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\S 0, Introduction
In the discussion with Professor A. Shudo, the following question occurred

to us:
What if we kill a part of the symm etry of the Stokes geometry for the

Berk-Nevins-Roberts operator $P_{\mathrm{B}\mathrm{N}\mathrm{R}}$ given by

(0.1) $\eta^{-3}\frac{\partial^{3}}{\partial x^{3}}+3\eta^{-1}\frac{\partial}{\partial x}+2\mathrm{i}x$,

by considering a singular coordinate transformation

(0.2) $z=x^{2}$ ?

Here and in what follows, $\eta$ denotes a large parameter.
As is now well-known ([BNR] , [AKKSST] ), the Stokes geometry for $P_{\mathrm{B}\mathrm{N}\mathrm{R}}$

is as follows when $\arg$ y7 $=0$ :
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Fig. 0. 1

Here $x=+1$ and -1 are simple turning points of the operator $P_{\mathrm{B}\mathrm{N}\mathrm{R}}$ , $x=$

$0$ is its (unique) virtual turning point, and the dotted line indicates that
the portion $C_{1}C_{2}$ of the Stokes curve is inert in the sense that no Stokes
phenomena are observed in any solutions of the equation $P_{\mathrm{B}\mathrm{N}\mathrm{R}}\psi$ $=0$ . By the
transformation (0.2), we find

(0.3) $\frac{1}{2x}P_{\mathrm{B}\mathrm{N}\mathrm{R}}=4\eta^{-3}z\frac{\partial^{3}}{\partial z^{3}}+6\eta^{-3}\frac{\partial^{2}}{\partial z^{2}}+3\eta^{-1}\frac{\partial}{\partial z}+\dot{\iota}$ .

In the sequel we let $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ denote the operator that appears in the right-hand
side of $(0,3)$ . With the help of a computer, one can readily find the following
Stokes geometry of the equation $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}\psi$ $=0$ With $\arg\eta=0$ :

$\underline{|z}$
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Geometrically speaking, $z=1$ is, under the transformation (0.2), the image
of simple turning points $x=\pm 1$ , and $z=C$ is the image of $x=C_{1}$ and
$C_{2}$ . The Stokes curve (half line) starting at the point $z=0$ originates
from the vanishing factor $z$ . in front of $\partial^{3}/\partial z^{3}$ ; the precise definition of this
Stokes curve will be given in our forthcoming paper [KKT] with the help of
a decomposition theorem to be announced in Section 3 below. The results in
Section 2 will also convince the reader of the assertion that the point $z=0$

plays a role of a turning point of the operator $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ . In parenthesis, we note
that there is no virtual turning point of the operator $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ ; this fact can
be readily seen by explicitly solving the Hamilton-Jacobi equation with the
Hamiltonian determined by $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ , $\mathrm{i}.\mathrm{e}.$ ,

(0.4) $4z\zeta^{3}+3\zeta\eta^{2}+\mathrm{i}\eta^{3}$

with the initial condition

(0.5) $(z(0), y(0);\zeta(0),$ $\eta(0))=(1, y0_{1}^{\cdot} -\frac{\mathrm{i}}{2}, 1)\rangle$

where $y0$ is an arbitrary complex number.
Now, in view of the geometrical correspondence between Fig. 0.1 and

Fig. 0.2, we were tempted to believe that the segment $CO$ of the Stokes
curve emanating from $z=0$ should be inert. This belief is validated in
two ways; in Section 1 we confirm this fact numerically (i.e., with the help
of a computer) by applying the steepest descent method to an integral that
represents a solution of the equation $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}\psi$ $=0$ , and in Section 2 we confirm
this fact analytically (i.e., without the help of a computer) by reducing the
problem to the connection problem for a second order operator with simple
poles in the coefficients that was analyzed in [K1] and [K2]. In either case,
the reason for our success is very subtle, or rather miraculous; in the steepest
descent method approach two integrals cancel out, and in the approach of
reducing the problem to that of a second order operator, some parameter
determined by $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ kills the relevant Stokes multiplier that is given by [K1]
and [K2].

