
118

Exact WKB solutions at a regular singular
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0 Introduction
This report is based on a joint work with L. Nedelec.

Recall first the radial Schr\"odinger equation

$-h^{2} \frac{d^{2}u}{dx^{2}}+Q(x, h)u=0$ (1)

where the effective potential

$Q(x, h)=V(x)+ \frac{l(l+1)}{x^{2}}-E$ , $l\in \mathrm{N}=\{0,1,2, \ldots\}$

consists of the physicat potential $V(x)$ , the centrifugal potential 1 $(l+1)/x^{2}$

and the kinetic energy $E$ . The numbers $\{l(l+1)\}_{l\in \mathrm{N}}$ are the eigenvalues of
the Laplacian on the sphere $S^{2}$ .

For this equation, the origin $x=0$ is a regular singular point and the
Fuchs indices are $l+1$ and $-l$ .

On the other hand, the WKB approximations (or Liouville Green func-
tions) are given by

$Q^{-1/4} \exp(\pm\int^{x}Q^{1/2}dx/h)$ . (2)

These functions behave like $x^{1/2\pm\sqrt{l(l+1)}}$ as $x$ tends to 0 and the exponents
differ from the Fuchs indices. This means that the WKB approximation (2),
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which is the leading term of the asymptotic expansion as $harrow \mathrm{O}$ (in a pole
free and turning point free region), is not uniform with respect to $x$ near the
origin. This has been a problem since pointed out by Langer [5] (see [2] and
[4] for treatments by different exact WKB methods).

Let us consider here the 2 $\mathrm{x}2$ system

$\frac{h}{\mathrm{i}}\frac{du}{dx}=($ $x^{2}-E-\gamma h/x$ $-x^{2}+E\gamma h/x$ ) $u$ , $\gamma\in\frac{1}{2}+\mathbb{Z}$ . (3)

This equation comes from a model of the Born-Oppenheimer approximation
([1]).

The origin $x=0$ is a regutar singular point also for this equation, and
the Fuchs indices are $\pm\gamma$ .

The WKB approximations, on the other hand, are of the form

$\exp(\pm\int^{x}\sqrt{\alpha\beta}dx/h)(\begin{array}{l}(\alpha/\beta)^{1/4}\mp i(\beta/\alpha)^{1/4}\end{array})$

(see the WKB construction for systems in the next section). In this case, the
exponents of these functions are $\pm\gamma$ , which coincides with the Fuchs indices.

The aim of this report is to show that the exact WKB method established
in [1] for latter type systems can be applied to construct a subdominant
solution at a regular singular point as WKB solution. This enables us to
connect, via Wronskian formula, the subdominant solution with other WKB
solutions defined far away from the regular singular point.

1 Exact WKB method for 2\rangle \langle 2 systems

in this section we review the exact WKB method used in [1] for 2 $\mathrm{x}2$ system $\mathrm{s}$

in a regular domain, i.e. in a domain with neither singularity nor turning
point. This is a generalization of the exact WKB method of Gerard and
Grigis [3] for the Schr\"odinger equations.

Let us consider the first order $2\cross 2$ system

$\frac{h}{\mathrm{i}}\frac{d\tilde{u}}{dx}=\tilde{A}(x, h)\tilde{u}$ (4)

in a complex neighborhood ca of a point $x=x_{1}\in \mathbb{C}$ . We assume that A is
holomorphic in 0 depending regularly on $h$ (i.e. $A(x,$ $h)=A_{0}(x)+O(h)$ ),
and

$\mathrm{t}\mathrm{r}\tilde{A}=0$ , $\det\tilde{A}\neq 0$ .
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After the change of the unknown vector $u=T(\phi, \omega)\tilde{u}$ by a matrix

$T(\phi, \omega)=(\omega^{-1}\sin\phi(x)\cos\phi(x)$ $-\omega\sin\phi(x)\cos\phi(x))$ ,

with a suitable constant $\omega$ and a function $\phi(x),$ $u$ satisfies (4) with $\tilde{A}$ replaced
by an anti-diagonal matrix $A$ :

