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Remarks on Local Solvability of Operators
with Principal Symbol E2 + -+ + &% | +x2&>

Seiichiro Wakabayashi ~ CEMER—ER)
University of Tsukuba  (FLIEKZ)

1. Definitions and main results

Many authors have studied local solvability in the spaces of distributions and
ultradistributions. In the framework of distributions Hérmander [6] gave a neces-
sary condition of local solvability, that is, for a differential operator P he proved
that the transposed operator ‘P of P satisfies some estimates if P is locally solv-
able. Conversely, Treves [15] and Yoshikawa [19] proved that the same type of
estimates implies that P is locally solvable. In the frameworks of ultradistributions

. and hyperfunctions the corresponding treatment is possible (see {41, [1], [3] and
[161).

In this article we shall study local solvability of pseudodifferential operators
with principal symbol &2 4 --- + £2 | +x2£2 in the spaces of distributions and
ultradistributions. In [5] Funakoshi proved that these operators are locally solvable
in the space of hyperfunctions ( see, also, [16]). Our purpose is to illustrate, with
these examples, how to study local solvability in the spaces of distributions and
ultradistributions. For the details we refer to [17].

Let us first define Gevrey classes and symbol classes. Let K be a regular
compact set in R”, and let x > 1 and 2 > 0. We denote by £{<H4(K) the space of
all f € C~(K) satisfying, with some C > 0,

(1.1) ID%f(x)| < ChI¥|a|1X  forany x € K and o € (Zy)",

where x = (x1,++- ,%,) € R, D =i"13 =i71(d/9x1,--- ,0/0%), Zy = NU{0}
and |@| = f=1 0 for o0 = (0, , 0 ) € (Z4)". We also denote by @,{{K}’h the
space of all f € C=(R") with supp f C K satisfying (1.1). &{¥hh(K) and @I{CK}’h
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are Banach spaces under the norm defined by

[ E0HE) == sup DA/ (R a]!).

XEK,(ZE(Z.).)"

Let  be an open subset of R”. We introduce the following locally convex spaces
( Gevrey classes):

(K) &ln £ ")(K g(x)(K) = @g{x},h(KL

KeQ h—0

£0HQ) = m k),  #(K):= lig £UVH(K),
KeQ h—yoo

PQ) = lim 2, 2 = 1m 7,
KeQ h—0

2HQ) = lim @I{{x}’ @I{(K} .= lim 91{{1(},117

' Keo hpoo

where A @ B means that the closure A of A is compact and included in the interior

B of B. We denote by 2*(Q) and £*(Q) the strong dual spaces of 2*(£2) and
&*(Q), respectively, where % denotes (x) or {k}. Elements of these spaces are
called ultradistributions (see, e.g., [1 1]). We also write &, - - -, instead of £*(R"),

. Let us define symbol classes Sy 8 , where m, 8 ¢ R. We say that a symbol
p( ,&) belongs to SE";S ( resp. S"‘ ‘5) if p(x,&) € C*(R" x R") and for any A there
is C = Cy4 > 0 (resp. there areA > 0 and C > 0) such that

1.2) 1P{3)(2,£)] < CAIB1 (o + B ) 1<(E)m—1ele5E)

for any x,& € R" and o, B € (Z4)", where p(ﬁ (x &)= aanp(x &) and (§) =
(1+|E|?)'/2. We define
Om, . ;0
Soo = U o St = (150
§>0

We also use the usual symbol classes s, o 5 where 0 < p,6 < 1andm € R. We say
that p(x,&) € 87 5 if p(x,§) € C(R” >< R") and there are positive constants Cg g
(a,Be(Zy) ) such that

P()(5,8)] < Cag{&)™ P3P forany 2, € R and B & ()"

Next we shall define the Fourier transformation and pseudodifferential opera-
tors in the space of ultradistributions. Let x > 1 and € € R, and define

