
57

中程度の難しさをもつ関数のモデルと方式
(Extended Abstract)

AModel and Methods for Moderately-Hard Functions
(Extended Abstract)

小野寺 貴男 * 田中 圭介 *

Takao Onodera Keisuke Tanaka

東京工業大学 数理・計算科学専攻
Dept. of Mathematical and Computing Sdences, Tokyo Institute of Technology

Summary– Moderately-hard ffinctions are useful for many applications and there are
quite many papers concerning on moderately-hard functions. However, the formal model for
moderately-hard functions have not been proposed. In this paper, first, we propose the formal
model for moderatel$]$ -hard functions. For this $\mathrm{p}\mathrm{u}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}_{3}$ we construct the computational model
and investigate the properties desired for moderately-hard functions. Then, we propose that
some particular functions can be used as moderately-hard functions. These functions are
based on two ideas: the difficulty of factoring $p^{r}\mathrm{r}l$ and sequential computation of primitive
functions.

Keywords: Moderately-hard functions, One-wayness, PRAM, Factoring.

1Introduction
One of key ideas in cryptography is using in-

tractable problems, i.e. problems that cannot be
solved effidently by any feasible machine, in or-
der to construct secure protocols. There are tight
connections between complexity theory and cryp-
tography.

However, the concept of hard functions, e.g. the
one-way functions, is sometimes considered to be
too strong. As we will see later, many tasks, rang-
ing from ones such as combating spam mails to
ones such as fevx-round zero knowledge, require
another notion of intractability called moderately
hardness. While there are many applications, where
the moderately intractability is needed, the study
of moderately hardness has not been much done,
compared w ith the strict intractability,

Dwork and Naor [6] suggested moderately-hard
functions for “pridng via processing” in order to
deter abuse of resources, such as spam. Bellare and
Goldwasser $[4, 3]$ suggested “time capsules” for key
escrowing in order to deter widespread wiretap-
ping. Amajor issue there is to verify at escrow-
time that the right key is escrow ed. Rivest, Shamir,

$*$ SupPorted in part by NTT Information Sharing Plat-
form Laboratories and Grant-in-Aid for Sdentific ${\rm Re}$

search, Ministry of Education, Culture, Sports, Sdence,
and Technology, 14780190, 16092206

and Wagner [11] suggested $” \mathrm{t}\mathrm{i}$ me-locks” for en-
crypting data so that it is released only in the
future. This is the first scheme that takes into
account the parallel power of attackers. They sug-
gested using the “power function”, i.e. comput-
ing $\mathrm{f}(\mathrm{x})$

$=g^{2^{\underline{\mathrm{o}}^{\mathrm{z}}}}\mathrm{m}\mathrm{o}\mathrm{d} n$, where n is aproduct of
two large primes. Without knowing the factor-
ization of Tl , the best way that is known is re-
peated squaring–a very sequential computation
in nature. However, in their setting no measures
are taken to verify that the puzzle can be un-
locked in the desired time. Baneh and Naor [2]
introduced and constructed “timed commitment”
schemes. Timed commitment is commi rment in
which there is an optional forced opening phase
enabling the receiver to recover with effort the
committed value without the help of the commit-
ter. They suggested that moderately-hard func-
tions can be used to various applications, e.g. fair
contract signing schemes, collective coin flipping
schemes, and zer0-knowledge protocols.

These proposed functions are all CPU-bound.
The CPU-bound approach might suffer ffom a pos-
$\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\sigma \mathrm{i}$ mismatch in processing among different types
of machines, e.g. PDAs versus servers. In or-
der to remedy these disparities, Adadi, Burrows,
Manasse, and Wobber [1] proposed an alternative
computational approach based on memory latency

数理解析研究所講究録 1426巻 2005年 57-63

58

Their suggestion is to design pricing functions re-
quiring amoderately large number of scattered
me mory accesses. Since memory latencies vary
much less across machines than do clock speeds,
memory-bound functions are more equitable than
CPU-bound functions.

As we have seen above, moderately-hard func-
tions are useful for many applications and there
are quite many papers concerning on moderately-
hard functions. However, the formal model for
moderately-hard functions have not been proposed.
In the first half of this paper, we propose the for-
mal model for moderately-hard functions. For this
purpose, we construct the computational model
and investigate the properties desired for moderately-
hard functions. In the second half of this paper, we
propose that some particular functions can be used
as moderately-hard functions. These functions are
based on two ideas: the difficulty of factoring $p^{r}q$

and sequential computation of primitive functions.
This paper is organized as follows. In Section 2,

we provide the model of moderately-hard func-
tions. We investigate the required properties for
moderately-hard functions. In Section 3, we sug-
gest to use some particular functions based on the
difficulty of factoring $p^{r}q$ as moderately-hard func-
tions. In Section 4, we propose moderately-hard
functions based on the idea of sequential computes

$\mathrm{i}\mathrm{n}\mathrm{g}$.
Due to lack of space, we omit most of the part

of the model for moderately-hard functions. We
also omit the details of our schemes. See the full
version [9] of our paper.

