphic in a neighbourhood of the
origin.

The formal power series solution with respect to ¢ of this Cauchy problem (1.2) is,
in general, divergent by the assumption that p < ¢. Therefore it is natural to study
the k-summability of the divergent solution (for the definitions of the terminologies, see
section 2). The conditions for the k-summability of the divergent solution was obtained
by Ichinobe [Ich 2] (cf. [LMS], [Miy], Theorem 4.1). Moreover, in [Ich 2], under those
conditions the integral representation of the Borel sum was obtained by using the integral
kernel (cf. [LMS], [Ich 1], Theorem 4.3). By the results of [Ich 2], the Borel sum is given
by the summation of integrations along gu half lines which start at the origin in the
complex plane.

On the one hand, in the case of the heat equation ((p, ¢, u) = (1,2, 1) for our operator
P) as a special case, the Borel sum is given by the integration along a line through the
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origin and the integral kernel is given by the heat kernel (cf. [LMS], [Ich 1,2]). Thus the
integral representation of the Borel sum coincides with that of the classical solution which
is obtained by the theory of Fourier integrals.

On the other hand, when gu > 3, the Borel sum is given by the summation of in-
tegrations along half lines in the complex plane. In this paper, we study the condition
under which the integral paths of the Borel sum in the complex plane are deformed into
the integration along a line. Exactly, the main interest of this paper Is to give a sufficient
condition under which the integral paths of the Borel sum can be deformed into the real
axis.

We state the contents of the following sections. In section 2, we shall give the review
of k-summability. In section 3, we shall give the decomposition formula of solutions for
the Cauchy problem (1.2). We shall give the main result in section 4. In section 5, we
shall give the proof of proposition.

2 Review of k-summability

We first give a short review of k-summability (cf. [Ball).
1. Sector. Ford € R, 8> 0and p(0 < p < 00), we define a sector S = S{d, B, p) by

(2.1) . S(d, B, p) = {tGC; |d — argt] < —§~,G< |t] <p},

where d, 8 and p are called the direction, the opening angle and the radius of §, respec-
tively.
2. Gevrey formal power series. We denote by O[[t]] the ring of formal power
series in t-variable with coefficients in @ which is the set of holomorphic functions in
a neighbourhood of the origin. For & > 0, we define that f (t,z) = Yooy falz)t™ €
Olitllix(c O[[t]]), which is the ring of formal power series of Gevrey order 1/k in t-
variable, if there exists a positive constant r such that the coefficients folz) € O(B,),
which denotes the set of holomorphic functions on a common closed disk B, := {z €
C;|z| < r}, and there exist some positive constants C and K such that for any n, we have
(2.2) max|fu(e)| < CK'T (1+7),
|z|<r k
where I' denotes the Gamma function.
3. Gevrey asymptotic expansion. Let k> 0, Flt,z) =32 fal@)t™ € Otk and
F(t,z) be an analytic function on S(d, 8, p) X B,. Then we define that

(2:3) f(t,7) = f(t,2) in S(d,8,p),
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if for any closed subsector S’ of S(d, 3, p), there exist some positive constants r'(< r), C
and K such that for any N, we have

N-1
(2.4) 513235 flt,z) — ; folz)t™ < CKN|ENT (1 + %) , ted.

4. k-summability. For k > 0, f(t,z) € O[[t]lix and d € R, we define that flt,z)
is k-summable in d direction if there exist a sector S(d, 3, p) with the opening angle
B > w/k, and a positive constant r such that there exists an analytic function f(t,z) on

S(d, B,p) x B, with f(t,z) & f(t,z) in S(d, 5, p)-

We remark that the function f(¢,z) above for a k-summable Flt, ) is unique if it
exists. Therefore such a function f(¢,z) is called the k-sum of f(t,2) in d direction.
Throughout this paper, we call the k-sum the Borel sum and it is written by f4(¢,z).

3 Decomposition formula of solutions

We give the following proposition which is a decomposition formula of solutions for the
Cauchy problem (1.2).

