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Abstract

We present an $O(n^{3})$-time randomized approximation algorithm for the maximum trav-
eling salesman problem whose expected approximation ratio is asymptotically $\frac{2\mathrm{S}1}{331}$ , where $n$

is the number of vertices in the input (undirected) graph. This improves the previous best.

1 Introduction

The maximum traveling salesman problem $({\rm Max} \mathrm{T}\mathrm{S}\mathrm{P})$ is to compute a maximum-weight Hamil-
tonian circuit (called a tour) in a given edge-weighted (undirected) graph. The problem is known
to be ${\rm Max}- \mathrm{S}\mathrm{N}\mathrm{P}- \mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}[1]$ and there have been a number of approximation algorithms known for
it [3, 4, 7]. In $19\mathrm{S}4$ , Serdyukov [7] gave an $O(n^{3})$-time approximation algorithm for ${\rm Max}$ TSP
that achieves an approximation ratio of $\frac{3}{4}$ . Serdyukov’s algorithm is very simple and elegant,
and it tempts one to ask if a better approximation ratio can be achieved for ${\rm Max}$ TSP by a
polynomial-time approximation algorithm. Along this line, Hassin and Rubinstein [4] showed
that with the help of randomization, better approximation ratio for ${\rm Max}$ TSP can be achieved.
More precisely, they gave an 0 $(n^{3})$-time randomized approximation algorithm for ${\rm Max}$ TSP
whose expected approximation ratio is asymptotically $\frac{25}{33}$ . Their algorithm is basically a combi-
nation of Serdyukov’s algorithm and an earlier algorithm of their own [3].

The asymptotic ratio $\frac{25}{33}$ achieved by Hassin and Rubinstein’s algorithm is marginally better
than the ratio $\frac{3}{4}$ achieved by Serdyukov’s algorithm. However, Hassin and Rubinstein said in
their paper [4]: “the better ratio at least dem onstrates that the ratio of $\frac{3}{4}$ can be improved and
further research along this line is encouraged”. Moreover, it is widely recognized that improving
approximation algorithms for TSP and its variants are not easy. In this paper, following and
improving Hassin and Rubinstein’s work, we give a new $O(n^{3})$-time randomized approximation
algorithm for ${\rm Max}$ TSP whose expected approximation ratio is asymptotically $\frac{251}{331}$ . Hassin and
Rubinstein [4] show that each approximation algorithm for ${\rm Max}$ TSP can be translated into an
approximation algorithm for a problem called the maximum latency $TSP$ which was first studied
by Chalasani and Motwani [2]. Using their translation, our new algorithm can be trivially turned
into a new randomized approximation algorithm for the maximum latency TSP whose expected
approximation ratio improves the previous best.

Like all previous approximation algorithms for ${\rm Max}$ TSP, our new algorithm starts by com-
puting a maximum-weight cycle cover $C$ of the input graph $G$ and then modify the cycles in $C$

(somehow) to a tour of $G$ without losing much weight. All the previous algorithms modify the
cycles in $C$ in an arbitrary order. In contrast, our algorithm modify the cycles in a carefully
chosen order based on suitably constructed auxiliary graphs. Moreover, the way of modifying a
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cycle heavily depends on how the previous cycles were modified. This is why our algorithm is
complicated.

Throughout the rest of the PaPer, fix an instance $(G, w)$ of ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ , where $G$ is a complete
(undirected) graph and $w$ is a function mapping each edge $e$ of $G$ to a nonnegative real number
$w(e)$ . For a subset $F$ of $E(G),$ $w(F)$ denotes $\sum_{e\in F}w(\mathrm{e})$ . The weight of a subgraph $H$ of $G$ is
$w(H)=w(E(H))$ . Our goal is to compute a tour of large weight in $G$ . For ease of explanation,
we assume that $n=|V(G)|$ is even.

We first sketch our randomized algorithm for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ in the next section and then describe
its details in Sections 3 through 5. For a random variable $X$ , $\mathcal{E}[X]$ denotes its expected value.
For a random event $A$ , $\mathrm{P}\mathrm{r}[A]$ denotes the probability that $A$ occurs.

