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Abstract

We study a box-ball system from the viewpoint of combinatorics of words and
tableaux. Each state of the box-ball system can be transformed into a pair of
tableaux $(P, Q)$ by the Robinson-Schensted-Knuth correspondence. In tlxe language

of tableaux, the $P$-symbol gives rise to a conserved quantity of the box-ball system,
and the $Q$-symbol evolves independently of the $P$-symbol. The time evolution of
the $Q$-symbol is described explicitly in terms of the box-labels. This report gives a
summary of our paper [1], and Japanese version has been already published [2].

1 Preliminaries
In this section, we recall some fundamental facts on com binatorics of words and tableaux,

which we will freely use throughout this report.

A Young diagram is a finite collection of boxes, arranged in left-justified rows, with
a weakly decreasing number of boxes in each row. We usually identify a partition, say

A $=(\lambda_{1}\geq\lambda_{2}\geq\cdots\geq\lambda_{l}\geq 0)$ , with the corresponding diagram. A Young tableau, or
simply tableau, is a way of putting an integer in each box of a Young diagram that is

weakly increasing across each row and strictly increasing down each columrt We say that
A is the shape of the tableau. A standard tableau is a tableau in which the entries are
numbers bom 1 to $n$ , each occurring once.

Example 1. We show some examples below.

$\bullet$ Young diagram $\mathrm{A}$ $=(4, 3,1)$

$\bullet$ (Young) tableau $\wedge\leq\}$

$\bullet$ Standard tableau
$\Lambda$

$<\}$

Given a tableau $T$ , we define the word $\mathrm{W}(T)$ of $T$ by reading the entries of $T$ from left
to right and bottom to top. We say that a word $w$ is a tableau word if it is the word of a
tableau.
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There is an algorithm called as bumping (row-bumping, or row-insertion), for construct-
ing a new tableau fiiom a tableau by inserting an integer. If there are no integers larger
than 2 in the first row, add a new empty box at the right end, and put $i$ in it. Otherwise,
among the integers larger than $\mathrm{i}$ , find the leftmost one, say $j$ , and put $i$ in the box by
bumping $j$ out (i.e., replace $j$ with $\mathrm{i}$ ). Then, insert $j$ , the bumped number, into the second
row in the same way. Repeat this procedure until the bumped number can be put in a
new box at the right end of the row.

This bumping procedure is decomposed into a sequence of rearrangements of three
numbers in two ways, and these two transformations are called elementary Knuth trans-
formations. We call two words Knuth equevalent if they can be transformed into each
other by a sequence of elementary Knuth transformations.

Example 2. We show some examples below.

$\bullet$ Reading route of a tableau word $\mathrm{W}(T)$

$\bullet$ Bumping(row-insertion)

$(ux’v)xarrow x’(uxv)$ $(u\leq x<x’\leq v)$

$\bullet$ The elementary Knuth transformation

$yzxarrow yxz$ $(x<y\leq z)$ $xzyarrow zxy$ $(x\leq y<z)$

$\bullet$ Knuth equivalent (symbol: $\approx$)

5152431245 $\approx$ 5415213245

We say that a two-rowed array is a biword if the columns $(\begin{array}{l}v_{k}j_{k}\end{array})$ are arranged to the
lexicographic order. Then we define the dual biword $w$

’ of $w$ , first by interchanging
the top and the bottom rows, and by rearranging the columns so that $w$

’ should be in
lexicographic order.

There is a bijection between the biwords $w$ and the pairs of tableaux $(P, Q)$ of the same
shape (RSK correspondence). The $P$-symbol $P$ is the tableau obtained from the bottom
row ($j_{1}$ ,i2, $\ldots$ , $j_{n}$ ) by bumping. The $Q$ -symbol $Q$ is another tableau of the same shape
which keeps the itinerary of the bumping procedure; it is obtained by filing the number
$\mathrm{i}_{k}$ at each step in the box that has newly appeared when the number $j_{k}$ is inserted.

Example 3. We show some examples below.

