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Abstract

A physical theory of quantum mechanics can be based on a complex Hamiltonian that is
not Hermitian but instead satisfies the physical condition of space-time reflection symmetry
($P\mathcal{T}$ symmetry). Thus, there are infinitely many new Hamiltonians that one can construct
that might explain experimental data. One would think that a non-Hermitian Hamiltonian
would give a quantum theory that violates unitarity. However, if $P\mathcal{T}$ symmetry is not broken,
it is possible to use a physical symmetry of the Hamiltonian to construct an inner product
whose associated norm is positive definite. This construction is general and works for any
$P\mathcal{T}$-symmetric Hamiltonian. The dynamics is governed by unitary time evolution. This
formulation does not conflict with the requirements of conventional quantum mechanics.
There are many possible observable and experimental consequences of extending quantum
mechanics into the complex domain, both in particle physics and in solid state physics.

1 Introduction

In this paper we discuss an alternative a standard axiom of quantum mechanics; namely, that
the Hamiltonian $H$ , which incorporates the symm etries and specifies the dynamics of a quantum
theory, must be Hermitian: $H=H\dagger$ . (The symbol \dagger represents Dirac Hermitian conjugation;
that is, transpose and complex conjugate.) It is commonly believed that the Hamiltonian must
be Herm itian in order to ensure that the energy spectrum (the eigenvalues of the Hamiltonian) is
real and that the time evolution of the theory is unitary (probability is conserved in time). This
axiom is sufficient to guarantee these desired properties, but we argue that it is not necessary.
We believe that the condition of Hermiticity is a mathematical requirement whose physical basis
is somewhat obscure. We demonstrate that the more physical alternative axiom of space-time
reflection symmetry ($P\mathcal{T}$ symmetry), $H=H^{P\mathcal{T}}$, allows for the possibility of non-Hermitian and
complex Hamiltonians but still leads to a consistent theory of quantum mechanics.

We also show that because $P\mathcal{T}$ symmetry is an alternative to Hermiticity it is now possible to
construct infinitely many new Harniltonians that would have been rejected in the past because
they are not Hermitian. An example of such a Hamiltonian is $H=p^{2}+ix^{3}$ . It should be
emphasized that we do not regard Hermiticity as wrong. Rather, $P\mathcal{T}$ symmetry offers the
possibility of studying new and interesting quantum theories.

Let us recall the properties of the space reflection (parity) operator $P$ and the time-reflection
operator $\mathcal{T}$. The parity operator $P$ is linear and has the effect $parrow-p$ and $xarrow-x$ . The time-
reversal operator $\mathcal{T}$ is antilinear and has the effect $parrow– p,$ $\arrow x$ , and $\mathrm{i}arrow-\mathrm{i}$ . Note that $\mathcal{T}$
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changes thle sign of2 because, like the parity operator, it preserves the fundamental commutation
relation of quantum mechanics, $[x,p]=\mathrm{i}$ , known as the Heisenberg algebra.l

It is easy to construct infinitely many Hamiltonians that are not Hermitian but do possess
$P\mathcal{T}$ symmetry. For example, consider the one-parameter family of Hamiltonians

$H=p^{2}+x^{2}(\mathrm{i}x)^{\epsilon}$ ( $\epsilon$ real). (1)

While $H$ in (1) is not symm etric under $P$ or $\mathcal{T}$ separately, it is invariant under their com-
bined operation. We say that such Hamiltonians possess space time reflection symmetry. Other
Ham iltonians having $P\mathcal{T}$ symmetry are $H=p^{2}+x^{4}(\mathrm{i}x)^{\epsilon},$ $H=p^{2}+x^{6}(\mathrm{i}x)^{\epsilon}$ , and so on $[2].2$

The $P\mathcal{T}$-symmetric Hamiltonians considered here, which for simplicity are also symmetric,
is larger than and includes real symmetric Hermitians because any real symmetric Hamiltonian
is automatically $P\mathcal{T}$-symmetric. For example, consider the real symm etric Hamiltonian $H=$
$p^{2}+x^{2}+2x$ . This Hamiltonian is time reversal symmetric, but according to the usual definition
of space reflection for which $\arrow-\,$ this Hamiltoniam appears not to have $P\mathcal{T}$ symmetry.
However, the parity operator is defined only up to unitary equivalence. In this example, the
Hamiltonian has the form $H=p^{2}+(x+1)^{2}$ - 1 and it is evident that $H$ is $P\mathcal{T}$ symmetric,
provided that the parity operator perform $\mathrm{s}$ a space reflection about the point $x=-1$ rather
than $x=0$. See Ref. [1] for the construction of the relevant parity operator.

In 1998 it was discovered that with properly defined boundary conditions the spectrum of
the Hamiltonian $H$ in (1) is real and positive when $\epsilon\geq 0[3]$ . The spectrum is partly real and
partly complex when $\epsilon<0$ . The eigenvalues have been computed numerically to very high
precision, and the real eigenvalues are plotted as functions of $\epsilon$ in Fig. 1.

We say that the $P\mathcal{T}$ symmetry of a Ham iltonian $H$ is unbroken if all of the eigenfunctions
of $H$ are simultaneously eigenfunctions of $P\mathcal{T}^{3}$. It is easy to show that if the $P\mathcal{T}$ symmetry of
a Ham iltonian $H$ is unbroken, then the spectrum of $H$ is real. The proof is short and goes as
folows: Assume that a Hamiltonian $H$ possesses PT symmetry (that is, that $H$ comm utes with
the PT operator) , and that if $\phi$ is an eigenstate of $H$ with eigenvalue $E$ , then it is simultaneously
an eigenstate of $P\mathcal{T}$ with eigenvalue $\lambda$ :

$H\phi=E\phi$ and 7’7 $ $=\lambda\phi$ . (2)

We begin by showing that the eigenvalue A is a pure phase. Multiplying $P\mathcal{T}\phi=\lambda\phi$ on the
left by $P\mathcal{T}$ and using the fact that $P$ and $\mathcal{T}$ commute and that $P^{2}=\mathcal{P}=1$ we conclude that
$\phi=\lambda^{*}\lambda\phi$ and thus $\lambda=e^{i\alpha}$ for some real $\alpha$ . Next, we introduce the convention that is used
throughout this paper. Without loss of generality we replace the eigenstate $\phi$ by $e^{-i\alpha/2}\phi$ so that
its eigenvalue under the operator $P\mathcal{T}$ is unity:

$P\mathcal{T}\phi=\phi$ . (3)
1 The Heisenberg-Weyl algebra is a real three-dimensional Lie algebra whose generators satisfy the commutation

relations $[e\iota, e_{2}]=e_{3},$ $[e_{1}, e\mathrm{s}]=[e_{2}, e\mathrm{s}]=0$ . To recover the Heisenberg comrnutation relations we set $e_{1}=$

$\mathrm{i}(\hslash)^{-1/2}p$, e2 $=\mathrm{i}(\hslash)^{-1/2}x$ , and $e_{3}=\mathrm{i}$ .
2These classes of Hamiltonians are all differerbt. For example, the Hamiltonian obtained by continuing $H$ in (1)

along the path $\epsilon$ : $0arrow 8$ has a different spectrum bom the Hamiltonian obtained by continuing $H=p^{2}+x^{6}\langle ix)^{\epsilon}$

along the path $\epsilon$ : $0\prec 4$ . This is because the boundary conditions on the eigenfunctions are different.
$31\mathrm{f}$ an equation possesses a discrete symm etry, the solution to this equation need mat exhibit that symmetry. For

example, the differential equation $\ddot{y}(t)=y(t)$ is symmetric under the discrete time reversal symmetry $tarrow-t$ . The
solutions $y(t)=e^{t}$ and $y(t$ }$\cdot=e^{-\ell}$ do not exhibit this time reversal symmetry while the solution $y(t)=$ cash(t)
is time reversal symmetric. The same is true of a system whose Harniltonian is $P\mathcal{T}$ symmetric. Even if the
Schr\"odinger equation and the corresponding boundary conditions are PT symmetric, the wave function that
solves the Schr\"odlnger eqA.ation boundary value problem may not be symmetric under space-time refiection.
When the solution exhibits $P\mathcal{T}$ symmetry, we say that the PT symmetry is unbroken and if the solution does not
Possess $\mathcal{P}\mathcal{T}$ symmetry, we say that the $P\mathcal{T}$ symmetry is broken.
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Next, we multiply the eigenvalue equation $H\phi=E\phi$ on the left by $P\mathcal{T}$ and use the fact that
$[P\mathcal{T}, H]=0$ to obtain $E\phi=E^{*}\phi$ . Hence, $E=E^{*}$ and the eigenvalue $E$ is real.

The crucial assumption in this argum ent is that $\phi$ is simultaneously an eigenstate of $H$

and $P\mathcal{T}$. In quantum mechanics if a linear operator $X$ commutes with the Hamiltonian $H$ ,
then the eigenstates of $H$ are also eigenstates of $X$ . However, we emphasize that the operator
PT is not linear (it is antilinear) and thus we must make the extra assumption that the $P\mathcal{T}$

symmetry of $H$ is unbroken; that is, that $\phi$ is simultaneously an eigenstate of $H$ and $P\mathcal{T}$. This
extra assumption is montrivial because it is not easy to determine a priori whether the $P\mathcal{T}$

symmetry of a particular Hamiltonian $H$ is broken or umbroken. For the Hamiltonian $H$ in (1)
the PT symmetry is unbroken vhen $\epsilon\geq 0$ and it is broken when $\epsilon<0$ . The conventional
Hermitian Hamiltonian for the quantum mechanical harm onic oscilJator lies at the boundary of
the unbroken and the broken regimes. Dorey et at. proved rigorously that the spectrum of $H$

in (1) is real and positive [4] in the region $\epsilon\geq 0$ . Many other $P\mathcal{T}$-symmetric Hamiltonians for
which space-time reflection symmetry is not broken have been investigated, and the spectra of
tl ese Ham iltonians have also been shown to be real and positive [5],

It is useful to show that a given non-Hermitian $P\mathcal{T}$-symrnetric Hamiltonian operator has
a positive real spectrum, but the urgent question that must be answered is whether such a
Hamiltonian defines a physical theory of quantum mechanics. By a physical theory we mean
that there is a Hilbert space of state vectors and that this Hilbert space has an inner product
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Figure 1: Energy levels of the Hamiltonian $H=p^{2}+x^{2}(\mathrm{i}x)^{\epsilon}$ as a function of the parameter $\epsilon$ .
There are three regions: When $\epsilon\geq 0$ , the spectrum is real and positive and the energy levels
rise with increasing $\epsilon$ . The lower bound of this region, $\epsilon=0$ , corresponds to the harmonic
oscillator, whose energy levels are $E_{n}=2n+1$ . When $-1<\epsilon<0$ , there are a finite number
of real positive eigenvalues and an infinite number of complex comjugate pairs of eigenvalues.
As $\epsilon$ decreases from 0 to -1, the nunber of real eigenvalues decreases; when $6\leq-0.57793$ , the
only real eigenvalue is the ground-state energy. As $\epsilon$ approaches $-1^{+}$ , the ground-state energy
diverges. For $\epsilon\leq-1$ there are no real eigenvalues,
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with a positive norm. In the theory of quantum mechanics we interpret the norm of a state
as a probability and this probability must be positive. Furthermore, we must show that the
time evolution of the theory is unitary. This means that as a state vector evolves in time the
probability does not leak away.

It is not obvious whether a Hamiltomian such as $H$ in (1) gives rise to a consistent quantum
theory. Indeed, while early investigations of this Ham iltonian have shown that the spectrum is
entirely real and positive when $\epsilon\geq 0$ , it appeared that one inevitably encountered the severe
problem of dealing with Hilbert spaces endowed with indefinite metrics [6]. We will identify
here a new symmetry that a1J $P\mathcal{T}$-symmetric Ham iltonians having an unbroken $P\mathcal{T}$-symmetry
possess. We denote the operator representing this symmetry by $\mathrm{C}$ because the properties of
this operator resemble those of the charge conjugation operator in particle physics. This will
allow us to introduce an inner product structure associated with $\mathrm{C}P\mathcal{T}$ conjugation for which the
norms of quantum states are positive definite. We will see that $\mathrm{C}P\mathcal{T}$ symmetry is an alternative
to the conventional Hermiticity requirement; it introduces the new concept of a dynamically
determined inner product (one that is deftned by the Ham iltonian itself). As a consequence, we
will extend the Hamiltonian and its eigenstates into the complex domain so that the associated
eigenvalues are real and the underlying dynam ics is unitary.