Proposition 3.1 Let U(t, z) be a solution of the Cauchy problem (1.2). Then there exist

v constants cmn (1 <m < ;1 < n < ¥£,) such that the following formula holds
b L
_ —-p{v—n+1)+1 [(1/p)6t]n—l —p{n-1)
(31) U(t, x) = E E Cm'nDt P W—Dt 'U:m(t, .'E),

m=1 n=1

where D; ' denotes the integration from 0 to t, the operator &, denotes the Euler operator
t0; and [(1/p)di]n_1 is given by

1 1 1
—6 | =0 —1)~~- (~5 —n+2), n>2,
(3.2) [(1/p)oeln-1:=4 P t(p t p
1, n=1.
Moreover, each function u,(t, z) is a solution of the following Cauchy problem

Pru(t, z) = (& — a,0%) ult, z) = 0,
(3.3) u(0,7) = p(z),
OFu(0,z)=0 (1<k<p-1).

We shall give the proof of Proposition 3.1 in section 5.
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Remark 3.2 Proposition 3.1 also holds in the case where p > q. Indeed, from Cauchy-
Kowalevski theorem, U(t,z) and all un(t,z)’s are analytic. Therefore the formula (3.1)
holds in the category of analytic functions.

Remark 3.3 If each un(t,z) (1 < m < u) is the Borel sum for the Cauchy problem (3.3),
the above U(t,z), given by the formula (3.1), is the Borel sum for the Cauchy problem
(1.2) (cf. [Ich 2}).

We give some examples of Proposition 3.1.
o The case P = H?:l P; (ie. u=v). A solution U(t,z) is given by the following

" expression
(3.4) Ult,z) = Y enD P um(t,z), cm= o :
= " " Tigygp jum(@m — )

e Thecase P = P (i.e. p=1). Asolution U(t, ) is given by the following expression

(3.5) Ult,z) = D;@‘”%Dt‘ﬂ”‘”m(t, z).

e The case p = 1. In this case, since the operator [(1/p)dln-1 = t""18} "}, we have

b tm tn—-l
(3.6) Ut,a) =33 cunD; ™ o= 1)‘um(t, z).
m=1n=1 )

4 Main result

From the formula (3.1), all informations of the solution U(, z) come from the one um(t, ).
Therefore, it is enough to study the property of the Borel sum for the Cauchy problem
(3.3). In the following, we study (3.3) in which we replace am by a.

(& — add)ult, ) =0,

(4.1) u(0,z) = ¢(z),
Ou(0,z) =0 (1<k<p-—-1).

The Cauchy problem (4.1) has the following unique formal solution 4(t, )

(4.2) a(t, z) = Za”cp(q") (z) (;:L)‘

By using our terminology, we see i(t, z) € O[[t]lix, k = p/(q — p)-
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4.1 Known results

We shall give the results of the k-summability of the formal solution (4.2) and the integral
representation of the Borel sum by using the integral kernel.

First, the result of the k-summability is stated as follows, which was proved by Miyake
[Miy].

Theorem 4.1 Let d € R and 4(t,z) be the formal solution of the Cauchy problem (4.1).
Then the following conditions are equivalent:

(i) 4(t,z) is k-summable in d direction.

(ii) The Cauchy data o(z) can be continued analytically in

| dp + arga + 2mm )
4.3 _ S( ,E, 00
@ - :

and has the growth condition of exponential order at most g/(q — p) there, which means
that there exist positive constants C and § such that

(4.4) lp(z)| < Cexp (]2, e QP(d,e).

Before stating the result of the integral representation of the Borel sum, we need some
preparations.
We use the following abbreviations.

p=1,2...,p), ¢=(1,2,....,9), a/a=(1/a,2/q,...,9/9),

G;=(1,2..,j-Li+L..,0eN" gire=(1+¢2+c...,q+¢) (ceC),

T(g/qg+c)= HF (Gla+o)

We give the definition of Meijer G’—functlon (cf. [MS, p.2], [Luk, p.144]).
Let 0<n<p 0<m<gq For B=(f1,...,0,) € CPand v = (y1,...,7,) € C? with
—veEN{=1,2,...,n;5=1,2,...,m), we define

H] Pl + ) e T = Be—7)
v 27” 1 1T j=m+1 P = =) [ TG+ 1)
= exp{—7(log|z| + i arg z)} and the path of integration I runs from & — ioc to

K + 400 for any fixed £ € R in such a manner that, if |7| is sufficiently large, then 7 € I
lies on the line Re 7 = k, all poles of I'(y; + 7), {—y; — k; £ > 0,7 =1,2,...,m}, lie to

2 "dr,

(4.5) G (z

where 277
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the left of the path and all poles of T{(1 — B —7), {1 = Be+k; k> 0,£=1,2,...,n}, lie
to the right of the path.