Fee = {v(E) € C*(R"); exple(E) /(&) € &},



where . denotes the Schwartz space. We introduce the topology in f’;,s so that
the mapping Fxe > (&) > exp[s(é)l/ ¥Jv(§) € & is a homeomorphism. Since
2 (= C5(R™)) is dense in f,c ¢» the dual space ,7; ¢ of 5’“ is identified with
{exp[e(E)¥IW(E) € 2" ve #'}. Let € > 0, and define
Fei=F el (= F(Fel = ue 55 exple(§)/MIa(E) € 71),

where .# and .#~! denote the Fourier transformation and the inverse Fourier
transformation on . (or '), respectively, and &(£) = F[u)(€) 1= fe~*u(x)
x dx for u € .. We introduce the topology in .# ¢ so that &: 5’”;,8 — e
is a homeomorphism. Denote by 5’,".’5 the dual space of 5@;,8. Then we can de-
fine the transposed operators *.% and *.# ! of & and #~! which map F¢ and
9”,; ¢ onto Y,é ¢ and 5’,; ¢ respectively. Since Fe_e C 5’,( ¢ (C 2", we can de-

fine Fc ¢ :="'F~ [,5”,( _¢], and introduce the topology so that’.# =1 : yx e —
Fx g isa homeoxnorphlsm ,5”,4 _¢ denotes the dual space of # _¢. Then we

have #{ = F [5”,; ¢]. From the definitions it follows that (i) .5”,; cCF'C
Y,é cand Pl _. C.F' C Fl fore>0, (1) F="F onS (i) 2(%) is a dense
subspace of Fx e, (iv) 21 ¢ Frt = Ueso Fre ad Frp = Nes0Lre C
@{K}' W) ey ¢ Epo = Ue>oyx —gand et ¢ Ex o= ﬂs>oyx e, and (vi)

DX C Fe C Frer CF)h_ou C Ty 1=Upso Fe C P if £ > €' > " (see,
e.g., [10]). So we write ‘f as .Z. Let p(§,y,1) be a symbol sat1sfy1ng

108D8 07 p(£,3,m)| < CayAPI|B| 1 expl81(8) /% + 8(m) /"]

for any (&,y,1) € R* xR" xR" and &, B,7 € (Z4)", where A >0, §;, € R

and the positive constants Cg y are independent of §. Throughout this paper we
denote by Cyp ... and Cy,..(A, B, ---) constants depending on a, b,--- and a, b,
-, A, B, - -+, respectively. Define
p(Dey Dyu(x) = 2m) " Fg | [ ( [ p(& ymatm)an) dy] o)
for u € P i =ex0- k.-

Proposition 1.1 (Proposition 2.3 of [10]). p(D,,y,Dy) maps continuously
Fr gy 10 Frey and Fy _g, 10 Sty f 02— x(nA)ml/x <& §<E~0—0
and & < x(nA)~V/¥ — &y

Let p(x,&) € S?;; . From Proposition 1.1 we can define p(x,D) and ‘p(x,D)
by

(13) p(an) :P(Dx,yaDy)a tp(x;D) =Q’(Dx>)’7Dy)a
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where p(&,,1) = p(y,1) and (§,y,1) = p(y,~§). 1t follows from Proposi-
tion 1.1 that p(x,D) and ’ p(x, D) map continuously Fie to F g5 and Fe 10
5",:’8_‘-5 for any £ € Rif p(x,§) € S?,g and that p(x, D) and ‘p(x,D) map Fx =
10 F and F(y) to F). Let p(x,5) € Sf‘x}. Similarly, we can define p(x,D)
and ! p(x, D) by (1.3), which map F 4 to F 1, Ex0 t0 Exo and F(iq 10 Fiy.
In order to state our main results we give definitions of local solvability adopted
here.

Definition 1.2. Let x° € R". (i) For p(x,§) € S?:; ( resp. S?K}) we say that
p(x,D) is locally solvable at x° in Z*' if there is an open neighborhood U of %
such that forany f € &* there is u € %, satisfying p(x,D)u= f inU (in 2 (U)),
where * = (x) (resp. * = {k}). Moreover, we say that p(x, D) is locally solvable
at 1% in 2* in a germ sense if for any f € 2* there are an open neighborhood U
of ° and u € &, satisfying p(x,D)u= f in U (in 2*'(U)). (ii) For p(x,§) € §7,
we say that p(x, D) is locally solvable at x° in & if there is an open neighborhood
U of x° such that for any f € @' there is u € % satisfying p(x,D)u= fin U (in
9'(U)). Similarly, we define local solvability at x° in 2’ in a germ sense.

Remark. (i) We remark that the above definitions of local solvability are slightly
different from usual ones. (ii) In 2{*} “local solvability in a germ sense” implies
“local solvability” for properly supported pseudodifferential operators ( see [17]).