2The Model of Moderately-Hard
Functions

Moderately-hard functions have many applica-
tions, e.g. timed commitment schemes, fair con-
tract signing schemes, collective coin flipping schemes,
and zer0-knowledge protocols. As above, moderately
hard functions are useful tools. However, there
seems no formal model for moderately-hard func-
tions. In this section, we provide this formal model.

We define moderately hardness by dividing the
definition into two parts. Let an input of afunc-
than f he x and an output be y . We say afunction
f is moderately hard if,

1. there is no algorithm which can computes y

given x in asmall amount of time and

2. f can be computed in acertain amount of
time.

We also consider the second property, which we
name easy verifiability. We say afunction has the

property of easy verifiability if anyone given x and
y , can verify that $f(x)$ $=y$ in asmall amount
of time. The easy verifiability is useful in various
applications, e.g. timed commitment schemes.

The third property we desire is that f has a
$sh\mathrm{f}\mathrm{J}\#\mathrm{r}\mathrm{j}u\mathrm{t}$. Shortcuts of moderately-hard functions
share asimilar idea of trapdoors of one-way func-
tions. Amoderately-hard function with ashortcut
is easy to compute.

3Candidates ofModerately-Hard Func-
tions: Idea 1

In this PaPer, we propose that some particu-
lar functions based on two ideas can be used as
moderately-hard functions. In this section, we adopt
several functions which are based on the difficulty
of factoring composite $\mathcal{T}\mathrm{L}$ $=p^{?^{\neg}}q$, which both P and
q are the same size primes.

The security of many cryptographic techniques
depends on the intractability of the integer fac-
torization problem. The moduli of the form n $=$

$p^{\Gamma}q$ have found many applications in cryptography.
For example, Fujioka, Okamoto, and Miyaguchi [7]
used amodulus $T\mathrm{b}$

$=\mathrm{f}?^{2}\mathrm{f}\mathrm{f}$ in an electronic cash
scheme. Okamoto and Uchiyama [8] used n $=p^{2}q$

for apublic key system. Takagi [12] observed that
the RSA decryption can be performed significantly
faster by using amodulus of form n $=p^{r}q$. In all
these applications, the factors P and q are approx-
imately the same size. The security of systems
relies on the difficulty of factoring n .

Boneh, Durfee, and How grave-Graham [5] show ed
that factoring n $=p^{r}q$ becomes easier as r gets big-
ger. For example, when r is on the order of logp,
their algorithm factors n in apolynomial time.
When n $=p^{r}q$ with r on the order of $\sqrt{\log p}$, their
algorithm is the fastest one for factoring n among
the current methods.

We use anon-standard notation and write $\exp(n)=$
$2^{T\mathrm{L}}$. Then, we can recover the factor p from $r\iota$ and
r by an algorith m with arunning time of:

$\exp(\frac{1\mathrm{o}\mathrm{g}p}{r})\cdot O(r^{12}(\log_{2}r\mathrm{B})^{2})$.

The larger r is, the easier the factoring problem
becomes.

The moderately-hard functions that we employ
are based on the difficulty of the factorization of
co mposite $T\mathrm{b}$ $=p^{r}q$. Set p and q are roughly the
same size and n $=p^{r}q$. As above description, if we
deal with alarge number as r , we can extract the
prime factors p and q of n modestly quickly. We
regard the functions in this section as moderately-
hard ones by using acomposite number Tb which
can be represented as n $=p^{\tau}q$. The difficulty of

ss

computing our functions is based on the size of 7^{\neg} .
The reason why we employ n which is not agen-
eral composite number represented by $p_{1}^{\epsilon_{1}}\cdots p_{h}^{\mathrm{e}_{\mathrm{h}}}$

for primes $p_{1,\}}\ldots p_{\mathrm{A}_{1}^{-}}$ but aproduct of two primes
is to change the difficulty of our functions easily.
In our setting, we can ch ange the difficulty of func-
tions by only changing the size of r .

Here, we describe some notations that we use
in this section. Let ffl $\in Z_{\mathrm{n}}^{*}$. If there exists an
x $\in Z_{T\mathrm{b}}^{*}$ such that $x^{2}\equiv \mathrm{f}\mathrm{f}\mathrm{l}$

$(\mathrm{m}\mathrm{o}\mathrm{d} n)$, $\mathrm{r}\mathrm{i}$ is said to
be aquadratic reszdue: modulo n . If no such x ex-
ists, then ffl is called a $\mathrm{q}\mathrm{u}\mathrm{f}\mathrm{i}d?^{\neg}\Pi_{\mathrm{J}\mathfrak{x}_{\dot{\mathrm{f}}\mathrm{f}\mathrm{j}}}$

$7\mathrm{L}\mathrm{f}^{\mathrm{i}n}$ residue mod
ulo n . The set of all quadratic residues modulo
n is denoted by $\mathrm{l}\Xi_{T\mathrm{L}}$ and the set of all quadratic
non-residues is denoted by $\tilde{\mathrm{Q}}_{\Pi}$. Let $J_{T\mathrm{L}}$ be set of
the elements $\mathrm{f}\mathrm{i}$

$\in\Sigma_{\mathrm{n}}^{*}$ with Jacobi symbol $(\frac{\mathrm{f}1}{T\mathrm{b}})=1_{\mathrm{J}}$

where n ≥ 3 is an odd integer.
We consider the following five functions are mod-

erately hard.