The integral converges absolutely on any compact set in the sector S(0, o, 00) if
o =2(m+n)—(p+q) > 0. If |arg 2| = om, 0 > 0, the integral converges absolutely when

r4
= i Zﬁ!y
1 =1

p =g if Re = < —1 where
(4.6)

L1

[l

J

and when p # g, if with 7 = & + 7, x and 7 real,  is chosen so that for n — Foo

1
(4.7) (p—g)k > Re E+1+~2~(p—q).

Next, the result of the integral representation of the Borel sum is stated as follows,
which was proved by myself (cf. {Ich 1,2]).

Theorem 4.2 Under the condition (ii) in Theorem 4.1 for the Cauchy data ¢(z), the

Borel sum u®(t,x) 1s given by

J g-1 oo{{dp+arg a+2wm)/q) (0:d) i _
(4.8)  wt,z) = Zm:O/‘; oz + ) EPV(t, Cw, ™ wy "dC

/w((dp+arg o)/9) g—1

0 m=0

oz + W) EPO(t,¢)dC,

where the integration fooo(g) is taken from O to oo along the half line of argument 6,

wy = exp (2mi/q) and the kernel function EPO(t,¢) is given by the following expression

p/p ) | c, - I'(p/p)

I'(q/q)

C F21) Eatp q/q o

@e) BP0 = X Gy (pp S

4.2 Deformation of integral paths of the Borel sum

Now, we give a sufficient condition for the deformation of the integral paths of the Borel
sum in O direction into the real axis. For simplicity of the statement of our main result,

we put

(4.10)

a=1(arga=0) when ¢=2,3 (mod4)
a=-1(arga=m) when g=0,1 (mod4).

Then our result is stated as follows.

Theorem 4.3 Under the additional conditions for the Cauchy data (x) which are stated
below, the integral paths of the Borel sum (4.8) in O direction can be deformed into the
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real azis as the following manner. We divide q rays of integrations in the integral repre-
sentation (4.8) into two groups Ry and R_. Here R, (resp. R_) denotes the group of
the rays which are in the right (resp. left) half plane of the complex plane. Then all the
integrations along the rays in R, (resp. R_) can be changed into the integration on the

positive (resp. negative) real axis.

o The case p = 1.

(I) When g is even, the Cauchy data (z) can be continued analytically in two sectors
Devenq = S(0, 7 — 27/q,00) U S, m — 21r/q, 00) with the same growth condition as in the
k-summability in Theorem 4.1.

(II) When q is odd, the Cauchy data @(z) can be continued analytically in two sectors
Doaaq = S(0,m — 31/q,00) U S(m,m — m/q,00) with the same growth condition as in
the k-summability in Theorem 4.1. We define Aogas = S{(w,27/3,00) as an exceptional
case. Further, we assume that there exists o positive constant § such that, tn the region
S(m,é,00), p(z) has the following decreasing condition of polynomial order

C

(4.11) lp(z)] < EIEGRES

z € S(m,d,00),

for some positive constants X and C.

o The case p =2 and q is even.

The Cauchy data @(z) can be continued analytically in two sectors Aeveng = S(0, 7 —
27 /g, 00) U S{m, m — 27 /q, 00) with the same growth condition as in the k-summability in
Theorem 4.1. Further, we assume that there exists a positive constant & such that, in the
region S(0,4,00) U S(m, 8, 00), w(x) has the following decreasing condition of polynomial
order

(4.12) z € 5(0,6,00) U S(m, d, 00),

lp(z)] < W7

for some positive constants A and C.

