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Hausdorff Dimension and the Stochastic Traveling Salesman Problem
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Abstract

The traveling salesman problem is a problem of finding the shortest tour through given
points. We characterize the asymptotic order of the optimal tour length with Hausdorff
dimension.

1 Introduction

The traveling salesman problem (TSP) is a problem of finding the shortest tour through given
points. We study asymptotic length of the shortest tour through points on Euclidean space.

Though TSP is an NP-hard problem, Karp [5] showed that if points X, - -+, X, are uniformly
distributed on the unit square then there is a polynomial time algorithm that generate a tour of
length L{Xy,---,X,) such that

nil»néo L(Xh ce :Xn)/Lopt(Xla Tty X'n) =1,a.5,

where Loy is the length of the shortest tour. Karp’s algorithm is based on the following theorem
by Beardwood, Halton, and Hammersley (BHH theorem):

Theorem 1.1 (BHH|2]) If points X1,---,Xn are i.i.d. random variables with respect to distri-
bution p on [0,1]¢ then

lim Lope(Xy,:--, X,)/n' " = Bld) f@) " idz, p-as.,

N0 [0,1}d
where f(d) is a constant that depend on the dimension d, and f(z) is the density of p with respect
to Lebesgue measure.

We show that an analogous result holds for the case that the points are distributed over a positive
Hausdorff dimensional set. To state the result we introduce some notations and results shown in
[3]. Let z € [0,1]%. Let B,(z) be the d-dimensional ball with center z and radius r. Let pp, be a
probability distribution on [0, 1]¢ such that

}gr%)loguh(BT(w) n[0,1%)/ logr = h, pp — a.s. (1)
Let H{up) be the support set of pp, ie.,
H{up) = {=z| }i_{r%)loguh(Br(m) Nn[0,1)%)/logr = A}. - (2)
Then it is known that

dim H(un) = b, (3)

where dim H is the Hausdorff dimension of H. For a proof of (3) see [3]. Note that many of sets
having positive Hausdorff dimension (including fractal sets, e.g., Cantor set) are described by such
a manner [3].

We prove that:



Theorem 1.2 (Main result) If points X1,---, X, are i.i.d. random variables with respect to pin,
then under conditions on pp, there exist two constants ¢; and ¢ca (0 < ¢1 < ¢g < 00) such that for
h>1

¢ < liminf Lopt(X1,- -+, Xp) /0% < limsup Loy (X1, -+, Xa)/n' ™% < 03, pn — a.s.,
7

and for 0 < h < 1, Lopt(X1, -+, Xpn) = O(Vlogn), up —a.s.

Note that if A < d, the measure p, is singular with respect to Lebesgue measure on [0, 1]%; and
therefore BHH theorem cannot be applied to the measure y; since the density of the absolutely
continuous part is 0.

The theorem above shows that if points are distributed over a set H () of Hausdorff dimension
h {< d), then the optimal tour length is much shorter than that of the case for uniform distribution
for large number of points. Roughly speaking, this is because if A < d, the points X;,---, X, are
distributed over the d-dimensional volume 0 set and therefore the average distance from a given
point X € H{up) to the nearest point of X;,---, X, is much smaller than that of the case for
uniform distribution.

Finally we note that our results are a generalization of those of Stadje [7} and Steel {8].

2 Average optimal tour length

In this paper we consider the class of distributions that satisfy the following condition:

Condition 1 Let pp, be a distribution on [0,1]% that satisfies the following property: There ezist
a subset H{up) of [0,1]¢ such that
pr(H(pn)) =1,

and for x € H{up)
pn(Br(z) N [0,1)) = f@)rtere), (4)
where
h >0, f(x) >0, }E%g(?’, 1!:) =0,

and f is the density. Let [ be the measure defined by jin(Br(z)) = rhta(nz) | We assume that
ﬁh([O, 1]‘1) < oo
Note that py, and H(u) that satisfy the condition above satisfy (1) and that dim H(us) = h > 0.
Conversely if yuy, satisfies (1) and h > 0, then there exists H(u»), g, and f that satisfy the condition
above such that up(H(us)) =1 and dim H{up) = A > 0.
Let
gn(e) = E( min |X; —z]). ()

n [7], Stadje showed that if Xi,---, X, are iid. random variables with respect to an absolutely
continuous distribution with respect to Lebesgue measure on [0, 1]¢ then

Tim ndg,(a) = f@) "t DI + DY, (6)

where f is the density and f(z) > 0.
In the following let Xi,- -+, X, be i.id. random variables with respect to pp in (5). We show
that an analogous result of (6) holds for the distribution pp.