To show the full scope of applicability of the method employed in Sec-
tion 2, we present in Section 3 a general decomposition theorem for a class
of operators that includes $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ . The details of the results in Section 3 shall
be given elsewhere.
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\S 1. Steepest descent method approach
We begin our discussion by noting that the equation $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}\psi=0$ admits

an integral representation of solutions; that is,

(1.1) $\psi=\oint_{\gamma}\zeta^{-\frac{3}{2}}\exp(\eta(z\zeta-(\frac{3}{4\zeta}+\frac{\mathrm{i}}{\mathrm{S}\zeta^{2}})))d\zeta$

is a solution of the equation

(1.2) $(4 \eta^{-3}z\frac{\partial^{3}}{\partial z^{3}}+6\eta^{-3}\frac{\partial^{2}}{\partial z^{2}}+3\eta^{-1}\frac{\partial}{\partial z}+\mathrm{i})\psi=0$

for a properly chosen contour $\gamma$ . The saddle point $\zeta j(z)(j=1_{\rangle}2,3)$ is
determined by the equation

(1.3) $z+ \frac{3}{4\zeta^{2}}+\frac{\mathrm{i}}{4\zeta^{3}}=0$,

which coincides with the characteristic equation of (1.2). Hence a $\mathrm{W}\mathrm{K}\mathrm{B}$

solution of $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}\psi=0$ is obtained if we choose $\gamma$ to be the steepest descent
path $\gamma_{j}$ that passes through the saddle point $\zeta_{\mathrm{J}}(z)$ . Then, as is well known
([U]), some topological change of the configuration of steepest descent paths
passing through saddle points is a necessary condition for the occurrence of
Stokes phenomena of WKB solutions. Hence we $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ with the help of $\mathrm{a}$

computer the topological change of configurations when $z$ moves around the
point $C$ in Fig. 0.2. We choose 20 points, $\rho_{1}$ , $\rho_{2}$ , $\cdots$ , $P20$ , $\rho_{21}=$ Pi , near $z=C$

as is designated just by a number $j$ in Fig. 1.1 below.

Fig, 1.1
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The configuration of steepest descent $\mathrm{P}^{\mathrm{a}\mathrm{t}\mathrm{h}_{\mathrm{S}\mathrm{a}\mathrm{t}z=\rho j}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\arg\eta=0\mathrm{i}\mathrm{s}}$ given
in Fig. l.l.j below; the tiny dot indicates $\zeta=0$ and other dots correspond
to saddle points $\zeta_{l}(\rho_{j})(l=1, 2,3)$ .

Fig. 1.1.1 Fig. 1.1.2 Fig. 1.1.3

Fig. 1.1.4 Fig. 1.1.5 Fig. 1.1.6

Fig. 1.1.7 Fig. 1.1.8 Fig. 1.1.9

Fig. 1.1.10 Fig. 1. 1. 11 Fig. 1. 1. 1



$\mathrm{G}$

Fig. 1.1.13 Fig. 1.1.14 Fig. 1.1.15

Fig. 1.1.16 Fig. 1.1.17 Fig. 1.1.18

Fig. 1.1.19 Fig. 1.1.20 Fig. 1.1.21

The reader will notice some topological changes at $z=\rho_{1}(=\rho_{21})$ , $\rho_{3}$ , $\rho_{9}$ , $\rho 13$

and $\rho_{19}$ , as is expected. And, one notices a topological change also at $z=\rho 11$ !
Thus one might think that there should occur some Stokes phenomena across
the segment $CO$ in Fig. 0.2. But, if one carefully compare the configurations
of steepest descent paths in Fig. 1.1.10 and those in Fig. 1.1.12, one finds that
in the course of analytic continuation from $z=\rho_{10}$ to $z$ $=\rho_{12}$ the integral
$I_{1}$ along the steepest descent path passing through the saddle point $\zeta_{1}(z)$

acquires the integral I2 along the steepest descent path $\gamma_{2}$ passing $\underline{\mathrm{t}}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}$

the sad dle point $\zeta_{2}(z)$ , and at the same time loses another integral I2 along
the same path $\gamma_{2}$ with the opposite orientation. One might then conclude
the net contribution to $I_{1}$ is $I_{2}+I_{2_{\rangle}}$

. the conclusion is erroneous, because the
branch of the integrand of 12 and that of $\overline{I_{2}}$ are different due to the factor
$\zeta^{-3/2}$ in the integrand of (1.1). Then the net contribution to $I_{1}$ is $I_{2}-I_{2}=0!$
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This implies that the segment $CO$ is inert, validating our belief.