\bullet Biword w $=(\begin{array}{llll}i_{1} i_{2} i_{k} i_{n}j_{1} j_{2} j_{k} j_{n}\end{array})$

The lexicographic order $\{\begin{array}{l}i_{1}\leq i_{2}\leq\cdots\leq i_{n}j_{k}\leq j_{k+\mathrm{l}}\mathrm{i}\mathrm{f}i_{k}=i_{k+1}(k=1,\ldots,n-1)\end{array}$
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$\bullet$ The dual biword of the biword $w=$ $(\begin{array}{lllll}1 22 4 5 73 15 2 2 1\end{array})$ is $w^{*}=(\begin{array}{ll}1122 35274 512\end{array})$ .

$\bullet$ RSK correspondence {Biword} $\underline{1\cdot.1}\{(P, Q)\}$

$\bullet$ Bumping Procedure $w=(\begin{array}{llllll}1 2 2 4 5 73 1 5 2 2 1\end{array})$ $arrow$ $(P, Q)$

$P_{0}=$ a $Q_{0}=\emptyset$

$\downarrow$

$\downarrow$

$P_{1}=\mathrm{g}]$ $Q_{1}=\mathrm{E}$

$\downarrow$

$\downarrow$

$P_{2}=\ovalbox{\tt\small REJECT}$ $Q_{2}=\ovalbox{\tt\small REJECT}$

$\downarrow$

$\downarrow$

$P_{3}= \frac{\prod 1\overline{5}}{[3\Gamma}$ $Q_{3}= \frac{\overline 1\Pi 2}{\fbox_{2}}$

$\downarrow$

$\mathfrak{l}$

$P_{4}=\underline{\ovalbox{\tt\small REJECT}}$ $Q_{4}=\underline{\ovalbox{\tt\small REJECT}_{4}}-$

$\downarrow$

$\downarrow$

$P_{5}= \frac{\lceil\neg 1\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}}{[\mathrm{R}1\underline{5}}$

$Q_{5}=$

$\downarrow$

$\downarrow$

$P=P_{6}=$ $Q=Q_{6}=$

2 $\mathrm{B}\mathrm{o}\mathrm{x}\sim \mathrm{b}\mathrm{a}\mathrm{l}\mathrm{l}$ system

In this section, we consider a standard version of the BBS, and formulate our main results

in terms of the standard BBS. A BBS is a system of finite number of balls of $n$ colors
evolving in the infinite array of boxes indexed by Z. By a “standard” BBS, we mean a
BBS in which $n$ bffis of $n$ different colors are placed in the infinite array of boxes and all

the boxes have capacity one. We use the numbers 1, 2, ... , $n$ to denote the colors of balls,

and the symbol $e$ $=n+1$ to indicate a vacant place.
We first formulate the standard version of the BBS. A state of this system is a way to

arrange $n$ balls of different colors 1, 2, ... , $n$ in the array of boxes indexed by $\mathrm{Z}$ , under the

condition that at most one ball can be placed in each box. One step of time evolution of

the standard BBS, from time $t$ to $t+1$ , is defined as follows:

1. Every ball should be moved only once within the interval between time $t$ and $t+1$ .
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2. Move the ball of color 1 to the nearest right empty box.

3. In the same way, move the balls of colors 2, 3, . . . ’
$n$ , in this order.

We refer to this rule as the original algor ithm of the standard BBS.

Example 4. The following figure shows an example with $n=5$ .

Example 5. In the following figure, we show an example of time evolution with n $=9$

—–$15789_{-------}236_{-----}4_{----------------------------------}$
$———-^{15789_{-----}236_{---}4_{---------------------------------}}$
$—————15789_{---}236_{-}4_{--------------------------------}$
——————–15789 $2634_{-----------------------rightarrow------}$

$-\sim-----------------------^{157682349_{--------------------------}}$

—————————-7-568-12349———————
$—————————–^{7_{---}568_{---}12349_{----------------}}$
$——————————^{7}-----568_{----}12349_{-----------}$

We next attach a biword to each state of the standard BBS and formulate our main
theorem.