$f(x)$ $=\sqrt{\Pi \mathrm{i}}\mathrm{m}\mathrm{o}\mathrm{d} r\}$ (1)

$f(\mathrm{n}:)=\{$
1 x $\in Q_{\mathrm{n}}$

0 z

$\in\overline{\mathrm{Q}}_{\mathrm{n}}$

(2)

$\mathrm{f}(\mathrm{x})$ $=1\mathrm{o}_{\Leftrightarrow g}^{\mathrm{t}T}X$
$\mathrm{m}\mathrm{o}\mathrm{d} n$ (3)

$f(x)$ $=‘\sqrt[t]{x}\mathrm{m}\mathrm{o}\mathrm{d} T\mathrm{L}^{2}$ (4)

$f(x)$ $=\sqrt[\mathrm{L}]{x}\mathrm{m}\mathrm{o}\mathrm{d} \mathcal{T}\mathrm{L}$. (5)

In the rest of this section, we observe these func-
tions.

the larger the difference between the time needed
to evaluate f fllld the time needed for verification.

Let p and q both primes of the same size, and T

apositive integer. The first implementation of our
idea is based on the difficulty of computing square
roots modulo acomposite number $T1$, where n $=$

$p^{r}q$. We describe the moderately-hard function as
follows.

Preparation: Let n $=p” q_{3}$ where p and q are
both primes of the same size where p $\equiv q$

$\equiv 3$

$(\mathrm{m}\mathrm{o}\mathrm{d} 4)$, and r is apositive integer.

Definition of f : The domain of f is $\mathrm{Q}_{T\mathrm{L}}$. $\mathrm{f}(\mathrm{x})$ $=$

$\sqrt{x}\mathrm{m}\mathrm{o}\mathrm{d} n$.

Verification: Given x and $y=f(x)$, check that
$y^{2}=x$ $\mathrm{m}\mathrm{o}\mathrm{d} n$.

Shortcut: The factors p and q of n and the in-
teger r .

Computing f without Shortcut: Compute f

according to the algorithm $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\in \mathrm{i}\mathrm{S}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}-$

Root.

Computing f with Shortcut: Compute f ac-
cording to the algorithm ComputeSquare-
Root except for step 1.

The square roots of an element x modulo n can
be extracted by the Chinese Remainder theorem
quickly, if we know the prime factors p and q of
n .

3.1 Computing Square Roots

Dwork and Naor [6] suggested arnoderately-
hard function based on the difficulty of comput-
ing square roots modulo p . The checking step for
verification of computing requires only one multi-
plication. However, there is no shortcut for their
function, i.e. no one can compute the function
easily,

We describe their function as follows.

Preparation: A $\mathrm{p}_{\mathrm{I}}\mathrm{i}$ me p of length depending on
difference parameter.

Definition of f :The domain of f is Z_{p} . $\mathrm{f}(\mathrm{x})$ $=$

$\sqrt{\mathrm{i}\mathrm{E}}$ rnod iF \cdot

Verification: Given x and y $=f(\Pi \mathrm{j})1$ check that
$y^{2}=x$ mod p.

The function computing asquare root modulo $\mathrm{F}1$

has shortcuts. When we want to change the dif-
ficulty of the function, the only thing we have to
do is changing the size of r . We do not need to
change the size of outputs of the function. There-
fore, even if we want to change the difficulty of the
functions, we can use the same size moduli. On
the other hand, the function computing asquare
root modulo p seems not to have shortcuts, and in
order to change the difficulty of the function, we
have to change the size of modulo

The checking step for verification of computing
requires only one multiplication. In contrast, no
method of computing square roots $\mathrm{m}\mathrm{o}\mathrm{d} p$ is known
that requires fewer than about logp multiplica-
tions. Thus, the larger we take the length of p ,

80

Algorithm ComputeSquareRoot.
Input: acomposite number 71 and an element $\Pi:\in\{2_{\mathrm{n}}$.

\langle n $=p^{\Gamma} \mathrm{r}\int \mathrm{J}\mathrm{l}$ where p $\equiv q$
$\equiv 3$ $(\mathrm{m}\mathrm{o}\mathrm{d} 4))$

Output: asquare root y of x $\mathrm{m}\mathrm{o}\mathrm{d} n$.
1. Find the prime factors of n .
2. Do the follow $\mathrm{i}\mathrm{n}\mathrm{g}$:

2.1. Compute $r_{q}=x^{\mathrm{f}p+1]/4}$ mod g by using
the Square-and-Multiplyalgorithm-.

3. Compute r_{p} such that x $\equiv r_{p}^{\Delta}(\mathrm{m}\mathrm{o}\mathrm{d} p^{r})$ as follows
w here p^{r} is represented by $\sum_{\mathrm{z}=0}^{l}k_{\mathrm{i}}2^{\mathrm{R}}$:
3.1. Compute $\prime r_{p}=x^{[\mathrm{p}+1\}/4}$ rood p .
3.2. For 2fro m

1 to l do the following:

2.1. Compute $r_{p}=r_{\mathrm{f}^{\mathrm{J}}}+ \frac{x}{\mathrm{i}\exists}\overline{r}_{\mathrm{I}^{\mathrm{I}}}A-r^{2}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{d} p^{\tau^{\mathrm{J}}}\lrcorner$