2 Outline of the New Randomized Algorithm

Like Hassin and Rubinstein’s randomized algorithm (H&R-algorithm) for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ , our algo-
rithm starts by computing a maximum-weight cycle cover $C$ of $G$ , uses it to compute three tours
$T_{1}$ , $\ldots$ , T3 of $G$ , and outputs the one of the largest weight among them. Our computation of $T_{1}$

is the same as in H&R-algorithm. Our computation of $T_{2}$ and $T_{3}$ is as shown in Figure 1:

1. Compute a maximum-weight matching $M$ in $G$ , and compute a maximum-weight matching
$M’$ in a graph $\mathrm{F}$ , where $V(H)=V(G)$ and $E(H)$ consists of those $\{u, v\}\in E(G)$ such that
$u$ and $v$ belong to different cycles in C. (Note: Since $|V(G)|$ is even, $M$ is perfect.)

2. Let $C_{1}$ , $\ldots$ , $c_{r}$ be an ordering of the cycles in $\mathrm{C}$ such that $C_{1}$ , $\ldots$ , $C_{t}$ are the 4 cycles in C.
3. Make a backup coPy $M_{\mathrm{c}}$ of $M$ .
4. Process $C_{1}$ , $\ldots$ , Ct in a suitable order, by (1) coloring some edges $\{u, v\}\in M’$ with $\{u,v\}\subseteq$

$\bigcup_{1\leq}:\leq pV$(Ci) red, and (2) moving exactly one suitable edge from each 4-cycle to $M$ while
always maintaining that the graph $(V(G),M)$ is a subtour of $G$ .

5. Process $C_{\ell+1}$ , $\ldots$ , $C_{\mathrm{r}}$ one by one in this order, by (1) coloring some edges $\{u,v\}\in M’$ with
$\{u,v\}$ rl $(\cup\ell+1\leq:\leq rV(C:))$ I $\emptyset$ red or $g\Gamma een$, and (2) moving one or more suitable edges in
each non-4-cyc1e to $M$ while always maintaining that graph $(V(G), M)$ is a subtour of $G$ .

6. Add to $\mathrm{C}$ those edges $\{u,v\}\in M^{l}-R$ such that both $u$ and $v$ have degree 1 in $\mathrm{C}$ , where $R$

is the set of red edges in $M’$ . (Note: Let $M_{6}’$ denote the set of edges in $M’$ that are added to
$\mathrm{C}$ at this step. Immediately after this step, $|E(C)\cap M_{6}’|\geq 2$ for each cycle $C$ in C.)

$\tau$. For each cycle $C$ in $\mathrm{C}$ , if $|E(C)\cap M’|=2$ and one edge in $E(C)\cap M’$ is green, then delete
one edge in $E(C)\cap M’$ from $C$ at random in such a way that the green edge is deleted with
probability 2/3; otherwise, select one edge in $E(C)\cap M’$ uniformly at random and delete it
from C. (Note: Let $M_{7}’$ denote the set of edges in $M’$ that remain in $\mathrm{C}$ immediately after
this step.)

8. Complete $\mathrm{C}$ to a tour $T_{2}$ of $G$ by adding some edges of $G$ , and complete the graph $(V(G),M)$

to a tour $T_{3}$ of $G$ by adding some edges of $G$ .
Figure 1. Computation of $T_{2}$ and $T_{3}$ in our algorithm. (Steps 4 and 5 are rough.)

Steps 4 and 5 in Figure 1 are rough; their details are very complicated and will be given
in the subsequent sections. An important property will be that $w(R)$ is small compared with
$w(M’)$ .

Several definitions and two useful facts are in order. Throughout the rest of this paper, for
each integer $\mathrm{i}\in\{1, \ldots, r\}$ , the phrase “at time $\mathrm{i}$

” means the time at which zero or more cycles
in $\mathrm{C}$ have been processed and $C_{i}$ is the next cycle to be processed. A set $F$ of edges in $G$ is
available at time 2 if $F$ is a matching in $C_{i}$ , $F\cap M_{\mathrm{c}}=\emptyset$ , and the graph $(V(G), M\cup F)$ is $\mathrm{a}$

subtour of $G$ at time $\mathrm{i}$ . An edge $e$ in $G$ is available at time ! if $\{e\}$ is available at time 2. A
maximal available set at time $\mathrm{i}$ is an available set $F$ at time 2 such that for every $e\in E(C_{i})-F$ ,
$F\cup\{e\}$ is not available at time $\mathrm{i}$ .