Each state of the standard BBS can be represented by a doubly infinite sequence
$\ldots$ $a_{-1}a_{0}a_{1}\cdots$ of numbers 1, . . . , $n$ and $e=n+1$ such that $a_{i}=e$ except for a finite
number of $\mathrm{i}’ \mathrm{s}$; if the box $\mathrm{i}$ is not empty, we define $a_{i}$ to be the color of the ball contained
in the box $\mathrm{i}$ , and set $a_{i}=e$ otherwise. Then we make a record of all pairs $(\begin{array}{l}ia\end{array})$ of box-labels

$\mathrm{i}$ and ball-colors $a_{t}$ (such that $a_{i}\neq e$), by scanning the sequence ffom left to right. In
this way, we obtain a bijection between the possible states of the standard BBS and the
biwords.

We remark that the bottom row of the dual biword represents the sequence of the box-
labels of all nonempty boxes, arranged according to the ordering of colors. We refer to
$b=$ $(b_{1}, \ldots, b_{n})$ as the box-label sequence associated with the state $\ldots a_{-1}a_{0}a_{1}\cdots$ . Given
a state $\ldots a_{-1}a_{0}a_{1}\cdots$ of the standard BBS, we denote by $(P, Q)$ the pair of tableaux
assigned to the biword through the RSK correspondence. Note that $P$ is a standard
tableau of $n$ boxes, and that $Q$ is a tableau of the same shape in which the entries are
mutually distinct integers. The time evolution of the standard BBS is then translated into
the time evolution of the corresponding biword, and also, via the RSK correspondence,
into the time evolution of the pair of tableaux $(P, Q)$ of the same shape.

Theorem 2.1, We regard the standard BBS as the time evolution of the pairs of tableaux
(P, Q) through the RSK correspondence in the way explained above. Then



1. The $P$ -syrnbol is a conserved quantity under the time evolution of the BBS.

2. The $Q$ -symbol evolves independently of the $P$-symboL

Example 6. We illustrate below the main statement of this theorem with Example 4.

$w=(\begin{array}{lllll}1 2 3 5 62 3 4 1 5\end{array})$ $\Rightarrow$ $w’=(\begin{array}{lllll}4 5 7 8 92 3 1 4 5\end{array})$

We consider the same evolution in terms of the pairs of tableaux.

$\Rightarrow$ $P’$ $Q’$

In the above, “ $P=P’$ ” is the first statement of the theorem, and the second is that we
can check $Q’$ by considering only $Q$ without $P$ .

As we will see below, the time evolution of the standard BBS can be described locally

by the so-called carrier algorithm. Theorem 2.1 will be proved in Section 4 by applying
the carrier algorithm. We remark that the time evolution of the $Q$-symbol can also be
described by using the carrier algorithm.

The carrier algorithm is a way to transform a finite sequence $w=(w_{1}, w_{2}, \ldots w_{n})$ of
numbers into another sequence $w’=$ $(w_{1}’,w;, \ldots,w_{n}’)$ , by means of a weakly increasing
sequence $C=$ $(c_{1}, \ldots, c_{m})$ , called the carrier. In this transformation, the carrier moves
along the word $w$ from left to right; while the carrier passes each number $w_{k}$ , the carrier
loads $w_{k}$ and unloads $w_{k}’$ :

$\{\begin{array}{llllllllll} w_{1} w_{2} w_{3} w_{n} \vdots arrow. arrow. arrow. C=C_{0} - C_{1} \vdots C_{2} \vdots C_{3} C_{n-1} \vdots C_{n}=C’ \vdots \vdots \vdots \vdots w_{1} w_{2}’ w_{3} w_{n}^{l} \end{array}\}$

The rule of loading and unloading is defined as follows:

The rule of $\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{u}\mathrm{n}\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ : Let $C_{k-1}=(\mathrm{c}_{1}^{(k-1)}, c_{2}^{(k-1\rangle}, \ldots, \alpha_{n}^{(k-1)})(c_{1}^{(k-1)}\leq$