2 Construction of the C Operator

We begin by summarizing the mathematical properties of the solution to the Sturm-Liouville
differential equation eigenvalue problem

$-\phi_{n}’’(x)+x^{2}(\mathrm{i}x)^{\epsilon}\phi_{n}(x)=E_{n}\phi_{n}(x)$ (4)

associated with the Ham iltonian $H$ in (i). The differential equation (4) must be imposed on
an infinite contour 1n the complex-x plane. For large $|x|$ this contour lies in wedges that are
placed symmetrically with respect to the imaginary-z axis [3]. The boundary conditions on
the eigenfunctions are that $\phi(x)$ $arrow 0$ exponentially rapidly as $|x|arrow\infty$ on the contour. For
$0\leq\epsilon<2$ , the contour may be taken to be the real axis,

When $\epsilon\geq 0$ , the Hamiltonian has an unbroken $P\mathcal{T}$ symmetry. Thus, the eigenfunctions
$\phi_{n}(x)$ are simultaneously eigenstates of the $P\mathcal{T}$ operator: $P\mathcal{T}\phi_{n}(x)=\lambda_{n}\phi_{n}(x)$ . As we argued
above, A $n$ is a pure phase and, without loss of generality, for each $n$ this phase can be absorbed
into $\phi_{n}(x)$ by a multiplicative rescaling so that the new eigenvalue is unity:

$P\mathcal{T}\phi_{n}(x)=\phi_{n}^{*}(-x)=\phi_{n}(x)$ . (5)

There is strong evidence that, when properly normalized, the eigenfunctions $\phi_{n}(x)$ are com-
plete. The coordinate-space statement of completeness (for real $ and y) reads

$\sum_{n}(-1)^{n}\phi_{n}(x)\phi_{n}(y)=\delta(x-y)$ . (6)

This is a nontrivial result that has been verified numerically to extremely high accuracy (twenty
decimal places) $[7, 8]$ . The unusual factor of $(-\mathrm{l})^{}$ in the sum does not appear in conventional
quantum mechanics. The presence of this factor is explained in the following discussion of
orthonormality [see (8)].

A problem associated with non-Hermitian $P\mathcal{T}$-symmetric Hamiltonians arises because there
seems to be a natural way to define the inner product of two functions $f(x)$ and $g(x)$ :

$(f, g) \equiv\int dx[P\mathcal{T}f(x)]g(x)$ , (7)
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where $P\mathcal{T}f(x)=[f(-x)]^{*}$ and the integral is taken over the contour described above in the
complex-x plane. The apparent advantage of this inner product is that the associated norm
$(f, f)$ is independent of the overall phase of $f(x)$ and is cormerved in time. Phase independence is
desired because in quantum mechanics one uses a space of rays to represent quantum mechanical
states. With respect to this inner product the eigenfunctions $\phi_{m}(x)$ and $\phi_{n}(x)$ of $H$ in (1) are
orthogonal for $n\neq m$ . However, when $m=n$ the norm is not positive:

$(\phi_{m}, \phi_{n})=(-1)^{n}\delta_{mn}$ . (8)

This result is apparently true for all values of $\epsilon$ in (4) and it has been verified numerically to
extremely high precision, Because the norms of the eigenfunctions alternate in sign, the Hilbert
space metric associated with the $P\mathcal{T}$ inner product $(\cdot, \cdot)$ is indefinite. This split signature (sign
alternation) is a generic feature of the $P\mathcal{T}$ inner product. Extensive numerical calculations
verify that the formula in (8) holds for all $\epsilon\geq 0$ .

Despite the nonpositivity of the inner product, we proceed with the usual analysis that one
would perform for any Sturm-Liouville problem of the form $H\phi_{n}=E_{n}\phi_{n}$ . First, we use (8) to
verify that (6) is the representation of the unity operator, That is, we verify that

$\oint dy\delta(x-y)\delta(y-z)=$ C5(r $-z$). (9)

Second, we reconstruct the parity operator $P$ in terms of the eigenstates. The parity operator
in position space is $P(x, y)=\delta(x+y)$ , so ffom (6) we get

$P(x, y)= \sum_{n}(-1)^{n}\phi_{n}(x)\phi_{n}(-y)$, (10)

By virtue of (8) the square of the parity operator is unity: $P^{2}=1$ .
Third, we reconstruct the Hamiltoniam $H$ in coordinate space:

$H(x, y)= \sum_{n}(-1)^{n}E_{n}\phi_{n}(x)\phi_{n}(y)$ . (11)

Using (6) - (8) it is easy to see that this Hamiltomian satisfies $H\phi_{n}(x)$ $=E_{n}\phi_{n}\{x$). Fourth, we
construct the coordinate-space Green’s function $G(x,y)$ :

$G(x, y)= \sum_{n}(-1)^{n}\frac{1}{E_{n}}\phi_{n}(x)\phi_{n}(y)$ . (12)

The Green’s function is the functional inverse of the Ham iltonian; that is, $G$ satisfies

$\int dyH(x, y)G(y, z)=[-\frac{d^{2}}{dx^{2}}+x^{2}(\mathrm{i}x)^{\epsilon}]G(x, z)=\delta(x-z)$ . (13)

While the time independent Schr\"odinger equation (4) cannot be solved analytically, the differ-
ential equation for $G(x, z)$ in (13) can be solved exactly and in closed form [8]. The technique is
to consider the case $0<\epsilon<2$ so that we may treat $x$ as real and then to decompose the $x$ axis
into two regions, $x>z$ and $x<z$ . We carz solve the differential equation in each of these regions
in term $\mathrm{s}$ of Bessel functions. Then, using this coordinate-space representation of the Green’s
function, we construct an exact closed-form expression for the spectral zeta function (sum of the
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inverses of the energy eigenvalues). To do so we set $y=$ in $G(x,y)$ and use (8) to integrate
over $x$ . For all $\epsilon>0$ we obtain [8]

$\sum_{n}\frac{1}{E_{n}}=[1+\frac{\cos(\frac{3\epsilon\pi}{2\epsilon+\mathrm{S}})\sin(\frac{\pi}{4+\epsilon})}{\cos(\frac{\epsilon\pi}{4+2\epsilon})\sin(\frac{3\pi}{4+\epsilon})}]\frac{\Gamma(\frac{1}{4+\epsilon})\Gamma(\frac{2}{4+\epsilon})\Gamma(\frac{\epsilon}{4+e})}{(4+\epsilon)^{\frac{4+2\epsilon}{4+\epsilon}}\Gamma(\frac{1+\epsilon}{4+e})\Gamma(\frac{2+\epsilon}{4+\epsilon})}$ . (14)

Having presented these general Sturm-Liouville constructions, we discuss the question of
whether a $P\mathcal{T}$-symm etric Hamiltonian defines a physically viable quantum mechanics or whether
it merely provides an intriguing Sturm-Liouville eigenvalue problem. The apparent difficulty
with form ulating a quantum theory is that the vector space of quantum states is spanned by
energy eigenstates, of which half have norm +1 and half have norm -1. Because the norm of
the states carries a probabilistic interpretation in standard quantum theory, the existence of an
indefinite metric in (8) seems to be a serious obstacle.