Lemma 2.1 Let h(n) be function of n such that lim,—,o0 h(n) = h > 0. For any positive constant
a, b, and ¢, we have

n (1+b)h F(
lim (en) hﬂn)/ (1 — erhyndr = hm cn)'ﬂ(_ﬂ/ —erMmhndr = 5

=

), )

n—oo
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Proof) We prove (7) by Laplace method. Let ert™ = %%(“), ie, 7= (cn)T»Tl*Wr Then we have

i (n) S L on(m
_ api{nhyn — —ny _ Zzhin dF
.[0 (1 — ™™y = (en) ™ ™ /o Im’c#'ﬁn_ o+t exp{nlog(l o7 ) }dF,
IR SR
where I, is the characteristic function of a set A. Since cFm TR TR s 00 as n —» 00, We

have for sufficiently large n,

I{0 cm%n_mi_ﬁh_)}exp{nlog(l — ipplm} < exp{~78}, [° exp{—F1 }dF < o0, and
limpe0 I[o c#”-m+ﬁ]exp{nlog(l — Lk} = exp{~#*} for # > 0; and therefore by

Lebesgue dominated convergence theorem, we have

: L) ~_/°° ey DG
13_15.10 I[o,ch‘(\rﬁn’ﬁ'ff?)—h"'ml"_)] exp{nlog(l — =7 V}dF = A exp{—F"}df = t
which proves the second equality of (7).
For the first equality, observe that
a ki (%3
/A L (1 —erM™)ndr < a(1 - m'%ﬁ"?)" < aexp(—en'” Eon ) (8)
n_ G+5E
Since 1 — % > 0 for sufficiently large n, by (8), and the second equality of (7), we have the
first equality of (7). |
In the following, let b be a positive constant, and let
d(n,z) = sup lg(r, =), (9)

0<r<n” GFEE
and
§(n) = sup 6&(n,z).
€ H (pn)
Lemma 2.2 Let puy, and H{uy) be a distribution on [0,1]% and its support set that satisfy Condi-
tion 1. Let CP(z) = f(a:)‘%z(—,f—). Then for z € H{un), we have

lim sup ¢y, (z)nF+3 s < CP(z) < liminf go{z)n e {10}
n kL

In particular if §(n, z) = o((logn)~?!), we have for & € H(pn),
- L ~h
Jim g (z)nt = Cp(z)- (11)
Proof) Let x € H{u). We have

yh(lr‘_?iiéln 1X; =z} >7) = (1 - pa(Br(z) N0, 1]d))na

and hence

Vi
@) = E(min 1Xi—a) = [ m(min Xi-alzrar

il

vd
[ - m@@n 1) ar

a{n) Vi
Ap(rydr + Ap{r)dr (12)

0 a{n)



where A, (r) = (1 — pr(Br(z) N [0,1]9))", a(n) = n“31+1”5", and b is & positive constant.

We have
a{n} a{n)
f An(r)dr = / (1 — fla)rh+ere)yrdr
Y 0
aln
< / )(1—~f(:1:)rh+5(“’”))”dr (13)
0
1
= (f(cc)n)"mlm%")(uou)), (14)

where the first equality and the first inequality follow from (4) and (9); for the last equality observe
that lim, e 6{n, z) = 0, and hence (14) follows from Lemma 2.1.
Since An{r) is decreasing as v grows, we have

.\/E
/ | Antryir < VA, (a(n))

V(1 - f(z)a(n)Proteta)r

htglal(n),z}

x@exp(—f(x)nl aFeke ), (18)

(AN

Since lim,, 00 g{a{n), z) = 0, we see f (n) Ap(r)dr = o(n” ETC) }; hence we have the first inequal-
ity of (10). In a similar way, we can prove the other inequality of (10). If 6(n, x) = o((log n)~ 1),
we have (11). |

Remark 2.1 If pq is an absolutely continuous distribution with respect to Lebesgue measure on
[0,1]¢ and if z is a interior point of [0, 1]%, we see pa(B.(x)) = f(r, z)cqr?, where cg (= «¥/2JT((d+
2)/2)) is the volume of the d-dimensional unit ball, and f(r,x) converges to the density f(z)asr
goes to 0. By applying Lemma 2.2 to pug(B,(z)), we have (6).

Lemma 2.3 Let uy, be a distribution that satisfy Condition 1.

Let Ck = E(C} z)) = E(f(a:)‘%)ghj—) < o0, We have

limsup E(gn{z)n h+'5%n:m>) < Ch < liminf E(gn(z)n Et ). (16)
TE n

In particular if 8(n,z) = o((logn)~*), we have
lim E(ga(z))n® = Cp. a7
n—oc
Proof) First we show the lemma when C} < co. Since C} = E(C}()) < oo and pp(H,) =1, by
Fatou lemma and (10), we have (16). If 6 (n,z) = o( (logn) 1), we have (17).