$\underline{\mathrm{Q}}$

3.2.2. Compute $r_{\mathrm{p}}=r_{\mathrm{p}}.+ \frac{\pi-r_{\rho}}{\Leftrightarrow.-\mathfrak{o}_{r}}\mathrm{m}\mathrm{o}\mathrm{d} p^{T}$.
4. Do the following:

4.1. Set $a_{0}\mapsto p^{\tau_{1}}b_{\mathrm{f}\mathrm{J}}arrow q$, $\mathrm{f}_{\mathrm{r}\rfloor}\mapsto 0$, f $arrow 1$, $s_{13}arrow 1$,
and $\mathit{8}\mapsto 0$.

4.2. Compute u $= \mathrm{L}_{\Pi}\frac{\mathrm{n}}{b}\mathrm{L}\mathrm{J}4$ and b $=\mathrm{f}\mathrm{f}\mathrm{l}_{\mathrm{I}1}-ub_{0}$.
4.3. While $\xi j>$ 0_{1} do the following:

4.3.1. Co mpute $\mathrm{t}J$ $=t_{\mathrm{G}}$ –ut and set to $\mapsto t$

and f

$\mapsto \mathrm{u}$.
4.3.2. Compute $\prime u$ $=s_{\mathrm{G}}$ –us and set so $arrow s_{\mathrm{I}}$

s $-v$, n_{0}
$\mapsto b_{0}$ and $b_{\mathrm{f}\mathrm{J}}arrow b$.

4.3.3. Compute u $= \mathrm{L}\frac{\mathrm{f}1\Pi}{b_{0}}\rfloor$ and $l\mathrm{J}$

$=\mathrm{n}_{0}-ub_{\mathrm{f}\mathrm{J}}$.
5. Compute $y=rptq$ $+\prime r_{q}sp^{\Gamma}$

$\mathrm{m}\mathrm{o}\mathrm{d} n$.
6. Return y .

3.2 Deciding Quadratic Residuosity

We can also use the decisional version of square
roots problem for modest$\mathrm{e}\mathrm{l}\mathrm{y}$-hard functions. In
this section, we describe the function which is based
on the difficulty of distinguishing x $\in J_{\mathrm{n}}$ is aquadratic
residue or not. Unfortunately, this function seems
not to be able to check the validity of the solution
directly. To solve this problem, we use prime fac-
tors of acomposite number 71 as ashortcut and
give it to the verifier. Then, the verifier can com-
pute f quickly and verify the value by using the
shortcut.

Preparation: Let n $=2\}^{T}q$, where p and q are
both primes of the same size and r is apos-
itive integer.

Definition of f : The domain of f is J_{Π} .

$f(x)$ $=\{$
1 x $\in Q_{\mathrm{n}}$

G x
$\in\overline{\mathrm{Q}}_{\mathrm{f}\mathrm{f}1}$

(6)

Verification: Given x, y $=f(\mathrm{z}:)\mathrm{l}$ p, and q, check
by using the algorithm $\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{i}\mathrm{s}\mathrm{h}\prod \mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}-$

cResidue except for step 1.

Shortcut: The factors p and q of n and the in-
teger r .

Computing f without Shortcut: Compute f.
according to the algorithm DistinguishQuadrati-
residue

Computing f with Shortcut: Compute f ac-
cording to the algorithm DistinguishQuadrati-
cResidue except for step 1.

Algorithm DistinguishQuadraticResidue.
Input: acomposite nu mber $\mathrm{f}n$ $(n =p^{r}q)$ and an

element x $\in J_{n}$.
Output: $y=1$ if x $\in Q_{\mathrm{n}}$ and $y=0$ if x

$\in\tilde{\mathrm{Q}}_{T\mathrm{b}}$

1. Find the prime factors of n .
2. Compute the Legendre symbol $(\frac{\mathrm{z}}{p})$ of x $\mathrm{m}\mathrm{o}\mathrm{d} p$

by the equation $(\frac{x}{p})=x^{[\mathrm{p}-1\}/2}\mathrm{m}\mathrm{o}\mathrm{d} p$.
3. In asimilar way, compute the Legendre symbol $(\frac{x}{\mathrm{f}1})$

of x mad q .
4. Return $y=1$ if $(\frac{\mathrm{T}}{\mathrm{p}})=(\frac{\mathrm{T}}{q})=1$ and $y=0$ otherwise.

3.3 Computing Discrete Logarithms
The security of many cryptographic techniques

depends on the intractability of the discrete Jog-
arithm problem. Let P be aprime. We consider
agroup $Z_{F^{\mathrm{J}}}^{*}$ of order P -1 with generator ffl. Let
P $-1=2p^{\mathrm{r}}\mathrm{r}\mathrm{J}$, where $\int \mathrm{J}$ and q are both primes
of the same size and r is apositive integer. In
cryptographic settings, we assume that there is no
algorithm for solving the discrete logarithm prob-
lem in practical time. However, if we take alarge
number for r to factorize $F-1_{1}$ the discrete loga-
rithm problem modulo alarge prime is reduced to
that modulo asmall prime. This means that the
discrete logarithm problem of this type is amod-
estly difficult (not infeasible) one. In this way, a
function for computing discrete logarithms can be
used for amoderately-hard function.