The situation here 1n which half of the energy eigenstates have positive norm and half have
negative norm is analogous to the problem that Dirac encountered in form ulating the spinor
wave equation in relativistic quantum theory [9]. Following Dirac’s approach, we attack the
problem of an indefinite norm by finding a physical interpretation for the negative norm states.
We claim that in any theory having an unbroken $P\mathcal{T}$ symmetry there exists a symmetry of
the Hamiltonian connected with the fact that there are equal numbers of positive-norm and
negative-norm states. To describe this symmetry we construct a linear operator denoted by $\mathrm{C}$

and represented in position space as a sum over the energy eigenstates of the Hamiltonian [10]:

$\mathrm{C}(x, y)=\sum_{n}\phi_{n}(x)\phi_{n}(y)$
. (15)

As stated earlier, the properties of this new operator $\mathrm{C}$ are nearly identical to those of the
charge conjugation operator in quantum field theory. For example, we can use equations (6) -

(S) to verify that the square of $\mathrm{C}$ is unity $(C^{2}=1)$ :

$\oint dyC(x,y)C(y, z)=\delta(x-z)$ . (16)

Thus, the eigenvalues of $C$ are 81. Also, $\mathrm{C}$ commutes with the Hamiltonian $H$ . Therefore, since
$C$ is linear, the eigenstates of $H$ have definite values of C. Specifically, if the energy eigenstates
$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta(8)$ , then we have $\mathrm{C}\phi_{n}=(-1)^{n}\phi_{n}$ because

$C \phi_{n}(x)=\int dyC(x,y)\phi_{n}(y)=\sum_{m}\phi_{m}(x)\int dy\phi_{m}(y)\phi_{n}(y)$ .

We then use $\int dy\phi_{m}(y)\phi_{n}(y)=(\phi_{m}, \phi_{n})$ according to our convention. We conclude that $C$ is
the operator that represents the measurement of the signature of the $P\mathcal{T}$ norm of a state.

The operators $P$ and $C$ are distinct square roots of the unity operator $\delta(x-y\rangle$ . That is,
while $P^{2}=1$ and $C^{2}=1,$ $P$ and $C$ are not identical. Indeed, the parity operator $P$ is real, while
$\mathrm{C}$ is $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}1\mathrm{e}\mathrm{x}^{4}$. Furtherm ore, these two operators do not commute:

(CP) $(x, y)= \sum_{n}\phi_{n}(x)\phi_{n}(-y)$ but (PC) $(x, y)= \sum_{n}\phi_{n}(-x$ }$\phi_{n}(y),$(17)

$4\mathrm{T}\mathrm{h}\mathrm{e}$ parity operator in coordinate space is explicitly real $P(x,y)=\delta(x+y)j$ the operator $C(x,y)$ is complex
because it is a sum of products of complex functions, as we see in (15). The complexity of the $C$ operator can be
seen explicitly in perturbative calculations of $C(x, y)[11]$ .
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which shows that $\mathrm{C}P=(P\mathrm{C})^{*}$ . However, $C$ does commute with $P\mathcal{T}$.
Finally, having obtained the operator $\mathrm{C}$ we define a new inner product structure having

positive definite signature by

$\langle f|g\rangle\equiv l_{\mathrm{C}}^{dx}[CP\mathcal{T}f(x)]g(x)$ . (18)

Like the $P\mathcal{T}$ inner product (7), this inner product is phase independent and conserved in time.
This is because the time evolution operator, just as in ordinary quantum mechanics, is $e^{iHt}$ . The
fact that $H$ commutes with the $P\mathcal{T}$ and the $CP\mathcal{T}$ operators implies that both inner products,
(7) and (18), remain time independent as the states evolve in time. However, unlike (7), the
inner product (18) is positive definite because $C$ contributes -1 when it acts on states with
negative $P\mathcal{T}$ norm. In terms of the $\mathrm{C}P\mathcal{T}$ conjugate, the completeness condition (4) reads

$\sum_{n}\phi_{n}(x)[CP\mathcal{T}\phi_{n}(y)]=\mathit{5}(x-y)$ . (19)

Unlike the inner product of conventional quantum mechanics, the $\mathrm{C}P\mathcal{T}$ inner product (19) is
dynamically deterrreined; it depends implicitly on the choice of Ham iltonian.

The operator $C$ does not exist as a distinct entity in conventional quantum mechanics. Indeed,
if we allow the parameter $\epsilon$ in (1) to tend to zero, the operator $C$ in this limit becomes identical
to $P$ . Thus, in this limit the $\mathrm{C}P\mathcal{T}$ operator becomes $\mathcal{T}$ , which is just complex conjugation. As a
consequence, the inner product (18) defined with respect to the $CP\mathcal{T}$ conjugation reduces to the
complex conjugate inner product of conventional quantum mechanics when $\epsilonarrow 0$ . Similarly, in
this limit (19) reduces to the usual statement of completeness $\sum_{n}\acute{\varphi}_{n}(x)\phi_{n}^{*}(y)=\delta(x-y)$.

The $CP\mathcal{T}$ inner-product (18) is independent of the choice of integration contour $\mathrm{C}$ so long
as $\mathrm{C}$ lies inside the asymptotic wedges associated with the boundary conditions for the Sturm-
Liouville problem (2). Path independence follows from Cauchy’s theorem and the analyticity of
the integrand. In conventional quantum mechanics, where the inner product is $fdxf^{*}(x)g(x)$ ,
the integral must be taken along the real axis and the path of the integration cannot be deformed
into the complex plane because the integrand is not analytic.s The PT inner product (7) shares
with (i8) the advantage of analyticity and path independence, but suffers from nonpositivity.
We find it surprising that a positive-definite metric can be constructed using $\mathrm{C}P\mathcal{T}$ conjugation
without disturbing the path independence of the inner-product integral,