$c_{2}^{(k-1)}\leq\cdots\leq c_{m}^{(k-1)})$ be the sequence of numbers which have already been loaded on
the carrier. Let $w_{k}$ be the number to be loaded. Compare $w_{k}$ with the numbers in $C_{k-1}$ .
If there are some numbers larger than $w_{k}$ in $C_{k-1}$ , then one of the smallest among them

is unloaded, and $w_{k}$ is loaded instead. If there is no such number, a minimum in $C_{k-1}$ is
unloaded, and $w_{k}$ is loaded instead.

$w_{k}’$ $=$ $\{$

$\min\{c_{i}^{(k-1)}\in C_{k-1}|c_{i}^{(k-1)}>w_{k}\}$

if $\{_{C}!^{k-1\rangle}.\in C_{k-1}|c_{i}^{(k-1)}>w_{k}\}\neq\emptyset$ ,
$c_{1}^{\{k-1\}}$ otherwise.

$C_{k}$ $=$ the sequence of numbers obtained from $C_{k-1}$

by replacing a $w_{k}’$ by $w_{k}$ .



$\mathrm{G}$

$\lceil p$ , $q]$ : $\{$

$p= \min\{i\in \mathrm{Z}|a_{i}\neq e\}$

$q= \max\{i\in \mathrm{Z}|a_{i}\neq e\}+n$

Example 7.

Box-label : $\ldots$ 0
$p$ $q$

$1$ 2 3 4 5 6 7 8 9 10 11 12 $\ldots$

...
$ee$ $|_{ee}^{\mathrm{z}^{-_{\bm{3}}}}$ $4e$ $2e$ $\bm{3}1$ $5e$ $1e$ $4e$ $5e$ $ee$ $ee$...

$e$ ...
$e$ .. .

Proposition 3.1- For a given state of the standard $BBS$, by ignoring the infinite se-
quences of $e’ s$ on both sides, let $A=$ $(a_{\mathrm{p}},a_{\mathrm{p}+1}, \ldots, a_{q-1}, a_{q})$ be the remaining sequence of
numbers; with $p$, $q$ defined as above. Then, the original algorithm $Aarrow A’$ from time $t$ to
$t$ $+1$ , can be described by the carrier algor ithm with a sequence $C=$ $(e, e, \ldots, e)$ of $ne’ s$

chosen as the initial state
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Example 8. We show an example below.

e 2 3 4 e 1 5 e e e e e e . . .
e e e e 2 3 e 1 4 5 e e e $\cdots$

$e$ , $e,e$ , $e$ , $e+_{e}^{2}2$ , $e$ , $e$ , $e$ , $e+^{3}2,3,$
$e,$ $e,$

$e+^{4}2,3,4,e,$ $+^{\mathrm{C}}3,4,e_{7}e,$ $e+^{1}1,4,$
$e,$ $e,$$e+^{5}ee23earrow$

$arrow 1,4_{\mathrm{I}}5,e,$ $+_{1}^{e}4,5$ , $e$ , $e$ , $e+_{4}^{e}5$ , $e$ , $e$ , $e$ , $e+_{5}^{e}e$ , $e$ , $e,e$ , $e+_{e}^{e}e$ , $e$ , $e$ , $e$ , $e+_{e}^{e}e$ , $e$ , $e$ , $e$ , $e$

Next; we discuss the transformation of the box-label sequences. Recall that the box-
label sequence $b=$ $(b_{1}, \ldots, b_{k}, \ldots, b_{n})$ is defined as the bottom row of the dual biword
$w^{*}$ . Notice that $b_{k}\in[p, q]$ for all $k=1,4$ , $\ldots$ , $n$ , with $p$ , $q$ defined as before.

Example 9, We first recall the biword formulation of Example 6.

$(\begin{array}{lllll}1 2 3 5 62 3 4 1 \mathrm{S}\end{array})$ $arrow$ $(\begin{array}{lllll}4 5 7 8 92 3 1 4 5\end{array})$

We next transform into the dual biwords below.