We describe the moderately-hard function based
on the difficulty of the discrete logarithm problem.

Preparation: Let n $=2p^{r}q$, where p and q are
both primes of the same size, n $[perp] 1$ is also a
prime, and r is apositive integer. Let tt be
agenerator of $Z_{\mathrm{n}+1}^{*}$.

Definition of f :The domain of f is $Z_{\mathrm{n}+1}^{*}$. $\mathrm{f}(\mathrm{x})$ $=$

$\log_{\mathrm{f}1}x$.

Verification: Given ffl, x , and $y=f(x)$, check
that x

$=\mathrm{f}\mathrm{n}^{\mathrm{f}}$ rpod n $+1$.
Shortcut: The factors fl and q of n and the in-

teger r.

Computi ng f without Shortcut: Compute f

according to the algorithm ComputingDis-
creteLogarithm.

Bl

Computing f with Shortcut: Compute f ac-
cording to the algorithm ComputingDis-
creteLogarithm except for step 1.

The domain Z_{F}^{*} of this function is dense, and
this property is useful for many applications. For
example, if we use this function for co mbatting
spam mail, we make the sender co mpute $f(m)_{\mathrm{p}}$

where m is amessage, to charge some computa-
tional cost to the sender. Here, the message space
is restricted to the domain of the functions. There-
fore, this dense property is useful. Note that the
other functions we employ in this section do not
have this property.

Algorithm ComputingDiscreteLogarithm.
Input: acomposite number n $(n =2p^{T}q)$,

where $T\mathrm{B}$ $+1$ is aprime, agenerator fl of $Z_{\mathrm{n}+1}^{*}$,
and an element $\Pi \mathrm{j}$ $\in Z_{\mathrm{t}\mathrm{t}+1}^{*}$.

Output: the discrete logarithm $y=\log_{\mathrm{f}1}x$.
1. Find the prime factors of $7\mathrm{I}$.
2. Do the following:

(Compute $y\mathrm{z}$
$=y\mathrm{m}\mathrm{o}\mathrm{d} 2.$)

2.1. Compute $\overline{\mathrm{n}}=\mathrm{n}^{\mathrm{p}^{t}q}\mathrm{m}\mathrm{o}\mathrm{d} n$ $+1$ and
$\overline{x}=x^{\mathrm{p}^{\tau}q}$ rood n $+1$.

2.2. Compute $y_{2}=\log_{\overline{\mathrm{f}1}}\overline{x}$.
3. Do the following:

(Compute $y_{\mathrm{I}\}}=l_{0}+l_{1}p+\cdots+l_{r-1}p_{\mathrm{J}}^{r-1}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$

$y_{\mathit{1}\}}=y$
$\mathrm{m}\mathrm{o}\mathrm{d} p^{r}.)$

3.1. Set $7arrow 1$ and $l_{-1}.-0$.
3.2. Compute $\overline{\alpha}=\mathrm{n}^{\mathrm{n}/1)}$.
3.3. For i from 0to r -1 do the follow $\mathrm{i}\mathrm{n}\mathrm{g}$:

3.3.1. Compute γ

$=7^{\mathrm{f}\mathrm{f}\mathrm{l}^{\mathrm{f}_{l}}}-1\mathrm{P}^{j-1}$ and
$\overline{x}=(x_{7^{-1})^{\mathrm{n}/\mathrm{p}}}‘+1$

3.3.2. Compute $l_{\mathrm{i}}=\log_{\overline{\mathrm{n}}}\overline{x}$.
3.4. Compute $y_{p}=\mathrm{f}_{\mathrm{G}}+l_{1}p+\cdot$, . $+l_{r-1}p^{r-1}$.

4. Do the following:
(Compute $y_{q}=y\mathrm{m}\mathrm{o}\mathrm{d} q.$)
4.1. Compute $\overline{\mathrm{n}}=\mathrm{n}^{2\mathrm{p}^{7}}\mathrm{m}\mathrm{o}\mathrm{d} n$ $+1$ and

$\overline{x}=x^{2\mathrm{p}^{r}}\mathrm{m}\mathrm{o}\mathrm{d} n$ $+1$.
4.2. Compute $y_{q}=\log_{\overline{\mathrm{o}}\mathrm{i}}\overline{x}$.

5. Compute the integer y which satisfies,
$y^{\mathrm{I}}=y_{2}\mathrm{m}\mathrm{o}\mathrm{d} 2,y=y_{\mathrm{p}}\mathrm{m}\mathrm{o}\mathrm{d} p^{r}$, and
$y=y_{q}\mathrm{m}\mathrm{o}\mathrm{d} q$ by using the Chinese Remainder
theorem.