4.3 Proof of Theorem 4.3

Before giving the proof of Theorem 4.3, we prepare some properties of Meijer G-function.
We remark that G-function in the integral kernel of the Borel sum is given by the
following expression

(4.13) GeY (

p/p) Dlg/g+7) vy, _PLE
omi

2 == e —
a/q (Tp/p+7) ’ QPatr’
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where we choose the path I such that if |7| is sufficiently large, then 7 € I lies on the line
Re 7 = k < —1/(g — p) and it is possible to take such a path. (see the definition (4.5) of
Meijer G-function.) Then G-function is well-defined in

- D

(4.14) larg 2| < 1P

In this region, G-function has the following estimates as |2| — oo (cf. [Luk, p. 179])

Gq,O P p/p
s ( qa/q

From these estimates, the integral kernel of the Borel sum has the following estimates

as |¢] — oo for a fixed £ > 0
Cp,qug E]_o_q_(gwq_m)q p/p
q/q

4.15
(4.15) O|z|//Ha=p), LEr—¢ g larg z| < TGP,

< { C. exp (—aglzjl/(q‘p)), larg 2| < L2 — ¢,

(4.16) |EPD(t, Cw;™)| =

C p.q o tp
C. exp (—0.|¢|#/@ P jp/@P)) | |garg ((w;™) — arga| < 5P — e,
CFCIQ/Z(q_p)"l/tp/Q(q_p)7 q_ggﬂ— — € S ]qarg (Cw;m) —_ arg a} S a—p

where Cp, = I'(p/p)/T{(q/q) and cpq = 7" /¢".

G-function can be evaluated as a sum of residues as follows.

p/p T@,/a—3/1D 4 1+j/9~p/p -

2 F, _ (=10 Pz
/4 ) Z Tlp/p—i/e) = 7"\ 1+ila-;/a )
Here ,F,_, denotes the generalized hypergeometric series which is defined by

1;16%“':)613 1/n\M2/n" " "\Mp/n 2"
g _Z)_Z((/ﬁ')(ﬁ) (Bl 2"

Y15 Y2y - -4y Vg-1 7 - n>0 P}'l)n(’)’?)n e (711—1)75 ! ’

(4.17) G&5 (z

(4.18) oFoi (

where (c), = I'(c+n)/T(c) (c € C).
From (4.17) and z = (constant) x(?/t?, we notice that G-function in the integral
kernel and itself ES? (t,¢) are entire functions and single-valued with respect to ¢ for a

fixed ¢.

Proof of Theorem 4.3.  We only give the proof in the case where p = 2 and ¢ =
4n (n > 1), because the proofs in the other cases are given in the similar way.

In this case, we note that o = —1 (arga = 7) and the Borel sum u®(t, z) is given by
the following expression

(4.19) 0(¢, ) Z‘;n /

oo((2mm+) /q 2.
(@ + ) BV (2, Cwy™)w, " dC
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Now, we fix ¢ > 0. It is enough to prove the following formula when the Cauchy data
©(z) satisfies the conditions (II) in Theorem 4.3

oo{{2rm4+n)/q) 2.0
(4.20) / oz + O ESP(t, Cwy, ™ w, ™dC
0

+oo
/o o(z+ OEED(t, Cw;™wy, ™d(  if the ray is in Ry,

/ﬂ oz + () EGO (4, (wy ™w, ™d¢ if the ray is in R_.

In the following, we prove the expression (4.20). In the case where ¢ = 4n, the rays
of integrations with m = 0,1,...,n —1,3n,...,¢ — 1 (resp. m = n,...,3n — 1) in the
expression (4.19) belong to Ry (resp. R_).

From the estimates (4.16), we see that each integral kernel E(_zl’Q) (t, {w;™) with m =
0,1,...,m—2,3n+1,...,q—1 (resp. m=n+1,...,3n—2) in (4.19) has the exponential
decreasing estimate of order g/(g — 2) as |{| — oo in each sector

—4m —4 4

2q q 2g q

which contains the positive (resp. negative) real axis.