$(\begin{array}{lllll}1 2 3 4 55 1 2 3 6\end{array})$ $arrow$ $(\begin{array}{lllll}1 2 3 4 57 4 5 8 9\end{array})$

Here, the evolution of the box-label sequence is as follows: $b=(51236)arrow b’=(74589)$ .

Proposition 3.2. For a given state of the standard $BBS_{f}$ the transformation of the box-
label sequence $barrow b’$ from time $t$ to t-f 1 can be described by the carrier algorithm with the
initial state of the carrier $C=$ $(\mathrm{i}\mathrm{i}, l_{2}, \ldots, l_{m})$ defined as the increasing sequence consisting

of the labels of all empty boxes in the interval $[p, q]$ .

Example 10. We show an example below.

b $=$ (51236) $arrow b’=(74589)$

$4,7,8,9,10,11+_{7},5,8,9,10,11+_{4}1,5,8,9,10,11+_{5}1,2,8,9,10,11+_{8}1,2,3,9,10,11+_{9}1,2,3,6,10,1151236$

We use the symbol $T^{*}$ in order to imply the evolution of the box-label sequence:
$b’=T^{*}(b)$ .

4 Proof of the main results (Summary)

In this section, we prove two propositions given in the foregoing section, and prove the

main theorem by using these propositions.
By analyzing carefully the original algorithm of BBS, it turns out that this algorithm

can be described in two ways by using carrier algorithm; thus, two propositions can be
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proved. Furthermore, the fact that carrier algorithm is a repetition of Knuth transforma-
tions shows that Knuth equivalence is maintained in the time evolution. The proof of the
theorem is substantially completed on the basis of these ideas.

We now visualize the original algorithm of BBS by means of a 2-dimensional diagram.
First, write the state $a$ at time $t$ at the top; write each $a_{i}$ again, down in the same column
at the row corresponding to the number itself; here we are using the datum of Example
4. Then, following the original algorithm of BBS, connect “1” to its partner, nearest $e$

on the right. Then look at “2”, draw lines by the same method. In this example, “3 ’}

should be moved to the empty box which had originally been occupied by the 1 on the
right. Considering this 1 as the partner of the 3, connect the 3 to it. Do the same thing
until all $a_{i}(\neq e)$ have been connected to their partners $a_{f(i\}}’$ .

Then the general rule for drawing lines can be described as follows:

Connect each number with the leftmost one among all the smaller numbers on
the right that have not been connected from above.

Notice that the perfect chains never intersect with each other. In view of this fact, we
see that the same set of non-intersecting perfect chains can be obtained by observing the
sequence of numbers at time $t$ from left to right, rather than from bottom to top as in the
rule above. In the following, we consider how to make the same diagram ffom another
viewpoint by using this law.

Sketch of proof of Proposition 3.1
First, we draw lines to connect balls from left to right, and we can prove the proposition

3.1

$\{3, 4, e,e, \ldots\}$
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Thus, it can be understood automatically that carrier algorithm is applied like a ProPo-
sition 3.1 by considering that we load the candidate of the numbers connected with lines
into the carrier.

Sketch of proof of Proposition 3.2
Next, we draw lines from the ball under a figure to the upper ball by paying attention

to the numerical value, i.e., in the same order as the original algorithm. However, we see
the box label $\mathrm{i}$ but not the value of $a_{i}$ (color of balls).

$\{5_{7}8,9,10, \ldots\}$

Thus, it can be understood more obediently than a previous proposition 3.1, that
the carrier algorithm is applied like the proposition 3.2 by considering that we load the
candidate of the empty box-labels tied with lines into the carrier1 .

Hereafter, we explain the proof of the theorem 2.1 briefly. Please refer to our paper [1]
for details.

Proof of Theorem 2.1 (i)
We first give the folowing lemma.