Remark 1. 1. The above reasoning tells us that, if we start with the following
operator $\overline{P}$ instead of $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ ,

(1.4) $\tilde{P}=4\eta^{-3}z\frac{\partial^{3}}{\partial z^{3}}+a\eta^{-3}\frac{\partial^{2}}{\partial z^{2}}+3\eta^{-1}\frac{\partial}{\partial z}+\mathrm{i}$ ,

where $a$ is a complex number, the inert character of the segment $CO$ is
observed only when

(1.5) $a\equiv 2\mathrm{m}\mathrm{o}\mathrm{d} 4$ .

We will encounter this condition again in the next section. (Cf. Remark 2.1.)

\S 2. Reduction to a second order operator
Let $P$ denote the operator $\eta^{3}(4z)^{-1}P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ ; that is,

(2.1) $P= \frac{\partial^{3}}{\partial z^{3}}+\eta^{2}\frac{3}{4z}\frac{\partial}{\partial z}+\frac{\mathrm{i}}{4z}\eta^{3}+\frac{3}{2z}\frac{\partial^{2}}{\partial z^{2}}$ .

Then we can find pre-Borel summable series

(2.2) $q(z, \eta)=q_{0}(z)+\eta^{-1}q_{1}(z)+\cdots$

and

(2.3) $a_{j}(z, \eta)=a_{j,0}(z)+\eta^{-1}a_{j,1}(z)+\cdots$

with $j=1,2$ on a punctured disc $V\backslash \{0\}$ for some open neighborhood $V$ of
$z=0$ so that the following conditions $(2,4)$ \sim (2.8) are satisfied:

(2.4) $P=( \frac{\partial}{\partial z}-\eta q(z, \eta))(\frac{\partial^{2}}{\partial z^{2}}+\eta a_{1}(z, \eta)\frac{\partial}{\partial z}+\eta^{2}a_{2}(z, \eta))$,

(2.5) $q_{j}(z)(j\neq 1)$ is holomorphic on $V$ ,

(2.6) $q_{1}(z)$ has a simple pole at $z=0$ with residue -1,

(2.7) $a_{1,k}(z)(k\neq 1)$ is holomorphic on $V$ ,

(2.8) $za_{1,1}$ and $za_{2,k}(k\geq 0)$ are holomorphic on $V$.

The proof of this decomposition result is a straightforward one, and we
omit it here. Since only two saddle points $\zeta_{1}(z)$ and $\zeta_{2}(z)$ are relevant to the
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possible Stokes phenomena near $z=0$ , the decomposition (2.4) enables us
to reduce the connection problem for the operator $P$ to that of the second
order equation

(2.9) $( \frac{\partial^{2}}{\partial z^{2}}+\eta a_{1}(z, \eta)\frac{\partial}{\partial z}+\eta^{2}a_{2}(z, \eta))\psi=0$ .

After the change of the unknown function $\psi$ to

(2.10) $\varphi=\exp(\frac{1}{2}\eta\oint^{z}a_{1}(z, \eta)dz)\psi$ ,

we can use the theory of formal coordinate transformation (cf. $[\mathrm{K}\mathrm{T},$ \S 2.3]) to
reduce the problem to the connection problem for a second order operator
with simple poles in the sense of [K2]. Then the results in [K1] and [K2]
assert that the Stokes multiplier along the segment $CO$ in Fig. 0.2 is given
by

(2.11) $2\mathrm{i}\cos(\pi\sqrt{1+4\lambda})$

with

(2.12) $\lambda=\frac{c^{2}-2c}{4}$ ,

where $c={\rm Res}_{z=0}a_{1,1}$ . (See [K1] and [K2] for the precise statement concern-
ing the dominance relations of WKB solutions.)

Now, it immediately follows from (2.4) and (2.6) that

(2.13) ${\rm Res}_{z=0}a_{1,1}= \frac{1}{2}$ .

Hence we see that the Stokes multiplier (2.11) vanishes. Thus we have again
confirmed that the segment $CO$ in Fig. 0.2 is inert!
Remark 2.1, If we start with the operator $\tilde{P}$ containing a parameter $a$ , in-
stead of $P_{\mathrm{B}\mathrm{N}\mathrm{R}’}$ , as in Remark 1.1 we can easily check

(2.14) ${\rm Res}_{z=0}a_{1,1}= \frac{a}{4}-1$ .

Then the relevant Stokes multiplier (2.11) vanishes if

(2.15) $( \frac{a}{4}-1)-1=\frac{l}{2}$ ; $l$ : odd.