(4.21)

We have to remark that the cases where m = n — 1,n,3n — 1 and 3n are exceptional,
because the integral kernels E(_zl’Q)(t, (wy™) with m = n — 1 and m = 3n (resp. m = n
and m = 3n — 1) in (4.19) do not have the exponential decreasing estimate as { — +oo
(resp. ( — —oo) on the positive (resp. negative) real axis. Indeed, from the estimates
(4.16), the integral kernels E(f‘f) (t,Cw,™) with m = n— 1 and m = 3n have the following
estimates for some £ > 0

(422) Bt )|
< } Ceexp (=oe[¢|/0=D /11D | e/q < arg( <m—2m/q —¢/q,
= | Of¢|e/Ha-2-1p1/2a-2) 0 <arg( <ée/g,

(123) | ES0(1, ™)

< ) Ceexp (=oc[(|/@B/1/@D) 4 9m /g + e/q < arg( < 27 ~¢/q,
| Cj¢|wHa--1 j1/2a-2) 2n —efg < arg( < 2m,

and the integral kernels E(_QI’Q) (t,Cw;™) with m = n and m = 3n — 1 have the following
estimates for some ¢ > 0 ‘

(424)  |BEO(t, ™)
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< OE exp (_0-6IC(Q/(Q“?)/tl/(‘I—Q)) , 27{/(2 + 5/q < argg <7- E/q,
- C'C‘Q/g(qﬁg)_l/tl/z(q—z), T — E/q S a}rgg S 71-’ :

(425)  |[EEO( )

C. exp (—JEIC{Q/(qmz)/tl/(q‘Q)) , m+e/g<argl <2 —2n/q—¢€/q,
- O|C|Q/2(qﬁ2)_1/t1/2(q_2), T S argC S T _+_ 5/(]-

Therefore if the Cauchy data ¢(z) is analytic in Agqqq and has the growth condition
of exponential order at most q/(g — 2) there, then for a small fixed € > 0 we have

co((2mrm+m}/q) @
(4.26 olz + OEHD(t, Cwr™wr™d¢
o q q
3 oo(0+¢/q) 5
wlz+¢ )E(_{Q) (t, Cw, ™w, "d¢  if the ray is in the first quadrant,
0
oo(2m—e/q)
olz+¢ )E(_Qf) (t, Cw, ™w;™d¢ if the ray is in the fourth quadrant,

=4 " poo(n-e/)
oz +¢ )E(fl’@ (t,Cw;™)w, ™d¢ if the ray is in the second quadrant,

oo{n+e/q)
(2,9) — — . .. .
\ /0 oz + O ESP(t, (w;™)w, ™d(  if the ray Is in third quadrant.

Here since the integral kernels are single-valued with respect to ¢ for a fixed £, we may
change 27 — £/g to 0 — €/q for argument of the second expression in the right hand side
of (4.26).

Further, if the Cauchy data ¢(z) has the polynomial decreasing condition (4.12) in
the sector S(0, 8, 00) U S(r, 8, 00) with § > &/, then the absolute integrability on the real
axis do hold for all integrals in the right hand side of (4.26), and we obtain the formula
(4.20).

Finally, in the case where g = 4n (n > 1), we have the following formula

~1 g—-1

(4.27)  4°(t,z) = /O+OO-QD($+C) + Z

m=0 m=3n

0 3n—-1
+ / oz +¢) {— S ESPG, cw;M)w;m} ¢, t>0.

—o0 m=n

} ESO, Qg™ wy ™

This completes the proof of Theorem 4.3. ]

Remark 4.4 In [Ich 3], we proved that the integral representation of the Borel sum with
integral path along the real amis, which is obtained in such a manner as in Theorem 4.3,
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just coincides with that of the classical solution when (p,q) = (1,3) and (1,4). In a
forthcoming paper [Ich 4], we shall prove that the same results hold when p =1 and q is
arbitrary. As we shall show in the below, the same results also hold when p = 2 and q s
even.

We put g = 24. The classical solution of the Cauchy problem (4.1) is given by

+oo i
(4.28) u(t, z) = [ olz +y)Ki(t,y)dy, t>0, z€R,

~—~00

where the integral kernel Ki(t,y) is given by

ZZ?O) Ra(e) = me / +:°exp (zsiozl/z( q) )ds zeC.