6. Return y .

3.4 Computing n-th Roots

Paillier [10] proposed an encryption scheme whose
one-wayness is based on the problem of finding
an integer $\mathrm{f}\mathrm{i}\mathrm{i}$

$\in Z_{\mathrm{n}^{2\mathrm{a}}}^{*}$ where n is aproduct of two
primes, which is represented as x

$=L\mathrm{L}^{T\mathrm{L}}\mathrm{m}\mathrm{o}\mathrm{d} n^{2}$ for
an integer ffl $\in Z_{\mathrm{n}^{\mathrm{H}}}^{*}$. Paillier assumed that there
is no efficient algorithm for this problem. How-
ever, this problem can be solved in asmall amount
of time if we know the pri me factors of \coprod . This

means if we take a large number for r to factorize
$7\mathrm{t}_{1}$ afunction for computing an n-th residue can be
used for amoderately-hard function.

We describe the moderately-hard function as fol-
Jows.

Preparation: Let n $=p^{r}q$, where p and q are
both primes of the same size and r is apos-
itive integer.

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\epsilon \mathrm{I}\mathrm{f}f\sqrt{1}r\iota \mathrm{m}\mathrm{o}\mathrm{d} n^{2}$

.
The domain of f is Σ_{n}^{*} . $\mathrm{f}(\mathrm{x})$ $=$

Verification: Given x and $/\mathrm{I}$ $=f(x)$, check that
$y^{\tau\iota}=x$ rnod n^{2} .

Shortcut: The factors p and q of n and the in-
teger r .

Computing f without Shortcut: Compute f

according to the algorithm Compute n-thRoot.

Computing f with Shortcut: Compute f ac-
cording to the algorithm Compute $\mathcal{T}l$-thRoot
except for step 1.

Algorithm Compute n-thRoot.
Input: acomposite number $n\{n$ $=p^{r}q$) arid an

element $\Pi \mathrm{j}$ $\in Z_{|\mathrm{t}}^{*}$.
Output: an n-th root y of x .

1. Find the prime factors of n .
2. Do the following:

2.1, Compute $\mathrm{n}_{\mathrm{f}J}=p^{2r-1}q(p -1)(\mathrm{q} -1)$ and
set $b_{0}-n,$ $\not\in 0$ $\#-\mathrm{D}_{3}$ and $t\mathrm{f}-1$.

2.2. Compute f
$= \mathrm{L}\frac{\mathrm{f}1\Pi}{b_{0}}\rfloor$ and r $=\mathrm{n}_{\mathrm{G}}-lb_{\mathrm{f}\mathrm{J}}$.

3. While $r>$ $0_{:}$ do the following:
3.1. Compute $5=(\mathrm{f}_{0}-l\mathrm{f})$ $\mathrm{m}\mathrm{o}\mathrm{d} \mathrm{n}_{\mathrm{D}}$ and

set $\mathrm{f}_{0}\vdash- t$ and f $arrow s$.
3.2. Set $\mathrm{f}\mathrm{i}_{[]}arrow \mathrm{b}_{0}$ and $b_{0}arrow r$ and compute

l
$=\mathrm{L}_{b_{\mathrm{O}}^{\mathrm{i}}}^{\zeta l}-\lrcorner\rfloor$, and r $4-\mathrm{n}0$ $-lb_{0}$.

4. Compute y
$=x^{t}\mathrm{m}\mathrm{o}\mathrm{d} n^{2}$.

5. Return y .

3.5 Computing $\mathbb{E}\mathrm{i}$-th Roots
The RSA scheme and these variants employ dif-

ferent co mposite moduli. As apart of the pub-
lic key, each scheme employs e relatively prime to
the modulus used in the sche me. These cryptosys-
terns are based on the difficulty of the factorization
of acomposite number. We employ amodulus
n $=p^{\tau}q$, where p and q are both pri mes of the
same size and r is apositive integer.

See [9] for details

82

3.6 Observation
$\mathrm{t}\mathrm{t}^{\mathrm{f}}\mathrm{e}$ briefly mention the distinguished properties

of the functions mentioned above. The function 2,
which distinguishes an element is aquadratic residue
or not, is only afunction whose way of computa-
tion for the verification step and the computing
step with shortcut information are the same. For
the other functions, the verification steps require
only one exponentiation. In particular, the func-
tion 1computing asquare root requires one mul-
tiplication and the function 5computing an $\mathrm{E}\mathrm{i}$-th
root requires two multiplication when e $=3$.

The domains of the functions 1-5 are $\mathrm{Q}_{\mathrm{n}1}Q_{\mathrm{K}}$,
$Z_{\mathrm{p}\}}^{*}Z_{T\iota 1}^{*}$ and $Z_{\mathrm{T}1}^{*}$, respectively. The function 3is
especially useful when we choose input elements
randomly from the domain.

4New Moderately-Hard Functions:
Idea 2

The functions in the Section 3are not immune
to the parallel power of the attacker. The first
scheme taking into account such attackers is one
by Rivest, Shamir, and Wagner [11]. They sug-
gested using the “power function,” i.e. comput-
ing $f(x)$ $=g^{2^{2^{\mathrm{J}}}}\mathrm{m}\mathrm{o}\mathrm{d} n_{3}$ where n is aproduct of
two large primes. Without knowing the factor-
ization of n , the best way that is known is re-
peated squaring–a sequential computation in na-
ture. The power function was also employed by
Boneh and Naor [2]. In their paper, several appli-
cations which are immune to parallel exhaustive
search attack were proposed by using the power
ftsnction. As far as we know, the proposed func-
tions which are immune to the parallel attackers
seem to be only the power function.