Note that by Fatou lemma, lim inf,, F(gn(z)n?® 5t 57) > E(liminf, g,(z)n?=5= 5t =1 } holds with-
out assuming that g,(z)n*2= is bounded by integrable function; hence the lemma holds for
Ch = 0. =
Remark 2.2 If h > 1, E( flz)"%) always exists and have a finite value, because by Jensen's
inequality we have E(( f(:z:)) Y < E(1/f(x)* = Srrqun) Gn)* % < 0o where fip, 15 the finite measure
defined by fin(Br(z)) = r =),

In the following for simplicity, I denote Loy Then it is known that

RE(gua (X)) < BUKs, -+, X)) €230 E(@(X)), (19

i=1

For a proof, see [7, 8].
From (18) and Lemma 2.3, we have:
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Theorem 2.1 Assume that C} < co and §(n) = o({logn)™?). Under Condition 1, for 1 <h

a < limninfE(L(Xg,---,Xn))/nl_% < limsup B(L(X1, -+, Xn))/n' "k < ca, (19)

and for 0 < h < 1, sup, E(X1,---,Xn) < 0o, where ¢1 and ¢z are constants dependent on h such
that 0 < ¢ € ¢ < 0.

3 Concentration

Let F,, be the o-algebra generated by X1, -, X,. Let f be a measurable function with respect to
F,. Let d; = E(f|F;) — E(f|Fi—1). We see f — E(f) = 3 ;- di, and {d;} is a martingale sequence
with respect to Fi, 1 < i < n. For a random variable X, let esssupy f(X) = inf{a [P(f(X) >
a) = 0}, and essinfx f(X) = sup{a |P(f(X) < a) = O}. Let d; = esssup d; — essinf d;. Then the
following Azuma-Hoeflding inequality holds.

Theorem 3.1 (Azuma-Hoeffding[1, 4]) For anyt > 0,
P(|f - E(f)| 2 t) < 2exp(~2t%/ 1L, d).

For some applications of the theorem to combinatorics, see [6, 8] and for Markov processes see [9].
In (6], Rhee and Talagrand applied Azuma-Hoeflding inequality to TSP for the case that points are
distributed uniformly over the unit square. In this section we apply Azuma-Hoeffding inequality
to our model. }

In Theorem 3.1, let f = L(Xy,- -+, X,). In order to obtain d;, observe that {7, 8]

L(XI:"'}Xiv"';Xn)gL(le"' n) < L(Xh te XJ 1X7l)+2 mln .|X’5_le)
1<i<n,j#i

where (X3, ,Xi,-++,Xy,) is the random vector obtained by deleting X; from (X;,--+,X,,). Thus

we have
d; < 2esssup B( mm iX - X;| |F3)
X11 7X 1—‘7<n
< 2Zesssup E( mm [X X;| | F3)
le )X
= 2esssupE( mm EX — X;1 1Xi) = 2esssup gn—i(Xi), (20)
X; X;
where the first equality follows from that Xy,---, X, are Li.d, random variables.

To prove the following theorem we need a condition.

Condition 2 Assume that there ezists a positive constant m such that inf e pr () f(z) > m > 0.
Assume that lim, .. §(n) = 0.

Lemma 3.1 Under Condition 1 and 2, there exists o constant M such that

Sup  gn{z) < Mn~ o (21)
z€H (1)

Proof) Let A,(r) and a{n) be the same as in the proof of Lemma 2.2. From (13), Condition 2,
and Lemma 2.1, we have for sufficiently large n,

a(n)

a{n)
An(r)dr / (1~ fla)ri+sme)yngy
0

a(n)
/ {1- mrh+6("))”dr
o

< mn TG, (22)

IA

IA



where m is a constant. Note that a{n) — 0 as n — 0.
From (15}, we have

ﬂ a{in),r ki3
| Autryar < Vaexp(~f(atm), ey~ EEHD) < Voxp(-mn'~EH), (23)
af{n)
Since limp—o0 8(n) = 0 (Condition 2), from (22), (23), and (12), we have (21). ]

Theorem 3.2 Under Condition 1, and 2, if §(n) = o((logn)™'), there exist constants My, My,

and Ms such that
n My, if h<2,
T M logn, if h=2,
Mayni—%,  if h>2,

and for any t > 0,
pr(lf — E(H)| = t) < 2exp(=2t7/ > &),

i=1
where f = L(Xq,---, Xp).
Proof) Since un(H(up)) = 1, by (20) and Lemma 3.1, we have
di € M(n—i)7%,
where M is a positive constant. Theorem 3.2 follows from Theorem 3.1. |

Theorem 3.3 Assume that §(n) = o((logn)~1). Under Condition 1, and 2, for 1 < h,

a < limninfL(Xl, » -,Xn)/nl"f1I < limsup L(X;, --',Xn)/nl—%f < cg, pn — G.€., (24)

where ¢; and cy are constants that depend on h. For 0 < h < 1, we have L(X1,-, Xp) =

O(logn), pn — a.s.

Proof) By Borel-Cantelli’s lemma and Theorem 3.2, we have

k |f ~ E(f)]
lim sup 4——22 < 1)y —as,,
BT
where f = L{Xy,---,Xn), and
O(+/logn), if h<2,
g(n) = O(logn), it h=2,
O(nd~*logn), if A>2.
By Theorem 2.1, we have the theorem. B |
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