Here we assume that the Cauchy data @(x) belongs to Schwartz’ rapidly decreasing func-
tions in ¢ variable.

We remark that the function Ky (y/(Gt)YT)/(Gt)7 is the fundamental solution of the
equation (0; F al/zag)u(t, y) = 0.

Now, in the case where ¢ = 4n, we can prove the following formula fort > 0

{Z+Z} Dty ™"y >0,
Ki(t,y) =

m=0 m=3n
3n—1

=3 EGO g™y, y <0

m=n

(4.31)

Indeed, by using the multiplication formula of the Gamma function
(4.32) ['(22) = (2m) V2% 120 ()T (2 + 1/2),

with 2,2+ 1/2 # 0,—1, -2, ..., we have

2/2 11 48] 1
/ Yo e ] it N
a/g ) 27" gal? t | q/q
where Cyq and C1 5 are constants which are given by (4.9). Therefore, it can be reduced

to the problem of the case where p =1 (c¢f. [Ich 4]). We omit the details, but they will be
published elsewhere.

2 g
(4.33) C5,,G2° (-2-—-1-3’—

g7 v 12
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5 Proof of Proposition 3.1

We give the proof of Proposition 3.1.
We recall that

i
(5.1) p=1[P’, P=03—a

First of all, we can choose v constants cm, (1 <m < ;1 <n < £,,) such that the
following identity for the operator holds

B fmu

(52) (V 1) Z Zcmnap(n—l) H ng le-—n

m=1 n=1 j=1l,j#m

Indeed, it is enough to compare coefficients of &% in the both hand sides (cf. Remark 5.1
below). '

Let U(t,z) be a formal solution of the Cauchy problem (1.2). We operate U(t, ) to
this identity (5.2) and we put

(5.3) Ulm,n)(t,z) == H P{ . iUt z).
j=Li#m

Then we see that U[m, n|(t, z) satisfles the following Cauchy problem
PrU[m,n](t,z) =0,
(5.4) UM, n)(0,z) =0 (0<k<pn—2),
& U[m, n}(0, ) = o(z).
Because P2U[m,n|(t, ) is equal to PU(t,z), and U(t, z) is the formal solution of the

Cauchy problem (1.2).
Moreover, we consider the Cauchy problem (3.3)

Ppu(t,z) =0,
(5.5) u(0, z) = p(z),
ofu(0,z) =0 (1<k<p-—1)

Let Ulm, n)(t,z) and un(t, ) be formal solutions of the Cauchy problem (5.4) and
(5.5), respectively. Then each formal solution is given by the following series

B ] ] 4 1 n~1 «u pi+pn—1
(5.7) Un(t,T) = Z od 09 (z) —= ( )

i=>0
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where (j 4+ 1)p—1 = I['(j + n)/T(j + 1). The relationship between these formal solutions is

given by the following formula

o [(1/P)8idnt mper
(5.8) Ulm, n](t, z) = D% )%Df "Dy (4 7).

Therefore by substituting (5.8) to (5.2) in which we operate U(t,z), and by operating
integral operator D, ” @1 in the both hand sides, we have

emu
(5.9) Ut z) = DFY Z S Y . DY [(1/p)8¢}n— [A/P)otdns poptn-vy, 4 0y
m=1 n=1 (n - 1)
By calculating integral and differential operators, we have the desired result (3.1). a

Remark 5.1 Constants c¢my in (5.2) are given in the following way.
We put

4
fm,n :fm,n[al’-- ,Ol# HQ{J/C\{m,

acfi 1 k1 ok k
el Tl DR = P eer L R

Then cmy are determined as o unique solution of the following system of linear equations
(5.10) _ AZ=¢,
where A denotes a v X v matriz which is given by

A=
[ 1 1 . 11 1 T

A, afin Auzfie

Acfie, : Ao far, : Aofue,
O . . . .
A1f1’1 AOfl,Q a O s O
\ Aofi 0 e 00 Agfa Bofu J
€ =" (c11,¢19, -+, CLey, Ca1, - -1 Cotgy -+ -5 Cpaty -+ -5 Cup, ) and € =% (1,0,...,0) are v-column

vectors.
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