$\mathrm{a}$

Lemma 2.1 Let $F$ be an available set at time $\mathrm{i}$ . Suppose that $e1=\{u_{1}, u_{2}\}$ and $e2=\{u2, u_{3}\}$

are two adjacent edges in $C_{\dot{\mathrm{q}}}$ such that $F$ contains no edge incident to $u_{\mathrm{I}}$ , $u2$ , or $u3$ . Then,
$F\cup\{e_{1}\}$ or $F\cup\{e_{2}\}$ is available at time $\mathrm{i}$ .

3 Processing $4$-Cycles

We say that two distinct edges $e1$ $=\{u1, v1\}$ and $e_{2}=\{u_{2}, v_{2}\}$ in $M’$ form a square pair, denoted
by $\{e_{1,2}e\}_{\mathrm{s}\mathrm{p}}$ , if $\{u_{1}, u2\}$ is an edge in a $4$-cycle $C_{i}$ and $\{v1, v2\}$ is an edge in another $4$-cycle $C_{j}$ .
We call $C_{i}$ and Ci the dependent $\mathit{4}$-cycles of the square pair. An edge $e\in M’$ is a square edge if
$e$ is contained in some square pair.

We construct a multigraph $H_{1}$ from $M’$ and $C_{1}$ , $\ldots$ , $C\ell$ as follows. The nodes of $H_{1}$ one-to-
one correspond to $C_{1}$ , $\ldots$ , $Gg$ . For convenience, we still use Ci $(1\leq \mathrm{i}\leq\ell)$ to denote the node
of $H_{1}$ corresponding to it. The edges of $H_{1}$ one-to-one correspond to the square pairs. In more
detail, corresponding to each square pair $p$ , $H_{1}$ has an edge between the dependent $4$-cycles of
p. $H_{1}$ has no other edges. For each edge $f$ of $H_{1}$ , we denote the square pair corresponding to $f$

by $p(f)$ .
An edge $\{u, v\}\in M’$ is 4-cycle-closed if there are two 4-cycles $C_{i}$ and $C_{j}$ in $C$ with $u\in V(C_{i})$

and $v\in V(Cj)$ . An edge $e\in M’$ is 4-cycle-pendent if for exactly one endpoint $u$ of $e$ , there is a
4-cycle $C_{i}$ in $C$ with $u\in V(C_{i})$ . Let $Q$ be a connected subgraph of $H_{1}$ . An edge $\{u, v\}\in M’$ is
$Q$ -closed if there are two nodes $C_{i}$ and $C_{j}$ in $Q$ with $u\in V(C_{i})$ and $v$ $\in V(Ci)$ . An edge $e\in M’$

is $Q$ -pendent if for exactly one endpoint $u$ of $e$ , there is a node $C_{i}$ in $Q$ with $u\in V(C_{i})$ . The
weight of $Q$ is the total weight of $Q$-closed edges in $M’$ , and is denoted by $w(Q)$ .

Obviously, we can classify the connected components $Q$ of $H_{1}$ into ten types as follows:

Type 1: $Q$ is a single node.
Type 2: $Q$ is a bunch of four parallel edges between two nodes.
Type 3: $Q$ is an odd cycle.
TyPe 4: $Q$ is an even cycle of length 4 or more.
Type $\mathit{5}_{i}$ $Q$ is a path of length 1 or more, and $Q$ has an endpoint Ci$\cdot$ (a 4-cycle in $C$ ) such

that neither a $Q$-pendent edge nor a $Q$-closed non-square edge is incident to a vertex
of $C_{\mathrm{i}}$ . (Note: We call $C_{\acute{l}}$ a dead end of $Q$ . Note that if there is a $Q$-closed non-square
edge, then $Q$ has no dead end.)

TyPe 6: $Q$ is a path of length 3 or more, and $Q$ has no dead end.
TyPe 7: $Q$ is a 2-cycle.
Type 8: $Q$ is a path of length 1 and $Q$ has no dead end.
Type 9: $Q$ is apath of length 2, $Q$ has no dead end, and there is no $Q$-closed non-square

edge.
Type 10: $Q$ is a path of length 2 and there is a $Q$-closed non-square edge.