Finally, we explain why $P\mathcal{T}$-symmetric theories are unitary. Tim $\mathrm{e}$ evolution is determined by
the operator $e^{-iHt}$ , whether the theory is expressed in terms of a $P\mathcal{T}$-symmetric Hamiltonian or
just an ordinary Hermitian Hamiltonian. To establish the global unitarity of a theory we must
show that as a state vector evolves its norm does not change in time. If $\psi_{0}(x)$ is a prescribed
initial wave function belonging to the Hilbert space spanned by the energy eigenstates, then it
evolves into the state $\psi_{t}(x)$ at time $t$ according to

$\psi_{t}(x)=e^{-\mathrm{i}Ht}\psi_{0}(x)$ .
With respect to the $CP\mathcal{T}$ inner product defined in (18), the norm of the vector $\psi_{t}(x)$ does not
change in time,

$\langle\psi_{t}|\psi_{t}\rangle=\langle\psi_{0}|\psi_{0}\rangle$ ,
$\epsilon$ Note that if a function satisfies a linear orciinary differential equation, then the function is analytic wherever

the coefficient functions of the differential equation are analytic. The Schr\"odinger equation (4) is linear and its
coefficients are analytic except for a branch cut at the origin; this branch cut can be taken to run up the imaginary
axis. We choose the integration contour for the inner product (8) so that it does not cross the positive imaginary
axis. Path independence occurs because the integrand of the inner product (8) is a product of analytic functions,
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because the Ham iltonian $H$ commutes with the $CP\mathcal{T}$ operator. Establishing unitarity at a
local level is more difficult. Here, we must show that in coordinate space, there exists a local
probability density that satisfies a continuity equation so that the probability does not leak
away. This is a subtle result because the probability current flows about in the complex plane
rather than along the real axis as in conventional Hermitian quantum mechanics, Preliminary
numerical studies indeed indicate that the continuity equation is fulfilled [14].

3 Illustrative Example: A $2\cross 2$ Matrix Hamiltonian

We will now illustrate the above results concerning $P\mathcal{T}$-symmetric quantum mechanics in a very
simple context. To do so we will consider systems characterized by finite dirnensional matrix
Ham iltonians. In finite-dim ensional systems the $P,$ $\mathcal{T}$ , and $\mathrm{C}$ operators appear, but there is no
analogue of the boundary conditions associated with coordinate-space Schr\"odinger equations.

Let us consider the $2\cross 2$ matrix Hamiltonian

$H=(\begin{array}{ll}re^{i\theta} ss re^{-i\theta}\end{array})$ , (20)

where the three parameters $r,$ $s$ , and $\theta$ are real. This Ham iltonian is not Hermitian in the usual
sense, but it is $P\mathcal{T}$ symmetric, where the parity operator is given by [15]

$P=(\begin{array}{ll}0 11 0\end{array})$ (21)

and $\mathcal{T}$ performs complex conjugation.
There are two parametric regions for this Hamiltonian, When $s^{2}<r^{2}\sin^{2}\theta$ , the energy

eigenvalues form a complex conjugate pair, This is the region of broken $P\mathcal{T}$ symmetry. On the
other hand, if $s^{2}\geq r^{2}\sin^{2}\theta$ , then the eigenvalues $\epsilon\pm=r\cos\theta\pm\sqrt{s^{2}-r^{2}\sin^{2}\theta}$ are real. This is
the region of unbroken PT symmetry. In the unbroken region the simultaneous eigenstates of
the operators $H$ and PT are given by

$| \epsilon_{+}\rangle=\frac{1}{\sqrt{2\cos\alpha}}(\begin{array}{l}e^{\dot{\mathrm{z}}\alpha}/2e^{-i\alpha/2}\end{array})$ aanndd $|\epsilon_{-}$ ) $= \frac{\mathrm{i}}{\sqrt{2\cos\alpha}}(\begin{array}{l}e^{-i\alpha}/2\backslash -e^{i\alpha/2}\end{array})$ , (22)

where we set $\sin\alpha=(r/s)\sin\theta$ . It is easily verified that $(\epsilon\pm, \epsilon\pm)=\pm 1$ and that $(\epsilon\pm,\epsilon_{\mp})=0$ ,
recalling that $(u, v)=(P\mathcal{T}u)\cdot v$ . Therefore, with respect to the $P\mathcal{T}$ inner product, the resulting
vector space spanned by energy eigenstates has a metric of signature ( $+,$ $-\rangle$ . The condition
$s^{2}>r^{2}\sin^{2}\theta$ ensures that $P\mathcal{T}$ symmetry is not broken. If this condition is violated, the states
(22) are no longer eigenstates of $P\mathcal{T}$ because cz becomes $\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}^{6}$.

Next, we construct the operator $C$ :

$C= \frac{1}{\cos\alpha}$ ( $\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha$

$-\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha$ ). (23)

Note that $\mathrm{C}$ is distinct from $H$ and $\prime \mathrm{p}$ and has the key property that

$C|\epsilon_{\pm}\rangle=\pm|\epsilon_{\pm}\rangle$ . (24)

The operator $\mathrm{C}$ commutes with $H$ and satisfies $\mathrm{C}^{2}=1$ . The eigenvalues of $\mathrm{C}$ are precisely the
signs of the $P\mathcal{T}$ norms of the corresponding eigenstates.

$\epsilon$

When PT symmetry is broken, we find that the $P\mathcal{T}$ norm of the energy eigenstate vanishes.
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Using the operator $\mathrm{C}$ we construct the new inner product structure

$\langle u|v\rangle=(CP\mathcal{T}u)\cdot v$ . (25)

This inner product is positive definite because $\langle\epsilon\pm|\epsilon\pm\rangle=1$ . Thus, the $\mathrm{t}\mathrm{w}\mathrm{o}rightarrow \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ Hilbert
space spanned by $|\epsilon\pm\rangle$ , with inner product $\langle\cdot|\cdot\rangle$ , has a Herm itian structure with signature $(+,$ $+\rangle$ .