In this section, we propose another functions
which are immune to the parallel attackers. First,
we define moderately-hard functions by using an
abstract function. Then, we apply the random or-
actes to this construction.

4.1 The Moderately-Hard Functions with
Abstract Functions

Our suggested functions are based on the idea
of the sequential computation. We use the cut
and choose technique for verification, which re-
duces the communication cost to verify.

We define the functions by using an abstract
function F whose domain and range are exactly
the same. We let the domain and range of our
function be the same as those for F . Since our
proposed function is defined in ageneral way, we
can construct multiple functions depending on the
choice of F . For exa mple, if we set afunction F

as $F(x)$ $=\Pi^{\sim}q$, the resulting function is the same
as the power function.

We describe our proposed function f as follows.

Preparation: Let the domain and range of F be
G.

Definition of f : The domain of f is G. $f(x_{1})=$

$\{x_{1\mathrm{I}}\ldots \mathrm{J}:\mathrm{r}_{1_{\mathrm{i}\mathrm{i}}}\}$, where $x_{i}=F(x_{\mathrm{t}-1})$ for $\mathrm{i}=$

2, . . , ’ A. We can change the difficulty by
choice of k .

Verification: Choose s numbers n_{1} , \ldots , a_{B} at ran-
dom, where s $\leq k$, and check whether $x_{\mathrm{n}_{\mathrm{J}}}=$

$F(x_{a_{\mathrm{i}}-1})$ or not for $\mathrm{f}\mathrm{i}_{1_{1}}\ldots$, $\mathrm{f}1_{B}$. Here, s is a
number which is large enough not to deceive
the verifier.

Shortcut: F’s shortcut.

Computing f without Shortcut: Compute $x_{\mathrm{i}}=$

$F(x_{\mathrm{i}-1})$ for $\mathrm{i}=2$, \ldots , h without $F’ \mathrm{s}\mathrm{i}\exists \mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}-$

cut

Computing f with Shortcut: Compute $\Pi \mathrm{i}_{\mathrm{i}}=$

$F(x_{\mathrm{z}-1})$ for $\dot{\mathrm{t}}=2_{1}\ldots$, k by using $F’ \mathrm{s}$ short-
cut at computation of F for each $\mathrm{i}(\dot{\mathrm{B}}=$

$1_{5}\ldots$, $k)$.

The existence of the shortcut for F implies that
for f .

4.2 The Moderately-Hard Functions with
the Random Oracles

We observe an example of F . As far as we know,
there exists no memory-bound function which is
immune to the parallel power of the attacker. In
this section, by using the random oracles, we can
construct afunction which has both properties.

We employ the random oracles for constructing
afunction. We describe the computing algorithm
for the function. Assume A is the person who
wants to compute the function and fl is the ver-
ifier of the validity of the function. Our function
involves alarge fixed forever table T of truly ran-
dom integers. Both A and 5have the table T .
We consider -4 and $f\exists$ as PRAM algorithms. Be-
fore we present the algorithm, we introduce hash
functions H_{0} , $H_{1;}H_{2},$ H_{3} , and H_{4} for changing
the sizes of inputs. We model them as idealized
random functions, which we call the random ora-
cle. The function H_{0} is used during initialization.
It takes as input an element x and a trial number
k and returns an array A . The function H_{1} takes
an array A as input and returns an index c into
the table T . The function H_{2} takes as input an
array $t1$ and an ele ment of T and returns anew
array, which obtains assigned to A . The function

83

Hs takes as input an $\mathrm{a}\mathrm{r}\mathrm{l}$ ay A and returns astring
of s bits. The function H_{4} takes as input astring
of e bits and returns anew trial number A. We de-
scribed our function as the algorithm Computing
f .

Algorithm Computing f.
Input: atable T , an element x , and atrial number A
Output: $\{(c_{i}, T[c_{\mathrm{i}}])\}$ for t $=1_{\dagger}\ldots$ $1\not\in$ if A computes

$H_{1}t$ times.
1, Set $jarrow-0$

2. Compute $A=H_{\mathrm{f}J}(x_{\mathrm{I}}h)$.
3. For i from 0to 1do the following:

3.1. Compute $c_{j}=H_{1}(A)$ and $A=H_{\underline{\nabla}}(A_{3}T[c_{\mathrm{j}}])$.
3.2. Co mpute $j=\mathrm{j}+1$.

4. If all bits of $H_{3}(A)$ are zero, do the following:
4.1. Set h $=H_{4}(H_{3}(A))$.
4.2, Go to Step 1.

5. Return $((c_{1}, T_{1})\}\ldots$ $1(c_{j}, T[c_{\mathrm{j}}]))$.

The part except step 4in this algorithm is F rep-
resented in Section 4.1. We now estimate the ex-
pected running time of $\mathrm{w}4$ and B. Since A obtains
an array such that $H_{3}(A)=0^{\epsilon}$ with probability
1/2” in step 3, the expected number of evaluating
H_{3} is $2^{\mathrm{f}1}$. Furthermore, we require and f times com-
putation of H_{1} and H_{2} before evaluating $H_{3}(A)$.
Therefore, the expected number of evaluating H_{1}

for .4 is $l2^{\mathrm{E}}$,

On the other hand, 5cart verify the value in
parallel. If the size of T is twice as the number
of $A^{\mathrm{J}}\mathrm{s}$ local memory, Ahas to access the table T

$(l2^{\epsilon})/2$ times on average. If B stores A’s outputs
$\{(c_{i\mathrm{j}}T[c_{\mathrm{i}}])\}$ for $\mathrm{i}=1$, \ldots }

l and each RAM of s

RAMs in B accesses to T and checks the validity
of $\mathrm{B}/s(\Gamma_{d\mathrm{i}7}T[c_{\mathrm{i}}])$ separately, B can verify efficiently
with respect to the number of table access.