Lemma 1. If $w$ and $w’$ are Knuth equivalent words, and $w_{0}$ and $w_{0}’$ are the results of
removing the $p$ largest numbers from each, for any $p$ , then $w_{0}$ and $w_{0}’$ are Knuth equivalent
words.

In the notation of Proposition 3.1 we get $CA\approx A’C$ .

$CA$ $=$ $C_{\mathrm{p}}(a_{p}, a_{p+1}, \ldots, a_{q-1}, a_{q})$

$\approx$ $a_{p}’C_{p+1}(a_{p+1}, a_{p+2}, \ldots, a_{q-1}, a_{q})$

.$\cdot$

.
$\approx$ $(a_{p}’, a_{\mathrm{p}+1’}, \ldots, a_{q-1’}, a_{q}’)C’$ $=$ $A’C$

We know that Knuth equivalent words correspond to the same tableau. Since $e$ is

thought of as larger than any other number, we see that the results $A_{e}$ and $A_{e}’$ of removing
$e’ \mathrm{s}$ from $CA$ and $A’C$ , respectively, are Knuth equivalent, i.e., $A_{e}\approx A_{e}’$ . Hence the

bumping of $A_{e}$ and $A_{e}’$ give the same tableau $P$ ; this $P$-symbol is conserved by the time

evolution. We remark that the sequence $A_{e}$ is nothing but the bottom row of the biword
$w$ we introduced before. We have completed the proof of the first statement of Theorem
2.1.

Proof of Theorem 2.1 (ii)
We next give the following lemmas.

1In our paper [1], we first prove this proposition
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Lemma 2. If a and b are two Knuth equivalent words, then so are the resulting $T^{*}(a)$

and $T^{*}(b)$ .

Lemma 3. Ij b is a tableau word, $T^{*}(b)$ is a tableau word of the same shape.

Here, we prove simply the second statement of the theorem 2.1 using these two lemmas.
Please read the explanation after seeing the following figure.

$P_{1}$

$T^{*}(Q_{1})$

We easily itemize the main points of the proof.

$\bullet$ $b\approx W(Q_{1})$ $arrow T^{*}(b)\approx T^{*}(W(Q_{\mathrm{Z}}))$ ( $\cdot$ . $\cdot$ Lemma2)

$\bullet$ $T^{*}(b)=b’$ and $b’\approx W(Q_{2})arrow W(Q_{2})\approx T^{*}(W(Q_{1}))$

$\bullet$ $W(Q_{1})$ is a tableau word. $arrow T^{*}(W(Q_{1}))$ is a tableau word too. ( $\cdot$ . $\cdot$ Lemma3)

$\bullet$ Therefore, $W(Q_{2})=T^{*}(W(Q_{1}))$ .

口

Identifying tableau words with tableaux, we can define the time evolution of the Q-
symbol $Q$ by

$T^{*}(Q)=\mathrm{T}\mathrm{a}\mathrm{b}(T^{*}(\mathrm{W}(Q)))$ .

Summarizing, with the interval $\lceil p$ , $q$] $\subseteq \mathrm{Z}$ again, we have

Proposition 4.1. In the standard $BBS$, the time evolution of the $Q$ -symbol $Q$ is described
by the box-label algorithm with a carrier. The initial state of the carrier is given with
$C=$ $(l_{1}, \ldots, l_{m})$ defined as the increasing sequence consisting of the labels of all empty
boxes in the interval $\lceil p$ , $q$]. The carrier runs along the rows of the tableau $Q$ from left to
right, and bottom to top.

Therefore, the evolution of the $Q$-symbol can be directly computed by the box-label
algorithm at the level of tableau words read off from the tableau, without the need to
recompute a tableau ffom the resulting word.
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5 Generalization of the BBS
In our paper [1], generally we expanded into the conditions as follows: There exist $m$ balls
in all, we allow to use an arbitrary finite number of balls for each color, the capacity of
each box is specified individually, and many balls may go into the same box from one
piece: And then we gave the theorem of the same contents as the case of the standard
BBS. This theorem can be proved in the same procedure as the case of the standard BBS2.
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