Lemma 3.1 Suppose that our $algor\dot{8}thm$ has processed zero or more $\mathit{4}$ -cycles and that $C_{i}$ and
$C_{j}$ are two distinct $\mathit{4}$ -cycles not yet processed. Let $e1$ and $e_{2}$ be two nonadjacent edges in $C_{i}$ such
that for each $ek\in$ $\{\mathrm{e}15 \mathrm{e}2\}_{;}$ $ek$ $\not\in M_{\mathrm{c}}$ and the graph $(V(G), M\cup\{e_{k}\})$ is a subtour of G. Then,

we can choose two nonadjacent edges $e3$ and $e_{4}$ in $E(C\mathrm{i})-M_{\mathrm{c}}$ such that for each $e_{x}\in\{e_{1}, e_{2}\}$

and for each $e_{y}\in\{e_{3}, e4\}$ , the graph $(V(G), M\cup\{e_{x}, e_{y}\})$ is a subtour of $G$ .

Corollary 3.2 For every 4-cycle $C_{i}$ in C, there are two nonadjacent edges available at time i.

To process the4-cycles in $\mathrm{C}$ , our algorithm considers the connected components of $H_{1}$ one by
one. When considering a connected component $Q$ of $H_{1}$ , our algorithm processes those $4$-cycles
(in a row) that are nodes of $Q$ . Since the details heavily depend on the type of $Q$ , we describe
the Type-5 case immediately and omit the details of the other cases for lack of space
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1. Let $C_{i_{1}}$ and $C_{i_{2}}$ be the endpoints of path $Q$ , where node $C_{\dot{l}2}$ is a dead end of $Q$ . Let
$fi=\{C_{i_{1}}, C_{\dot{\mathrm{t}}_{3}}\}$ be the edge of $Q$ incident to node $C_{i_{1}}$ .

2. Let $E_{\dot{2}1}$ be a set of two nonadjacent edges in $E(C_{_{1}})$ $-M_{\mathrm{c}}$ such that for each $e_{x}\in E_{i_{1}}$ , the
graph $(V(G), M\cup\{e_{x}\})$ is a subtour of G. (Note: By Corollary 3.2, $E_{i_{1}}$ exists.)

3. Partition $E(Q)$ into two disjoint matchings $N_{1}$ and $N_{2}$ .
4. Select an $h\in\{1,2\}$ uniformly at random.
5. If $f_{1}\in N_{h}$ , then perform the following steps:

(a) Select an $e\in p\langle f1$ ) uniformly at random.
(b) Color $e$ purple, and color the other edge in $p(f_{1})$ red.
(c) Move the edge in $E_{i_{1}}$ adjacent to $e$ from $C_{:_{1}}$ to $M$ .
(d) Find an edge $e’\in E(C_{i_{\theta}})-M_{\mathrm{c}}$ adjacent to $e$ such that the graph $(V(G),M\cup\{e’\})$ is $\mathrm{a}$

subtour of $G$ ; further move $e’$ from $c_{i_{3}}$ to M. (Note: By Corollary 3.2, $e’$ exists.)
6. If $f_{1}\not\in N_{h}$ , then perform the following step:

(a) If there is an edge $e’\in E_{\dot{\iota}_{1}}$ such that no edge in $p(f_{1})$ is adjacent to $e’$ , then move $e’$

from $C_{i_{1}}$ to $M_{\}$. otherwise, select an $e’\in E_{i_{1}}$ uniformly at random, and move $e’$ from
$C_{i_{1}}$ to $M$ .

$\tau$. If node $C_{2}\dot{.}$ is incident to no edge in $N_{h}$ , then move an edge $e\in E(C_{i_{2}})-M_{\mathrm{c}}$ from $C_{i_{2}}$ to
$M$ such that the graph ($V(G)$ ,WLJ $\{e\}$ ) is a subtour of G. (Note: By Corollary 3.2, $e$ exists.)

8. For each edge $f\in N_{h}-\{f_{1}\}_{1}$ perform the following steps:
(a) Let $C_{\dot{\mathrm{z}}}$ and $C_{j}$ be the dependent 4-cycles of $p(f)$ .
(b) Select an $e\in p(f)$ uniformly at random.
(c) Color $e$ purple, and color the other edge in $p(f)$ red.
(d) Find an edge $e’\in E(C_{i})-M_{\mathrm{c}}$ incident to an endpoint of $e$ such that the graph

$(V(G),M\cup\{e’\})$ is a subtour of $G$ ; further move $e’$ from Ci to $M$ .
(e) Find an edge $e’\in E(Cj)-M_{\mathrm{c}}$ incident to an endpoint of $e$ such that the graph

$(V(G),M\cup\{e’\})$ is a subtour of $G$ ; further move $e’$ from $C_{j}$ to $M$ .
9. Color all uncolored $Q$-closed edges red.