References
[1] ADADI, M. , Burrows, M. , MANASSE,

M.I AND WOBBER, T. Moderately Hard,
Memory-Bound Functions. In Proceedings of
the 10th Annual Network and Destibuted $S\mathrm{H}^{1}5-$

$\mathrm{f}\xi \mathrm{i}m$ Security Symposium (Febl:ual:y 2003).

[2] BONEH, D., AND Naor, M. Timed Commit-
ments. In Advances rn Cryptology -CRYPTO
2000 (Santa Barbara, California, USA, Au-
gust 2000), M. Bellare, Ed., vol. 1880 of Lec-
ture Notes in Computer Science, Springer-
Verlag, pp. 236-2B4.

[3] BELLARE, M. J AND GOLDWASSER, S. En-
capsulated Key Escrow. MIT laboratory
for Momputer Science Technical Report 688,
April 1996.

[4] BELLARE, M.I AND GOLDWASSER, S. Verifi-
iible Partial Key Escrow, 1997.

[5] BONEH, D. , DURFEE, G_{7}. AND HOWGRAVE-
GRAHAM, N. Factoring n $=p^{T}q$ for Large
r. Lecture Notes in $Comf\mathit{3}\mathrm{t}\mathrm{L}t\epsilon \mathrm{i}\mathrm{r}$ Science 1 $fi\xi ifi$

(1999), 326-SB7.

$\mathrm{f}\mathrm{f}\mathrm{i}\ovalbox{\tt\small REJECT}$ Dwork, C., AND $\mathrm{N}\mathrm{A}\mathrm{O}\mathrm{R}_{1}$ M. Pricing via PrO-
cessing -0r- Combatting Junk Mail. In Ad-
vances $\mathrm{z}r\#$ Cryptology –CRYPTO }

$g\mathrm{g}$ (Santa
Barbara, California, USA, August 1992),
E. F. Brickell, Ed., vol. 740 of Lecture Notes $\mathrm{z}n$

Computer Science, Springer-Verlag, pp. 139-
147.

[7] $\mathrm{F}\mathrm{U}\mathrm{J}\mathrm{I}\mathrm{O}\mathrm{K}\mathrm{A}_{3}$ A., $\mathrm{O}\mathrm{K}\mathrm{A}\mathrm{M}\mathrm{O}\mathrm{T}\mathrm{O}_{\mathrm{p}}$ T., AND
$\mathrm{M}\mathrm{I}\mathrm{Y}\mathrm{A}\mathrm{G}\mathrm{U}\mathrm{C}\mathrm{I}- \mathrm{I}\mathrm{I}_{3}$ S. ESIGN: an Efficient Digital
Signature Implementation for Smartcards.

[8] OKAMOTO, T.
J

AND UCHIYAMA, S. ANew
Public Key Cryptosystem as Secure as Fac-
toring. In $Ad\mathit{7}Ianc\epsilon iS$

ETL Cryp tology $-E[\Gamma-$

CRYPT $J\mathit{9}B$ (Espoo, Finland, May 1998),
K. Nyberg, Ed., vol. 1403 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 308-
318.

[B] ONODERA, T.; AND TANAKA, T. AModel
and Methods for Moderately-Hard Functions.
Research Report C-202, Dept. of Mathernati-
cal and Computing Sciences, Tokyo Institute
of Technology, 2004.

[10] PAILLIER, P. Public-Key Cryptosyste ms
Based on Composite Degree Residuosity
Classes. In Advances in Cryptology - $EURO$

CRYPT $\mathit{7}gg$ (Prague, Czech Republic, May
1999), J. Stern, Ed., vol. 1592 of Lecture
Notes in Computer Science, Springer-Verlag,
pp. 223-238.

[I1] RIVEST, R., SHAMIR, A., AND $\mathrm{W}\mathrm{A}\mathrm{G}\mathrm{N}\mathrm{E}\mathrm{R}_{3}$ D.
Time Lock Puzzles and Timed Release Cryp-
tography. Technical report, MII/LCS/TR-
684.

[12] TAKAGI, T. Fast RSA-Type Cryptosys-
tem modulo $p^{k}q$. In Advances $\mathrm{z}n$ firypttDf-
$[]gy$ –CRYPTO $F\mathit{9}B$ (Santa Barbara, Califor-
nia, USA, August 1998), H. Krawczyk, Ed.,
vol. 1462 of Lecturfi Notes in Computer Scz-
ence, Springer-Verlag, pp. 318-326.