$\frac{h}{i}\frac{du}{dx}=A(x, h)u$ , $A=(\begin{array}{lll}0 \alpha(x h)-\beta(x,h) 0 \end{array})$ . (5)

Indeed, if
$\overline{A}=(\begin{array}{ll}a bc -a\end{array})$ , (6)

then A is aiso $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ free and the $(1, 1)$ -entry is

a $\cos 2\phi+\frac{1}{2}(\omega^{-1}b+\omega c)\sin 2\phi$ . (7)

Hence $A$ is anti-diagonal if we define $\phi(x)$ so that

$\tan 2\phi=-\frac{2a}{\omega^{-1}b+\omega c}$ . (8)

The function $\phi(x)$ defined by (8) is holomorphic in $\Omega$ , if the constant $\omega$ is
suitably chosen, i.e. if the right hand side of (8) differs from $\pm \mathrm{i}$ . Then $\alpha$ and
$\beta$ are given by

$\alpha=b\cos^{2}\phi-\omega^{2}c\sin^{2}$ $\{)$ $-2\omega a\cos\phi\sin\phi-\mathrm{i}h\phi’$ ,

$-\beta=c\cos^{2}\phi-\omega^{-2}b\sin^{2}\phi-2\omega^{-1}a\cos\phi\sin\phi+\mathrm{i}h\phi’$.
In the following, we assume for simplicity that $\alpha$ and $\beta$ are independent

of $h$ .
Put

$z(x)= \oint_{x_{0}}^{x}(\alpha\beta)^{1/2}dx$ , $H(z(x))=( \frac{\beta(x)}{\alpha(x)})1/4$ ,

and
$u=e^{\pm z(x)/h}(\begin{array}{ll}H(z)^{-1} H(z)^{-1}\mp iH(z) \pm iH(z)\end{array})w_{\pm}$.
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Then $w_{\pm}$ satisfy

$\frac{dw_{\pm}}{dz}=(\begin{array}{ll}0 H_{z}’/HH_{z}’/H \mp 2/h\end{array})w_{\pm}$ , (9)

where $H_{z}’$ stands for the derivative of $H$ with respect to $z$ . The point of
this reduction is that the singular part of the perturbation as $h$ tends to 0
appears only at the $(2, 2)$ element.

We define formal series

$w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm}= \sum_{n=0}^{\infty}w_{2n,\pm}$ , $w_{\mathrm{o}\mathrm{d}\mathrm{d},\pm}= \sum_{n=0}^{\infty}w_{2n+1,\pm}$ (10)

by $w_{0,\pm}\equiv 1$ and for $n\geq 1$ ,

$\{$

$(d/dz)w_{2n,\pm}$ $=(H_{z}’/H)w_{2n-1,\pm}$

$(d/dz\pm 2/h)w_{2n-1,\pm}$ $=(H_{z}’/H)w_{2n-2,\pm}$ ,
(11)

with initial conditions $w_{n,\pm}(z_{1})=0,$ $z_{1}=z(x_{1})$ . Then

$w_{\pm}=(\begin{array}{l}w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm}w_{\mathrm{o}\mathrm{d}\mathrm{d},\pm}\end{array})$

are formal solutions to (9), and consequently

$u_{\pm(x;x_{1})}=e^{\pm z(x)/h}(\begin{array}{ll}H(x)^{-1} H(x)^{-1}\mp iH(x) \pm iH(x)\end{array})(\begin{array}{l}w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm}w_{\mathrm{o}\mathrm{d}\mathrm{d},\pm}\end{array})$

are formal solutions to (5). We have the following theorem. See [1] for the
proof.