Figure 2. Steps for processing a TyPe-5 connected component $Q$ of $H_{1}$ .

In general, immediately after considering a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\tau^{\mathfrak{l}}\mathrm{e}\mathrm{d}$ component $Q$ of $H_{1}$ and processing
the 4-cycle(s) that are nodes of $Q$ , the following three invariants hold:

(11) The graph $(V(G), M)$ remains to be a subtour of $G$ .
(12) Let $C_{i}$ be a 4-cycle that is a node of $Q$ . Then, exactly one edge of $C_{i}$ was moved from

$C_{i}$ to $M$ during considering $Q$ .
(13) Let $u$ be a vertex in a 4-cycle $C_{i}$ that is a node of $Q$ . Suppose that no $Q$-closed edge in

$M’$ is incident to $u$ . Then, with probability at least 1/2, exactly one edge of $C_{i}$ incident
to $u$ was moved from $C_{:}$ to $M$ during considering $Q$ .

Obviously, immediately after considering a Type-5 connected component $Q$ of $H_{1}$ , Invari-
ants (II) through (13) hold. We can show that this is also true after considering a connected
component of each other type. Then, we can further show the following (main) lemma:

Lemma 3.3 Immediately after Step 4 in Figure 1 ($\mathrm{i}.e.$ , immediately after processing the $\mathit{4}- \mathrm{C}’gcles$

$C_{1}$ , $\ldots$ , $C_{l}$), the following hold:
1. The graph $(V(G), M)$ is a subtour of $G$ .
2. Each $C_{i}(1\leq \mathrm{i}\leq\ell)$ becomes a path in C.
3. Let $e$ be a 4-cycle-pendent edge in $M’$ . Then, with probability at least $1/2_{\gamma}$ the endpoint

of $e$ in a $C_{i}(1\leq \mathrm{i}\leq\ell)$ is of degree 1 in C.
4. Let $S$ be the set of 4-cycle-closed edges in $M’$ . Then, $\mathcal{E}[w(S\cap M_{7}’)]\geq w(S)/6$ .

4 Process\’ing Non-4-Cyc1es
For convenience, we transform each edge $\{u,v\}\in M’$ to an ordered pair $(u_{1}v)$ , where the $C_{i}$

with $u\in V(C_{\dot{\mathfrak{g}}})$ and the $C_{j}$ with $v\in V(C_{J}|)$ satisfy that $\mathrm{i}>j$ .
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Let $\mathrm{i}$ be an integer in $\{\ell+1, \ldots, r\}$ . A $C_{i}rightarrow settled$ edge is an edge $(u,v)\in M’$ such that
$u\in V(C_{i})$ (and so $v\in V(Cj)$ for some $j<\mathrm{i}$ ). A $C_{\dot{9}}$-settled edge $(u, v)$ is active at time $\mathrm{i}$ if the
degree of $v$ in $\mathrm{C}$ at time $\mathrm{i}$ is 1. A $C_{i}rightarrow settled$ vertex is a vertex of $C_{i}$ incident to a $C_{i^{-}}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{t}1\mathrm{e}\mathrm{d}$ edge.

A matching-pair in $C_{i}$ is an (unordered)pair $\{A_{1}, A_{2}\}$ such that both $A_{1}$ and A2 are (possibly
empty) matchings in $C_{i}$ . An available matching-pair at time $\mathrm{i}$ is a matching-pair { $A_{1}$ ,A2} in $C_{i}$

such that both $A_{1}$ and $A_{2}$ are available at time $\mathrm{i}$ . A maximal available matching-pair at time $\mathrm{i}$ is
a matching-pair $\{A_{1}, A_{2}\}$ in $C_{i}$ such that both $A_{1}$ and $A_{2}$ are maximal available sets at time $\mathrm{i}$ .

A matching-pair $\{A_{1}, A_{2}\}$ in $C_{i}$ covers a vertex $u$ of $C_{i}$ if at least one edge in $A_{1}\cup A_{2}$ is
incident to $u$ . A matching-pair $\{A_{1}, A_{2}\}$ in $C_{i}$ favors a vertex $u$ of $C_{i}$ if $A_{1}$ contains an edge
$e_{1}\in E(C_{i})$ incident to $u$ and $A_{2}$ contains an edge $e2\in E(C:)$ incident to $u$ (possibly $e_{1}=$ $e_{2}$ ).
Figure 3 shows a procedure useful for computing an available matching-pair at time $\mathrm{i}$ that covers
the vertices of a given subgraph $P$ of $C_{i}$ .