Let k > 1. We denote (i) or {x} by *. Let at(x,&) € S3°, and let
L(x,§) = |87 + %387 + a(x, &),
where &' = (&, ,&u—1) for € = (&;,--+,&,) € R". Then we have the following

Theorem 1.3. (i) If k < 2 when * = (), and if k¥ < 2 when * = {k}, then
L(x,D) is locally solvable at the origin in 9*'. (i) Assume that a(x,&) can be
written as

: n—1
o(x,8) = kZ 0 (%, &) &+ 20 0m(%, §) + 00 (%, ),
=]

where o;(x,&) € S0 0<j<n—1)and oy (x,E) € S1°. Then L(x,D) is locally
solvable at the origin in 2*'.

Remark. Tt was shown that L(x, D) is locally solvable at the origin in the space
of hyperfunctions if «(x,&) is an analytic symbol ( see, e.g., Chapter V of [16]).

Let P(x,D) be a differential operator of the form



P(x,D) = D%+ e +DZ—1 Hng — Xna(x)Dy

— (14-2ix; + x2b(x))Dp — )_:1 ce(x)Dy +d(x).
k=1

Then we have the following theorem which gives necessary conditions of local
solvability. ‘

Theorem 1.4. (i) Assume that a(x), b(x), the c;(x) and d(x) are analytic near
the origin. Then P(x,D) is not locally solvable at the origin in ¥ if k> 2. (i)
Assume that a(x),b(x),ci(x),d(x) € C*(R"). Then P(x,D) is not locally solvable
at the originin 7'. -

Remark. From Hormander [7] and Olejnik and Radkevic [12] it follows that the
operator ‘

n—1

D3+ .+ D2_{ + %2D2 + (iot(x) + xna(%))Dy + Y, bi(x)Di+ c(x)
k=1

is ( hypoelliptic and ) locally solvable at the origin in 2’ if a(x),a(x), bi(x),c(x) €
C*=(R"), a(x) is real-valued and there is ¥ € (Z,.)" such that %, = 0 and (D7e)(0)
# 0 ( see, also, [18]).
Let A be an operator defined by Au(x) = (x,Dnu(x) + Dn(xu(x)))/2, i.e.,
A = xpnDy — i/2. Moreover, let Q(x,D) = DT + ¥Liuj<m, 0y<m agD% A% where
meN, ag €C, o = (1, ,0—1) for o = (0, -+ ,0,) € (Z4)" and D% =
DYDY

n—1

Theorem 1.5, Q(x,D) is locally solvable at the origin in 7'

Remark. By the above theorem the operator

n-1
P= D%'}‘ : “+D§__1 +xﬁDi+ Zaka+anann+b
k=1
is locally solvable af the origin in @', where ai, b € C. (ii) In [13] and [14] Tahara
studied more general operators and proved local solvability of those operators in
%' in a germ sense. (iii) The argument used in the proof of Theorem 1.5 gives an
alternative proof of local solvability of differential operators with constant coeffi-
cients. '
In §2 we shall give criteria ( abstruct necessary conditions and sufficient con-

ditions) for local solvability. Using these results one can prove Theorems 1.3 and
1.4, In §3 we shall prove Theorem 1.5.
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2. Outline of the proofs of Theorems 1.3 and 1.4

We begin with well-known results on local solvability in 2’ ( see, e.g., [15],
[19] and [6]).

Proposition 2.1. Let x° € R" and p(x,§) be a symbol in ST, where m € R. i)

If there is an open neighborhood U of x° such that for any s > 0 there are L € R
and C > 0 satisfying

[(DY*ul| < C{I(DY** ple, Dyu] + [ul]}

for any u € C3(U), then p(x,D) is locally solvable at x° in 9'. Here ||f|| denotes
the L2-norm of f, ie., ||f|| = (J1f()Pdx)}/? for f € L*(R*). (i) If p(x,D) is
locally solvable at x° in ', then there is an open neighborhood U of x9 such that
for any s > O there are £ € R and C > 0 satisfying

|[(D)*ul| < CI{D)* *p(x,D)ul|  for anyu € C(U).