Theorem 1 1. The formal series (10) are absolutely convergent in a neigh-
borhool of $x_{1}$ ,

2. Let $\Omega_{\pm}$ be the set of $x\in\Omega$ such that there exsists a path from $x_{0}$ to $x$

in $\Omega$ along which ${\rm Re} z(x)$ increases strictly. Then in $\Omega_{\pm}$ we have for
each $N\in \mathrm{N}$

$w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\pm}- \sum_{n-0}^{N-1}w_{2n,\pm}=O(h^{N})$ , $w_{\mathrm{o}\mathrm{d}\mathrm{d},\pm}- \sum_{n-0}^{N-1}w_{2n+1,\pm}=O(h^{N+1})$ ,

3. The Wronskicrn (with respect to $x$) of tuto exact $WKB$ solutions are
given by

$\mathcal{W}(u_{+}(x, x_{1}),$ $u_{-}(x,\cdot x_{2}))$ $=2\mathrm{i}w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+}$ (r2 ; $x_{1}$ ),

where $\mathcal{W}(f, g)$ is by definition the determ inant of the matrix $(f, g)$ .
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2 Asymptotics at a regular singular point
In this section, we study the asymptotic behavior of the exact WKB solutions
to the system (5) near a regular singular point. Let us assume that or and $\beta$

have a simple pole at $x=0$ and put

$\alpha(x, h)=\frac{h}{x}\tilde{\alpha}(\frac{x}{h}, h)$ , $\beta(x, h)=\frac{h}{x}\tilde{\beta}(\frac{x}{h}, h)$ , (12)

where $\overline{\alpha}(y, h)$ and $\tilde{\beta}(y, h)$ are analytic symbols at $y=0$ . In order that the
Fuchs indices at the origin are independent of $h,$ $c_{1}=\tilde{\alpha}(0, h)$ and $c_{2}=\overline{\beta}(0, h)$

should be independent of $h$ . The argument of this section works in this
general setting, but in this report, we restrict ourselves to the quite simple
case where $\tilde{\alpha}$ and $\tilde{\beta}$ are linear functions:

$\tilde{\alpha}(y, h)=c_{1}+b_{1y}^{\nwarrow}$ , $\tilde{\beta}(y, h)=c_{2}+b_{2}y$ , (13)

and moreover we assume that $b_{1}$ and $b_{2}$ constants. This case permits us to
know the necessary informations about the geometry of the Stokes curves
and to give in a concrete way the angular domains around $x=0$ where the
asymptotic properties of the exact WKB solutions are valid. Moreover it is
possible to compare our local semiclassical problem for (5) when $x$ and $h$

are small with the equivalent global two points connection problem for the
non-semiclassical equation

$\frac{y}{\mathrm{i}}\frac{du}{dy}=(C+yB)u$ , $C=(\begin{array}{ll}0 c_{1}-c_{2} 0\end{array})$ , $B=(\begin{array}{ll}0 b_{1}-b_{2} 0\end{array})$ . (14)

The equation (14) has two singular points: $y=0$ and $y=\infty$ . $0$ is a regular
singular point and $\infty$ is a irregular singular point. The Fuchs indices at the
origin $y=0$ are the eigenvalues of $C$ , i.e. $\pm\sqrt{c_{1}c_{2}}$ . Put $7=\sqrt{c_{1}c_{2}}$ and
assume $\gamma>0$ . On the contrary, the asymptotic behavior of solutions at $\infty$

is dominated by the eigenvalues of $B$ , i.e. $\pm\sqrt{b_{1}b_{2}}$. We assume also $b_{1}b_{2}\neq 0$ .
The two points connection problem is to study the asymptotic behavior

as $y$ tends to infinity of the subdominant solution, corresponding to the index
$+\gamma$ , which is characterized by its asymptotic behavior as $y$ tends to 0 up to
constant multiplication. The aim of this section is to do this by studying
the semiclassical version (5) with the exact WKB method of the previous
section.
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Let us go back to the system (5). Then there are two turning points $x_{1}$

and X2., i.e. zeros of $\det$ $A$ near 0 which tend to 0 as $h$ tends to 0:

$x_{j}=y_{j}h$ , $y_{j}=-c_{j}/b_{j}(j=1,2)$ .