This is exactly the same as (1.5)
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\S 3. A decomposition theorem for operators with
simple poles in their coefficients

In this section we introduce a class (K) of operators with simple poles
in their coefficients and then present a decomposition theorem for operators
in class (K). Although we do not give the proof of the theorem in this
report, we explain its background in a heuristic manner. As our discussion
in this section is not of immediate relevance to $P_{\mathrm{B}\mathrm{N}\mathrm{R}}$ , but rather of a general
character we use the variable $x$ , not $z$ .

Definition 3.1. Let $V$ be an open neighborhood of the origin of $\mathbb{C}_{x}$ , and let
$A_{\mathrm{j},k}(x)$ $(j=1,2, \cdots, m(\geq 2);k=1,2, \cdots)$ be a meromorphic function on $V$

having a pole at $x=0$ . Assume further that

(3.1) $A_{j}(x, \eta)=\sum_{k\geq 0}A_{j,k}(x)\eta^{-k}$

is pre-Borel summable on $V\backslash \{0\}$ . Then the operator $P$ given by

(3.2) $\frac{\partial^{m}}{\partial x^{m}}+\eta A_{1}(x, \eta)\frac{\partial^{m-1}}{\partial x^{m-1}}+\cdots+\eta^{m}A_{m}(x, \eta)$

is in class (K) if the following conditions $(3,3)$ , (3.4) and (3.5) are satisfied:

(3.3) $A_{1,k}(k \neq 1)$ is holomorphic on $V$ ,
(3.4) $xA_{1,1}$ and Aitk $(2\leq j\leq m, k\geq 0)$ are holomorphic on $V$ ,

(3.5) Letting $\alpha_{j}(2\leq j\leq m)$ denote ${\rm Res}_{x=0}\mathrm{A}\mathrm{j}|\mathrm{O}$ , we fifind

(3.5.i) $\alpha_{2}\neq 0$ ,

(3.5.ii) $\alpha_{m}\neq 0$ ,

(3.5.iii) The equation $\sum_{j=2}^{m}\alpha_{i}\xi^{m-j}=0$ has mutually distinct

$(m-2)$ solutions.

An important property of the class (K) is that the class is stable under
the decomposition of the form (2.4); to be more precise we have the following

Theorem 3.1. Let

(3.6) $P= \frac{\partial^{m}}{\partial x^{m}}+\eta A_{1}(x, \eta)\frac{\partial^{m-1}}{\partial x^{m-1}}+\cdot$ . . $+\eta^{m}A_{m}(x, \eta)$
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be an operator in class (K) on a neighborhood $V$ of the origin of $\mathbb{C}_{x}$ . Assume
that $m\geq 3$ . Then we can find an open neighborhood $W$ of the origin, a pre-
Borel summable series

(3.7) $q(x, \eta)=q_{0}(x)+\eta^{-1}q_{1}(x)+\cdots$

on $V\backslash \{0\}$ , and an operator $R$ of order $(m-1)$ in class (K) on $W$ so that
they satisf $y$ the following:

(3.8) $P=( \frac{\partial}{\partial x}-\eta q(x, \eta))R$ ,

(3.9) $q_{j}(j\neq 1)$ is holomorphic on $W_{f}$

(3.10) $xq_{1}$ is holomorphic on $W$ and the residue of $q_{1}$ at $x=0\mathrm{i}s-1$ .

Once this theorem is obtained, we can repeatedly use it to find the fol-
lowing decomposition:

(3.11) $P=( \frac{\partial}{\partial x}-\eta q^{(1)})(\frac{\partial}{\partial x}-\eta q^{(2)})\cdots(\frac{\partial}{\partial x}-\eta q^{(m-2)})R$,

where $q^{(j)}$ $(j=1, \ldots, m-2)$ is a pre-Borel summable series satisfying (3.9)
and (3.10) and $R$ is a second order operator in class (K); thus we can reduce
the connection problem for the operator $P$ to the connection problem for the
second order operator $R$ , which was essentially discussed in [K1] and [K2].