Let us demonstrate that the $\mathrm{C}P\mathcal{T}$ norm of any vector is positive. We choose the arbitrary
vector $\psi=(\begin{array}{l}ab\end{array})$ , where $a$ and $b$ are any complex numbers. Then $\mathcal{T}\psi=(\begin{array}{l}ab^{*}\end{array}),$ $P\mathcal{T}\psi=(_{a}^{b}:)$ , and
$\mathrm{C}P\mathcal{T}\psi=\frac{1}{\cos\alpha}(\begin{array}{ll}a^{*}+ib^{*} \mathrm{s}\mathrm{j}\mathrm{n}\alpha b^{*}-\iota a^{*} \mathrm{s}\mathrm{i}\mathrm{n}\alpha\end{array}).$ Thus, $\langle\psi|\psi\rangle=(CP\mathcal{T}\psi)\cdot\psi=$ $\frac{1}{\cos\alpha}[a^{*}a+b^{*}b+i(b^{*}b-a^{*}a)\sin\alpha]$ .
Now let $a=x+\mathrm{i}y$ and $b=u+\mathrm{i}v$ , where $x,$ $y,u,$ and $v$ are real $.$ Then

$\langle\psi|\psi\rangle=\frac{1}{\cos\alpha}$ ($x^{2}+v^{2}+2xv\sin\alpha$ $+y^{2}+u^{2}-2yu\sin\alpha$), (26)

which is expiicitly positive and vanishes only if $x=y=u=v=0$.
Recalling that $\langle$ $u|$ denotes the $CP\mathcal{T}$-conjugate of $|u\rangle$ , the completeness condition reads

$|\epsilon_{+}\rangle\langle\epsilon_{+}|+|\epsilon_{-}\rangle\langle\epsilon_{-}|=(\begin{array}{ll}1 00 1\end{array})$ . (27)

Furthermore, using the $\mathrm{C}P\mathcal{T}$ conjugate (gg $|$ , we can express $\mathrm{C}$ in the form $C=|\epsilon_{+}\rangle$ $(\epsilon_{+}|-|\epsilon_{-}\rangle\langle\epsilon_{-}|$ ,
as opposed to the representation in (15), which uses the PT conjugate.

An observable in this theory is represented by a linear operator $A$ that satisfies the equation
$\mathrm{C}P\mathcal{T}ACP\mathcal{T}=A^{\mathrm{T}}$ , where $A^{\mathrm{T}}$ is the transpose of $A$ . If $\mathrm{C}\mathcal{P}\mathcal{T}$ symmetry is unbroken, the eigenval-
ues of $A$ are real. The operator $\mathrm{C}$ satisfies this requirement, and hence it is an observable. For
the two-state system, if we set $\theta=0$ , then the Hamiltonian (20) becomes Hermitian. However,
the operator $\mathrm{C}$ then reduces to the parity operator $P$ . As a consequence, the above condition
satisfied by an operator reduces to the standard condition of Hermiticity, namely, that $H=H^{*}$ .
This is why the hidden symmetry $C$ was not noticed previously. The operator $\mathrm{C}$ emerges only
when we extend a real symmetric Hamiltonian into the complex domain.

We have calculated the $\mathrm{C}$ operator in many kinds of quantum mechanical and quantum field
theoretic models. For an $x^{2}+\mathrm{i}x^{3}$ potential, $C$ can be obtained from the summation in (15) using
perturbative methods [11]. For an $x^{2}-x^{4}$ potential , $C$ can be calculated using nonperturbative
WKB methods [12]. Quantum field theoretic calculations of $\mathrm{C}$ are reported in Ref. [13].

4 Applications and Possible Observable Consequences
We have described here an alternative to the axiom of Hermiticity in quantum mechanics. In
quantum field theory, Hermiticity, Lorentz invariance, and a positive spectrum are crucial for
estabIishing $CP\mathcal{T}$ invariance [16]. Here, we have established the converse of the $CP\mathcal{T}$ theorem
in the following limited sense: We assume that the Hamiltonian possesses space-time reflection
symm etry, and that this symm etry is not broken. $\mathrm{R}\mathrm{o}\mathrm{m}$ these assumptions, we know that the
spectrum is real and positive and we construct an operator $\mathrm{C}$ that is like the charge conjugation
operator. Quantum states in this theory have positive norms with respect to $\mathrm{C}P\mathcal{T}$ conjugation.
In effect, we replace the mathematical condition of Herm iticity by the physical condition of space-
time and charge-conjugation symmetry. These symmetries ensure the reality of the spectrum of
the Hamiltonian in complex quantum theories.

Could non-Herm itian, $P\mathcal{T}$-symmetric Ham iltonians be used to describe experimentally ob-
servable phenomena? Non-Hermitian Hamiltonians have already been used to describe inter-
acting systems. For example in 1959, Wu showed that the ground state of a Bose system of
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hard spheres is described by a non-Hermitian Hamiltonian [17]. Wu found that the ground-state
energy of this system is real and conjectured that all of the energy levels were real. In 1992, Hol-
lowood showed that even though the Hamiltomian of a complex Toda lattice is non-Hermitian,
the energy levels are real [18]. Non-Hermitian Hamiltonians of the form $H=p^{2}+\mathrm{i}x^{3}$ arise in
various Reggeon field theory models that exhibit real positive spectra [19]. These cubic Hamil-
tonians also arise in the study of the Lee Yang edge singularity [20]. In each of these cases the
fact that a non-Hermitian Hamiltonian had a real spectrum appeared mysterious at the time,
but now the explanation is simple: In each of these cases the mop-Hermitian Hamiltonian is $P\mathcal{T}-$

symmetric. That is, the Hamiltonian in each case is constructed so that the position operator
$x$ or the field operator $\phi$ is always multiplied by $\mathrm{i}$ .

An experimental signal of a complex Hamiltonian might be found in the context of condensed
matter physics. Consider the complex crystal lattice whose potential is given by $V(x)=\mathrm{i}\sin x$ .
While the Hamiltonian $H=p^{2}+i\sin x$ is not Hermitian, it is $P\mathcal{T}$-symmetric, and all of the
energy bands are real. However, at the edge of the bands the wave function of a particle in such
a lattice is always bosonic ( $2\pi$-periodic) and, unlike the case of ordinary crystal lattices, the
wave function is never fermionic ($4\pi$-periodic) [21]. Direct observation of such a band structure
would give unambiguous evidence of a $P\mathcal{T}$-symmetric Hamiltonian.

There are many opportunities for the use of non-Hermitian Hamiltonians in the study of
quantum field theory. For example, ascalar quantum field theory with acubic self-interaction
described by the Lagrangian $L= \frac{1}{2}(\nabla\varphi)^{2}+\frac{1}{2}m^{2}\varphi^{2}+g\varphi^{3}$ is physically unacceptable because the
energy spectrum is not bounded below. However, the cubic scaiar quantum field theory that
corresponds to $H$ in (1) with $\epsilon=1$ is given by the Lagrangian density $\mathcal{L}=\frac{1}{2}(\nabla\varphi)^{2}+\frac{1}{2}m^{2}\varphi^{2}+$

$\mathrm{i}g\varphi^{3}$ . This is a new, physically acceptable quantum field theory. Moreover, the theory that
corresponds to $H$ in (1) with $\epsilon=2$ is described by the Lagrangian density

$\mathcal{L}=\frac{1}{2}(\nabla\varphi)^{2}+\frac{1}{2}m^{2}\varphi^{2}-\frac{1}{4}g\varphi^{4}$. (28)

What is remarkable about this “wrong-sign” fteld theory is that, in addition to the energy
spectrum being real and positive, the one point Green’s function (the vacuum expectation value
of the field $\varphi$ ) is nonzero [22]. Furthermore, the field theory is renorm alizable, and in four
dimensions is asymptoticalJy free (and thus nontrivial) [23]. Based on these features of the
theory, we believe that the theory may provide a useful setting to describe the dynamics of the
Higgs sector in the standard model.