Procedure FindMatch(i, $\mathrm{Y}_{1}$ , $\mathrm{Y}_{2},$ P, e)
Input: An integer $\mathrm{i}\in\{l+1, \ldots ,r\}$ ; an available matching-pair $\{\mathrm{Y}_{1}, \mathrm{Y}_{2}\}$ at time $\mathrm{i}$ with $\mathrm{Y}_{1}\cap \mathrm{Y}_{2}=$

$\emptyset$ ; a subgraph $P$ of C.$\cdot$ and an edge $e$ of $P$ such that $|E(P)|\geq 2$ , $E(P)\cap \mathrm{Y}_{1}=E(P)$ $\cap$ $\mathrm{Y}=\emptyset$ ,
$\mathrm{Y}_{1}\cup\{e_{1}\}$ is available at tlme $\mathrm{i}_{?}$ and either $P=C_{i}$ or $P$ is a path in $c_{i}$ beginning with $e$ .

1. Let $e_{1}$ , $\ldots$ , $e_{t}$ be the edges in $P$ (appearing in $P$ in this order) where $e_{1}=e$ . Let $u_{1}$ be the
endpoint of $e_{1}$ not incident to $e_{2}$ . Let $u_{2}$ be the endpoint of $e_{t}$ not incident to $e_{t-1}$ .

2. Initialize $Z_{1}=\mathrm{Y}_{1}$ , $Z_{2}=\mathrm{Y}_{2}$ , and $j=h=1$ .
3. While $i<t$ , perform the following two steps:

(a) If $Z_{h}\cup\{ej\}$ is available at time $\mathrm{i}$ , then add $ej$ to $Z_{h}$ and further increase $i$ by 1;
otherwise, add $ej+1$ to $Z_{h}$ and further increase $i$ by 2.

(b) If $h=1$ , then set $h=2$ ; otherwise, set $h=1$ .
4. If some $Z_{k}$ with $k\in\{1,2\}$ contains both edges of Ci incident to $u_{2}$ , then $(e_{t-1}\not\in Z_{1}\cup Z_{2}$

and so) perform the following two steps:
(a) Let $e’$ be the edge in $E(C:)-\{e_{\mathrm{t}}\}$ incident to $u_{2}$ . Let $e^{\prime t}$ be the edge in $E(C_{i})-\{\mathrm{e}\mathrm{i}\}$ $e’\}$

adjacent to $e’$ .
(b) If $e’\in Z_{1}$ LJ $Z_{2}$ , then delete $e’$ from $Z_{k}$ .
(c) If $e’\not\in$ $Z_{1}\cup Z_{2}$ , then move a suitable edge in $\{e_{t},e’\}$ from $Z_{k}$ to $Z_{k’}$ while maintaining

that $Z_{k’}$ is available at time $\mathrm{i}$ , where $k’$ is the integer in $\{1, 2\}-\{k\}$ .
Output: The ordered pair $(Z_{1}, Z_{2})$ .

Figure 3. A procedure useful for computing $A_{1}$ and $A_{2}$ .

4.1 Serious Pairs, Critical Pairs, and Dangerous Pairs

Throughout this subsection, fix a $C_{i}$ with $\ell+1\leq \mathrm{i}\leq r$ . A serious pair at $t\acute{\mathrm{z}}me\mathrm{i}$ is an unordered
pair $\{(u\iota,v_{1}), (u_{2}, v_{2})\}$ of $\mathrm{C}\mathrm{i}\cdot-$ settled edges satisfying the following condition:. At time $\mathrm{i}$ , some connected component of $\mathrm{C}$ is a path between $v_{1}$ and $v_{2}$ .