Let us construct an exact WKB solution of $+$ type which was introduced in
the previous section, but with the base point $x_{1}$ of the symbol placed at the
origin, where the equation is singular. It is necessary, therefore, to check that
the construction is still possible and, in particular, to study the asymptotic
properties of the solutions as $x$ and $h$ tend to 0.

Put as in section 1,

$z(x, h)= \oint^{x}\frac{(\tilde{\alpha}\tilde{\beta})^{1/2}}{t}dt=\gamma h\int^{x}\sqrt{(1-\frac{t}{y_{1}h})(1-\frac{t}{y_{2}h})}\frac{dt}{t}$,

$H(x)=( \frac{\tilde{\beta}}{\tilde{\alpha}})^{1/4}=(\frac{c_{2}}{c_{1}}\cdot\frac{1-x/(y_{2}h)}{1-x/(y_{1}h)})^{1/4}$ ,

with branch

$(\tilde{\alpha}\tilde{\beta})^{1/2}|_{x=0}=\gamma h$ , $( \frac{\tilde{\beta}}{\tilde{\alpha}})1/4|_{x=0}=(\frac{c_{2}}{c_{1}})^{1/4}>0$ .

We rewrite the recurrence equations (11) in the variable $x$ in order to give
the initial conditions at the origin instead of $z(\mathrm{O})=\infty:w_{0,+}\equiv 1$ and for
$n\geq 1$ ,

$\{$

$(d/dx)u_{2n,+}$ $=(H_{x}’/H)w_{2n-1,+}$

$\{d/dx\pm(2/h)(\tilde{\alpha}\tilde{\beta})^{1/2}/x)\}w_{2n-1,+}$ $=(H_{x}’/H)w_{2n-2,+}$ ,
(15)

with initial conditions $w_{n,+}(0)=0$ . Here $H_{x}’$ stands for the derivative of $H$

with respect to the x-variable.
Let

$\theta_{j}=\arg y_{j}(j=1,2)$ , $0\leq\theta_{2}-\theta_{1}\leq\pi$

and $\triangle_{\epsilon}$ be the union of two angular domains $\triangle_{\epsilon}^{1}$ and $\triangle_{\epsilon}^{2}$ :

$\triangle_{\epsilon}^{1}=\{x\in \mathbb{C}\backslash \{0\};\arg x\in(\theta_{1}+\epsilon, \theta_{2}-\epsilon)\}$

$\triangle_{\epsilon}^{2}=\{x\in \mathbb{C}\backslash \{0\};\arg x\in(\frac{\theta_{1}+\theta_{2}-3\pi}{2}+\epsilon, \frac{\theta_{1}+\theta_{2}-\pi}{2}-\epsilon)\}$ .
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Theorem 2 1. Each function $w_{n,+}$ is holomorphic in a neighborhood $D$

of the origin and the series

$w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+}= \sum_{n=0}^{\infty}w_{2n,+}$ , $w_{\mathrm{o}\mathrm{d}\mathrm{d},+}= \sum_{n=0}^{\infty}w_{2n+1,+}$ (16)

converge absolutely in $D$ .

2. When $(x, h)arrow(0,0)$ in $\triangle_{\epsilon}\mathrm{x}(0, h_{0}]_{2}$ we have

A-l

$w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+}- \sum w_{2n,+}=\{$

$n=0$

$O((|x|/h)^{2N})$ as $|x|/harrow 0_{\rangle}$

$O((h/|x|)^{2N})$ as $h/|x|arrow \mathrm{O}$ ,

$w_{\mathrm{o}\mathrm{d}\mathrm{d},+}- \sum_{n=0}^{N-1}w_{2n+1,+}=\{$

$O((|x|/h)^{2N+1})$ as $|x|/harrow 0$ ,
$O((h/|x|)^{2N+2})$ as $h/|x|arrow \mathrm{O}$ ,