Other field theory models whose Hamiltonians are non-Hermitian and $P\mathcal{T}$-symmetric have
also been studied. For example, $P\mathcal{T}$-symmetric electrodynamics is particularly interesting be-
cause it is asymptotically free (unlike ordinary electrodynamics) and because the direction of the
Casimir force is the negative of that in ordinary electrodynamics [24]. This theory is remarkable
because it can determine its own coupling constant. Supersymmetric $P\mathcal{T}$-symm etric quantum
field theories have also been studied [25].

These $P\mathcal{T}$-symmetric quantum theories exhibit unexpected phenomena. For example, when
$g$ is sufficiently small, the $-g\varphi^{4}$ theory described by the Lagrangian (28) possesses bound states
(the conventional $g\varphi^{4}$ theory does not because the potential is repulsive). Bound states occur for
all dimensions $0\leq D<3[26]$ , but for purposes of illustration we describe the bound states in
the context of one-dimensional quantum field theory (quantum mechanics). For the conventional
anharmonic oscillator, which is described by the Hamiltonian

$H= \frac{1}{2}p^{2}+\frac{1}{2}m^{2}x^{2}+\frac{1}{4}gx^{4}$ $(g>0)$ , (29)

the small-y Rayleigh-Schr6dinger perturbation series for the $k\mathrm{t}\mathrm{h}$ energy level $E_{k}$ is

$E_{k} \sim m[k+\frac{1}{2}+\frac{3}{4}(2k^{2}+2k+1)\nu+\mathrm{O}(\nu^{2})]$ $(\nuarrow 0^{+})$ , (30)
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where $\nu=g/(4m^{3})$ . The renormalizei mass $M$ is defined as the first excitation above the ground
state: $M\equiv E_{1}-E_{0}\sim m[1+3\nu+\mathrm{O}(\nu^{2})]$ as $\nuarrow 0^{+}$ .

To determine if the two-particle state is bound, we examine the second excitation above the
ground state using (30), We define

$B_{2}\equiv E\mathit{2}$ $-E_{0}\sim m[2+9\nu+\mathrm{O}(\nu^{2})]$ $(\nuarrow 0^{+})$ . (31)

If $B_{2}<2M$ , then a two-particle bound state exists and the (negative) binding energy is $B_{2}-2M$ .
If $B_{2}>2M$ , then the second excitation above the vacuum is interpreted as an unbound two-
particle state. We see ffom (31) that in the smalI-coupling region, where perturbation theory
is valid, the conventional anharmonic oscillator does not possess a bound state. Indeed, using
WKB, variational methods, or numerical calculations, one can show that there is no two-particle
bound state for any value of $g>0$ . Because there is no bound state the $gx^{4}$ interaction may be
considered to represent a repulsive $\mathrm{f}o\mathrm{r}\mathrm{c}\mathrm{e}.7$

We obtain the perturbation series for the man-Hermitian, $P\mathcal{T}$-symmetric Hamiltonian

$H= \frac{1}{2}p^{2}+\frac{1}{2}m^{2}x^{2}-\frac{1}{4}gx^{4}$ $(g>0)$ , (32)

from the perturbation series for the conventional anharmonic oscillator by replacing $\nu$ with $-\nu$ .
While the conventional anharmonic oscillator does not possess a two particle bound state, the
$P\mathcal{T}$-symmetric oscillator does possess such a state. We measure the binding energy of this state
in un its of the renormalized mass $M$ and we define the dimensionless binding energy $\Delta_{2}$ by

$A_{2}$ $\equiv\frac{B_{2}-2M}{M}\sim-3\nu+\mathrm{O}(\nu^{2})$ $(\nuarrow 0^{+})$ . (33)

This bound state disappears when $\nu$ increases beyond $\nu=$ 0.0465. . .. As $\nu$ continues to increase,
A2 reaches a maximum of 0.427 at $\nu=0.13$ and then approaches the value 0.28 as $\nuarrow\infty$ .

In the $P\mathcal{T}$-symmetric anharmonic oscillator, there are not only two-particle bound states
for small coupling constant but also A-particle bound states for all $k\geq 2$ . The dimensionless
binding energies are

$\Delta_{k}\equiv(B_{k}-kM)/M\sim-3k(k-1)\nu/2+0(\nu^{2})$ ( $\nuarrow 0+\rangle$ . (34)

The key feature of this equation is that the coefficient of $\nu$ is negative. Since the dimensionless
binding energy becom es negative as $\iota/$ increases from 0, there is a $k$-particle bound state. The
higher multiparticle bound states cease to be bound for smaller values of &; starting with the
three-particle bound state, the binding energy of these states becomes positive as $\nu$ increases
past 0.039, 0.034, 0.030, and 0.027.

For any value of $\nu$ there are always a finite number of bound states and an infinite number
of unbound states. The number of bound states decreases with increasing $\nu$ until there are no
bound states at all. There is a range of $\nu$ for which there are only two- and three particle bound
states. This situation is analogous to the physical world in which one observes only states of
two and three bound quarks. In this range of $\nu$ if one has an initial state containing a number of
particles (renormalized masses). these particles will clump together into bound states, releasing

7In general, a repulsive force in a quantum field theory is represeuted by an energy dependence in which the
energy of a two-particle state decreases with separation. The conventional anharmonic oscillator Hamiltonian
corresponds to a field theory in one spac -time dimension, where there cannot be any spatial dependence. In this
case the repulsive nature of the force is understood to mean that the energy $B_{2}$ needed to create two Particles at
a given time is more than twice the energy $M$ needed to create one particle.
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energy in the process. Depending on $\nu$ , the final state will consist either of two- or of three-
particle bound states, whichever is energetically favored. Also, there is a special value of $\nu$ for
which two- and three-particle bound states can exist in thermodynamic equilibrium.