In order to explain the intuitive meaning of Theorem 3.1, we prepare the
following
Remark 3.1. If we introduce another class $(\overline{K})$ of operators by replacing (3.3)
with

(3.12) $A_{1,0}$ and $xA_{1,k}(k\geq 1)$ are holom orphic on $V$,

Theorem 3. 1 remains to hold for the class $(\overline{K})$ instead of (K). Let us further

introduce another class $(K)=$ of operators as follows: An operator $\overline{P}$ is in class
$(K)=$ if it has the form

(3. 8) $x \frac{\partial^{m}}{\partial x^{m}}+\eta\overline{A}_{1}(x, \eta)\frac{\partial^{m-1}}{\partial x^{m-1}}+\cdots+\eta^{m}\overline{A}_{m}(x, \eta)$ ,

where $\overline{A}_{j}(x, \eta)=\sum_{k\geq 0}\overline{A}_{j,k}(x)\eta^{-k}$ is a pre-Borel summable series on $V$ that
satisfies the following conditions:

(3.14) $\tilde{A}_{j,k}(1\leq j\leq m, k\geq 0)$ is holomorphic on $V$,
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(3.15) $\overline{A}_{1,0}(0)=0$ .

In what follows, with some abuse of languages, we say that the series $\overline{A}_{j}(x, \eta)$

is holomorphic on $V$ when the condition (3.14) is satisfied.

With these definitions, $(\overline{K})$ and $(K)=$ are isomorphic by the correspondence
$\overline{P}=xP$ . It is also clear that the class $(K)=$ is closed under the operation of

considering the adjoint operator: For an operator $\overline{P}$ in $(K)=$ we can find an

operator $Q$ in $(K)=$ such that $(-1)^{m}\overline{P}=Q^{*}$ , the adjoint operator of $Q$ . It is
then clear from the above mentioned correspondence between operators in
$(\overline{K})$ and those in $(\overline{K})$ that $(-1)^{m}x^{-1}Q^{*}$ is in $(\overline{K})$ . Then the modifified version
of Theorem 3.1 that adopts (K) instead of (K) guarantees that

(3. I6) $x^{-1}Q^{*}=( \frac{\partial}{\partial x}-\eta q)R$

holds for some $R$ in $\overline{K}$ with $q(x, \eta)$ satisfying (3.9) and (3.10). Hence we fifind

(3.17) $Q=R^{*}(x \frac{\partial}{\partial x}-\eta xq)^{*}$

$=R^{*}(- \frac{\partial}{\partial x}x\cdot-\eta xq)$

$=R^{*}(-x \frac{\partial}{\partial x}-1-\eta xq)$ .

Letting $\tilde{q}$ denote $q+\eta^{-1}x^{-1}$ , we see from (3.10) that $\tilde{q}(x, \eta)$ is holomorphic
on $W$ . Otherwise stated, the equation $Q\psi=0$ admits a WKB solution $\psi$ of
the form

(3.18) $\exp(-\eta\int^{x}\tilde{q}(x, \eta)dx)$

with $\tilde{q}$ holds orphic on $W$ . Hence the somewhat clumsy condition (3.10)
corresponds to the existence of a holomorphic $\mathrm{W}\mathrm{K}\mathrm{B}$ solution to the equation
$Q\psi=0$ . But, the existence of a holomorphic WKB solution to the equa
tion that has the form (3.18) is formally obvious because $q0$ is holomorphic.
Thus (3.17), and hence (3.16) also, may be understood as a consequence of
existence of holomorphic WKB solutions.

Reversing the reasoning in the above Remark 3.1, we can give an intuitive
and WKB-theoretic interpretation of the seemingly curious condition (3.10):
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For an operator $P$ in $(\overline{K})$ , we consider an operator $Q$ in $(K)=$ defifined by $(xP)^{*}$ .
Then this operator is divisible from the right by the factor $(\partial/\partial x+\eta\tilde{q})$

for holomorphic $\tilde{q}$, reflecting the fact that the equation $Q\psi=0$ admits $\mathrm{a}$

WKB solution of the form $\exp(-\eta\int^{x}\tilde{q}dx)$ . Although some technical care
is needed to justify the relation $(R^{*}x)^{*}=xR$ for an operator $R$ in $(\overline{K})$ ,
we can “prove without computation” the modifified form of Theorem 3.1 by
choosing $q=\tilde{q}-\eta^{-1}x^{-1}$ . Further we note that the factor $(\partial/\partial x-\eta q)$ with
${\rm Res} q_{1}=-1$ is a counterpart of the existence of a holomorphic WKB solution
to the adjoint equation.
Remark 3.2. Theorem 3.1 applies to the equation (1.2) in [AKT] , which plays
a central role in [AKT]; this means that the reasoning near the point $b_{1}$

([AKT, p.636 and p.637]) may be replaced by the reasoning similar to that
given in Section 2. Actually the reader will notice the resemblance of the
discussion in [AKT, p.636 and p.637] with that given in Section 1 of this
report.
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