Corollary 3 Let

$u(x, h)=e^{z(x)/h}(\begin{array}{ll}H(z(x))^{-1} H(z(x))^{-1}-iH(z(x)) iH(z(x))\end{array})(\begin{array}{l}w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},+}w_{\mathrm{o}\mathrm{d}\mathrm{d},+}\end{array})$ ,

then $u$ is a solution to (5) with A given by (12) and (13). Moreover, when
$(x, h)arrow(0,0)$ in $\triangle_{\epsilon}\mathrm{x}(0, h_{0}]$ , we have

$u(x, h)\sim e^{z(x)/h}(\begin{array}{l}H(x)^{-1}-iH(x)\end{array})$

both as $|x|/harrow \mathrm{O}$ and $h/|x|arrow \mathrm{O}$ . In particular,

$u(x, h)\sim cx^{\gamma}(\begin{array}{l}(c_{1}/c_{2})^{1/4}(c_{2}/c_{1})^{1/4}\end{array})$ as $|x|/harrow 0$ , (17)

for some constant $c$

The last formula (17) means that $u$ is a subdominant solution at the
origin.

We prove here the second part of Theorem 2. For this, we need the
following lemma:
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Lemma 4 Lett $z_{1},$ $z_{2}$ be complex numbers whose arguments $\phi_{1}$ and $\phi_{2}$ satisfy

$\epsilon<\phi_{1},$ $\phi_{2}<2\pi-\epsilon$ , $\pi+2\epsilon<\phi_{1}+\phi_{2}<3\pi-2\epsilon$ (18)

for a positive $\epsilon$ . Then there exists a positive constant $\delta$ such that

$\frac{{\rm Re}\sqrt{(1-\sigma/z_{1})(1-\sigma/z_{2})}}{1+\sigma}\geq\delta$ $(0<\sigma<+\infty)$ ,

where the square root is defined to be 1 uthen $\sigma=0$ .

Remark: Off course the condition (18) should be regarded as modulo $2\pi$ .
For exampie, it can be replaced by

$-2\pi+\epsilon<\phi_{1}<-\epsilon,$ $\epsilon<\phi_{2}<2\pi-\epsilon,$ $-\pi+2\epsilon<\phi_{1}+\phi_{2}<\pi-2\epsilon$. (19)

Proof.$\cdot$ As a increases, the argument $\arg(1 -- \sigma/z_{j})$ increases if $0<\phi_{j}\leq\pi$

and decreases if $\pi<\phi_{j}<2\pi$ , and

$\lim_{\sigmaarrow 0}\arg(1-\sigma/z_{j})=0$ , $\lim_{\sigmaarrow+\infty}\arg(1-\sigma/z_{j})=\pi-\phi_{j}$ .

Let $\psi(\sigma)$ be the argument of $\sqrt{(1-\sigma/z_{1})(1-\sigma/z_{2})}$ , which is the mean of
$\arg(1-\sigma/z_{1})$ and $\arg(1-\sigma/z_{2})$ . Then

$0\leq\psi(\sigma)\leq\pi-(\phi_{1} +\phi_{2})/2$ if $0<\phi_{j}\leq\pi(j=1,2)$ ,
$\pi-(\phi_{1}+\phi_{2})/2\leq\psi(\sigma)\leq 0$ if $\pi\leq\phi_{j}<2\pi(j=1,2)$ ,
(yr $-\phi_{2}$ ) $/2\leq\psi(\sigma)\leq(\pi-\phi_{1})/2$ if $0<\phi_{1}\leq\pi\leq\phi_{2}<2\pi$ .