A matching-pair $\{A_{1}, A_{2}\}$ in $C_{i}$ is good for a serious pair $p=\{(u_{1}, v_{1}), (u_{2}, v_{2})\}$ at time $\mathrm{i}$ if
$\{A_{1},A_{2}\}$ satisfies at least one of the following three conditions:

(G1) For each $h\in\{1, 2\}$ , $C_{i}-A_{h}$ has no path from $u_{1}$ to $u_{2}$ or at least one of $u_{1}$ and $u_{2}$

has degree 2 in $C_{i}-A_{h}$ .
(G2) { $A_{1}$ ,A2} favors both $u_{1}$ and $u_{2}$ .
(G3) { $A_{1}$ , A2} favors exactly one of $u_{1}$ and $u_{2}$ . (Note: If this condition is satisfied but

Condiion (G1) is not, we say that $\{A_{1}, A_{2}\}$ is weakly good for $p.$ )
A critical pair at time $i$ is a serious pair $p=\{(u_{1}, v_{1}), (u_{2},v_{2})\}$ at time $\mathrm{i}$ such that there is

a path $Q$ from $u1$ to $u_{2}$ in $C_{i}$ with $|E(Q)|\leq 3$ . We call the path $Q$ a witness path of the critical
pair $p$ . A dangerous pair at time $\mathrm{i}$ is a critical pair $p=\{(u_{1},v_{1}), (u_{2}, v_{2})\}$ at time $\mathrm{i}$ that has $\mathrm{a}$

witness path $Q$ of length 1 or 3 satisfying the following condition:. { $e_{1}$ , e2} is an available set at time $\mathrm{i}$ , where $e_{1}$ and $e_{2}$ are the two edges in $E(C_{i})-E(Q)$

incident to an endpoint of $Q$ .
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4.2 Details of Processing Non-4-Cycles

If there is no dangerous pair at time $\mathrm{i}_{7}$ then we color no vertex of $C_{i}$ red and process $C_{:}$ as below:

1. Find an available edge $e$ at time $\mathrm{i}$ , and let $(A_{1},A_{2})$ be the output ofFindMatch(i, $\emptyset$ , $\emptyset,C:,e$).
2. Extend { $A_{1}$ , A2} to a maximal available matching-pair at time $\mathrm{i}$ .
3. For each critical pair $\{(u_{1},v_{1}), (u_{2},v_{2})\}$ at time $\mathrm{i}$ for which $\{A_{1},A_{2}\}$ is weakly good, if

{ $A_{1}$ , A2} favors $u_{1}$ , then color $(u_{1},v_{1})$ green and color $(u_{2},v_{2})$ $black_{1}$. otherwise, color $(u_{1}, v_{1})$

black and color $(u_{2},v_{2})$ green
4. Select an $h\in\{1,2\}$ uniformly at random.
5. Move the edges in $A_{h}$ from $C_{\dot{*}}$ to $M$ .

Figure 4. Processing Ci when there is no dangerous pair at time $\mathrm{i}$ .

When there is at least one dangerous pair at time $\mathrm{i}$ , the processing of $C_{i}$ is very complicated
and is omitted here for lack of space. What we can show is the following:

Lemma 4.1Let S be the set of $C_{i}$ -settled edges. Suppose that there is at least one dangerous
pair at time i. Then, we can process $C_{i}$ so that $\mathcal{E}[w(S\cap M_{7}’\rangle]\geq 11w(S)/80$ .

5 The Main Result

Suppose that $T$ is a maximum-weight tour of $G$ . Let $T_{\mathrm{i}\mathrm{n}\mathrm{t}}$ denote the set of all edges $\{u, v\}$ of $T$

such that some cycle $C$ in $\mathrm{C}$ contains both $u$ and $v$ . Let $T_{\mathrm{e}\mathrm{x}\mathrm{t}}$ denote the set of edges in $T$ but
not in The. Let $\alpha=w(T_{\mathrm{i}\mathrm{n}\mathrm{t}})/w(T)$ . By Lemmas 3.3 and 4.1, we can prove the following:

Lemma 5.1 Let $\delta w(T)$ be the expected total weight of edges moved from C to M at Step 4 or 5
in Figure 1. Then, $\mathcal{E}[w(T_{2})]\geq(0.5+\delta)w(T)$ and $\mathcal{E}[w(T_{3})]\geq((1-\delta)+\frac{11}{160}(1-\alpha))w(T)$ .

Hassin and Rubinstein [4] show that $w(T1)$ $\geq(1-\epsilon)\alpha w(T)$ . So, we have:

Theorem 5.2 For anyfixed $\epsilon>0$ , there is an $O(n^{3})$ -time approximation algorithm for ${\rm Max}$ TSP
achieving an expected approximation ratio of $\overline{\overline{331-}320\epsilon}251\{1-\epsilon\}$ .
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