How does a $g\varphi^{3}$ theory compare with a $g\varphi^{4}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}^{7}$ A $g\varphi^{3}$ theory has an attractive force. The
bound states that arise as a consequence of this force can be found by using the Bethe-Salpeter
equation. However, the $g\varphi^{3}$ field theory is unacceptable because the spectrum is not bounded
below. If we replace 9 by $\mathrm{i}g$ , the spectrum becomes real and positive, but now the force becomes
repulsive and there are no bound states. The same is true for a two-scalar theory with interaction
of the form $\mathrm{i}g\varphi^{2}\chi$ . This latter theory is am acceptable model of scalar electrodynam $\mathrm{i}\mathrm{c}\mathrm{s}$ , but has
no analog of positronium.

5 Concluding Remarks

We have argued in this paper that there is an alternative to the axiom of standard quantum
mechanics that the Hamiltonian must be Hermitian. We have shown that the axiom of Her-
miticity may be replaced by the more physical condition of $P\mathcal{T}$ (space-time reflection) symmetry.
Space-time reflection symm etry is distinct &om the condition of Hermiticity, so it is possible to
consider new kinds of quantum theories, such as quantum field theories whose self-interaction
potentials are $ig\varphi^{3}$ or $-g\varphi^{4}$ . Such theories have previously been thought to be mathemati-
cally and physically unacceptable because the spectrum might not be real and because the time
evolution might not be unitary.

These new kinds of theories can be thought of as extensions of ordinary quantum mechanics
into the complex plane; that is, continuations of real symmetric Hamiltonians to compiex Hamil-
tonians. The idea of analytically continuing a Hamiltonian was first discussed in 1952 by Dyson,
who argued heuristically that perturbation theory for quantum electrodynamics is divergent [27].
Dyson’s argument involves rotating the electric charge $e$ into the complex plane $earrow \mathrm{i}e$ . Applied
to the quantum anharm onic oscillator, whose Hamiltonian is given in (29), Dyson’s argument
would go as follows: If the coupling constant $g$ is continued in the complex-y plane to $-g$ , then
the potential is no longer bounded belov, so the resulting theory has no ground state. Thus, the
ground-state energy $E0(g)$ has an abrupt transition at $g=0$. If we represent $E_{0}(g)$ as a series in
powers of $g$ , this series must have a zero radim of convergence because $E0(g)$ has a singularity at
$g=0$ in the complex-coupling-constant plane. Hence, the perturbation series must diverge for
all $g\neq 0$ . While the perturbation series does indeed diverge, this heuristic argument is flawed
because the $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}^{r}\mathrm{u}\mathrm{m}$ of the Hamiltonian (32) that is obtained remains ambiguous until the
boundary conditions that the wave functions must satisfy are specified. The spectrum depends
crucially on how this Hamiltonian with a negative coupling constant is obtained.

There are two ways to obtain the Hamiltonian (32). First, one can substitute $g=|g|e^{\mathrm{i}\theta}$ into
the Hamiltonian (29) and rotate fiiom $\theta=0$ to $\theta=\pi$ . Under this rotation, the ground-state
energy $E_{0}(g)$ becomes complex. Evidently, $E_{0}(g)$ is real and positive when $g>0$ and complex
when $g<08$ . Second, one can obtain (32) as a limit of the Ham iltonian

$H= \frac{1}{2}p^{2}+\frac{1}{2}m^{2}x^{2}+\frac{1}{4}gx^{2}(\mathrm{i}x)^{\epsilon}$ $(g>0)$ (35)

as $\epsilon$ : $0arrow 2$ . The spectrum of this Hamiltonian is real, positive, and discrete. The spectrum
of the limiting Hamiltonian (32) obtained in this manner 1s similar in structure to that of the
Hamiltonian in (29).

8Rotating from $\theta=0$ to $\theta=-\pi$ , we obtain the same Hamiltonian as in (32) but the spectrum is the complex
conjugate of the spectrum obtained when we rotate from $\theta=0$ to $\theta=\pi$ .
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How can the Ham iltonian (32) possess two different spectra? The answer lies in the boundary
conditions satisfied by the wave functions $\phi_{n}(x)$ . In the first case, in which $\theta=\arg g$ is rotated
in the complex-g plane from 0 to $\pi,$ $\psi_{n}(x)$ vanishes in the complex-r plane as $|x|arrow\infty$ inside the
wedges $-\pi/3<\arg x<0$ and $-4\pi/3<\arg x<-\pi$ . In the second case, in which the exponent
$\epsilon$ ranges from 0 to 2, $\phi_{n}(x)$ vanishes in the complex-z plane as $|x|arrow\infty$ inside the wedges
$-\pi/3<\arg x<0$ and $-\pi<\arg x<-2\pi/3$ . In this second case the boundary conditions hold
in wedges that are symmetric with respect to the imaginary axis; these boundary conditions
enforce the PT symmetry of $H$ and are responsible for the reality of the energy spectrum.

Apart from the spectra, there is another striking difference between the two theories corre-
sponding to $H$ in (32). The one-point Green’s function $G_{1}(g)$ is defined as the expectation value
of the operator $x$ in the ground-state wave function $\phi_{0}(x)$ ,

$G_{1}(g)=\langle 0|x|0$ } $/ \langle 0|0\rangle\equiv\int_{C}dxx\psi_{0}^{2}(x)/\int_{C}dx\psi_{0}^{2}(x)$ , (36)

where $C$ is a contour that lies 01 the asymptotic wedges described above. The value of $G_{1}(g)$

for $H$ in (32) depends on the limiting process by which we obtain $H$. If we substitute $g=g_{0}e^{\iota\theta}$

into the Hamiitonian (29) and rotate from $\theta=0$ to $\theta=\pi$ , we find that $G_{1}(g)=0$ for all $g$

on the semicircle in the complex-g plane. Thus, this rotation in the $g$ plane preserves parity
symmetry $(xarrow-x)$ . However, if we define $H$ in (32) by using the Hamiltonian in (35) and by
allowing $\epsilon$ to go from 0 to 2, we find that $G_{1}(g)\neq 0$ . Indeed, $G_{1}(g)\neq 0$ for all values of $\epsilon>0$ .
Thus, in this theory $P\mathcal{T}$ symmetry (reflection about the imaginary axis, $xarrow-x”$ ) is preserved,
but parity symmetry is permanently broken. This means that one might be able to describe the
dynamics of the Higgs sector by using a $-g\varphi^{4}$ quantum field theory,
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