In any case, under the condition (18), vxe have $|\psi(\sigma)|<(\pi$ – $\epsilon)/2$ for all
$\sigma>0$ . It follows that the real part of $\sqrt{(1-\sigma/z_{1})(1-\sigma/z_{2})}/\sigma$ is bounded
from below by a positive constant. $\square$

Proof of Theorem 2: The recurrence equations (15) can be written in the
integral form:

$w_{2n,+}=J[w_{2n-1,+}]$ , $w_{2n-1,+}=I[w_{2n-2,+}]$ ,

where
$J[f]= \int_{0}^{x}\frac{H_{x}’(\xi)}{H(\xi)}f(\xi)d\xi$ ,
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$I[f]= \int_{0}^{x}\exp\{-\frac{2}{h}\oint_{\xi}^{x}\frac{\sqrt{\tilde{\alpha}(t)\tilde{\beta}(t)}}{t}dt\}\frac{H_{x}(\xi)}{H(\xi)},f(\xi)d\xi$ .

In our special case, the integral operators $J$ and I are of the form

$J[f]= \frac{y_{1}-y_{2}}{4\gamma^{2}}I_{0}^{x/h}\frac{f(h\eta)d\eta}{(1-\eta/y_{1})(1-\eta/y_{2})}$,

$I[f]= \frac{y_{1}-y_{2}}{4\gamma^{2}}\mathrm{x}$

$\int_{0}^{x/h}\exp\{-2\gamma I_{\eta}^{x/h}\frac{\sqrt{(1-s/y_{1})(1-s/y_{2})}}{s}ds\}\frac{f(h\eta)d\eta}{(1-\eta/y_{1})(1-\eta/y_{2})}$ .

Let $x=re^{i\theta}$ and put $\eta=\rho e^{i\theta}$ , $s=\sigma e^{i\theta}$ . Then we have

$|J[f]| \leq\frac{|y_{1}-y_{2}|}{4\gamma^{2}}||f||_{\infty\oint_{0}^{r/h}\frac{d\rho}{|(1-\rho e^{i\theta}/y_{1})(1-\rho e^{i\theta}/y_{2})|}}$ ,

$|I[f]| \leq\frac{|y_{1}-y_{2}|}{4\gamma^{2}}||f||_{\infty}\cross$

$\int_{0}^{r/h}\exp$

$\frac{d\rho}{|(1-\rho e^{i\theta}/y_{1})(1-\rho e^{i\theta}/y_{2})|}$ .

We apply Lemm a 4 with $z_{j}=y_{j}/e^{i\theta},$ $\phi_{j}=\arg z_{j}=\theta_{j}-\theta(j=1,2)$ . We can
easily check that $0\leq\phi_{2}-\phi_{1}\leq\pi$ , and

$x\in\triangle_{\epsilon}^{1}$ $\Rightarrow$ $\epsilon-\pi<\phi_{1}<-\epsilon$ , $\epsilon<\phi_{2}<\pi-\epsilon$,

$x\in\triangle_{\epsilon}^{2}$ $\Rightarrow$ $\epsilon<\phi_{1},$ $\phi_{2}<2\pi-\epsilon$ , $\pi+2\epsilon<\phi_{1}+\phi_{2}<3\pi-2\epsilon$ .
Hence

$|J[f]| \leq\frac{|y_{1}-y_{2}|}{4\gamma^{2}\delta^{2}}||f||_{\infty}\oint_{0}^{r/h}\frac{d\rho}{(1+\rho)^{2}}$,

$|I[f]| \leq\frac{|y_{1}-y_{2}|}{4\gamma^{2}\delta^{2}}||f||_{\infty}\int_{0}^{r/h}e^{2\gamma\delta(\rho-r/h)_{\frac{d\rho}{(1+\rho)^{2}}}}$.
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Then Theorem 2 follows from

$\int_{0}^{r/h}\frac{d\rho}{(1+\rho)^{2}}=\{$

$O(r/h)$ $(r/harrow \mathrm{O})$ ,

$O(1)$ $(h/rarrow 0)$ ,

$\int_{0}^{r/h}e^{2\gamma\delta(\rho-r/h)_{\frac{d\rho}{(1+\rho)^{2}}=}}\{$

$O(r/h)$ $(r/harrow \mathrm{O})$ ,

$O(h^{2}/r^{2})$ $(h/rarrow \mathrm{O})$ .
口
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