Repeating the same argument as in the proof of Proposition 2.1 we shall prove
Theorems 2.4 and 2.5 below which give criteria for local solvability in 2*. In
doing so, we need the following

Lemma 2.2 (Lemma 5.1.8 in [16]). Let f(t) be a continuous functions on
[0,00) such that f(t) > 0 ( t € [0,00)) and lim, ;o f(¢)/t = 0. Then there is an
analytic function F(t) defined in C\ (—eo,0] satisfying the following: (1) F (t) >
maxogs<; f(5) fort > 0. (i) lmeieF(r)/t = 0. (i) lim; 4t /(F{t)(1+
logt)) = 0. (iv) 0 < F'(t) < F(t)/t for t > 0. (v) There is C > O such that
F(t)/t <CF'(t) fort > C. (vi) F"(t) < 0fort > 0. (vii) lim;_, yo?F"(1)/F(t) =
0. (viii) There is C > O such that

((d/dt*F(2)] < C2/t)k\F(t) for t >0andk € Zy.

Definition 2.3. (i) We say that a symbol @(§) € C™(R") belongs to #{y if
there is £ > 1 such that (&) = &(&)V/¥. (ii) We say that a symbol &(§) € C*(R")
belongs to # if there is a real analytic function F(r) defined near [1,00) satis-
fying the following conditions: (0) @(&) = F((E)Y/*¥). () F(z) > /(1 +logt)
for t > 1. (i) Hmy,wF(f)/t =0. (i) 0 < F'(f) <F()/t fort>1. ()
There is C > 1 such that F(r)/t < CF'(t) fort > C. (v) F"(t)<0fort > 1.
(vi) Hmy_ f2F"(1)/F(t) = 0. (vii) There is C > 0 such that |(d/dt)*F(1)| <
C(2/t)*k\F(t) fort > 1land k € Zy.

Using the Hahn-Banach theorem and Poincaré’s inequality we can prove the
following ‘
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Theorem 2.4. Let 1° € R", and let Q be an open neighborhood of x°. Assume
that for any (&) € W, there are u(&§) € ¥, and C > 0 such that

[Py < C{[|eH®) " p(x, Dyv]| + [I¥]}
for any v € 2)(Q). Then p(x,D) is locally solvable at x° in 9*'.

Theorem 2.5. Ler x° € R™. (i) Let = (x), and assume that p(x,D) is locally
solvable at x° in D%V Then there is an open neighborhood U of x° such that for
any € > 0 there are 8 > 0 and C > 0 satisfying

2.1) “esw)l/’cvﬂ < CHe‘S(DWK "p(x,D)v|| foranyve @(")(U).

(ii) Let * = {k}, and assume that p(x, D) is locally solvable at x° in P (%Y. Then
there is an open neighborhood U of x° such that for any 8 > 0 with 8 < & there
are € > 0 and C > 0 satisfying

22) [l < c{|ePPV p(x, Dy + [v)}  foranyve 2R(U),

where &, is a positive constant determined by p(x,&). If p(x,D) is properly sup-
ported, then one can drop the term ||v|| on the right-hand side of (2.2).

In the rest of this section we assume that p(x,&) € ST;O, where m € R. Let
(&) € #;, and put

po(x,D) := e~ D) p(x, D)e®P),

Then we have
Pool,E) ~ ;%{em(é)(aae_w(é))p(a)(x,g)_
Let p > 0, and let p5(x, €) be a symbol in ST satisfying
Po(x,E) = Po(x,§)  (mod ST5”).

Theorem 2.4 gives the following

Theorem 2.6. Let x° € R”, and let Q be an open neighborhood of 10, Assume
that for any ©(E) € W, and a > 0 there is C > 0 such that

2.3) I o8 (x, D)ul| > al|(D)™Pul| - C||(DY"P~"u|
for u € C3(K). Then p(x,D) is locally solvable at x° in 2*'.

If one can obtain the estimates of type (2.3), one can prove Theorem 1.3,
applying Theorem 2.6. For the detail we refer to [17]. Repeating the arguments
in Cardoso-Treves [2], Ivtii-Petkov [9] and Ivrii [8] and constructing asymptotic
solutions we can prove Theorem 1.4 ( see [17]).
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3. Proof of Theorem 1.5

Let X = L2(R*) @& L*(R"). So X = [*(R") x L*(R") and X is a Hilbert space
with norm ||(f, ¢)|x defined by [|(f,8)/lx = (lf|*+lg]*)"/*. Let 7 : *(R") —
X be a linear operator defined by

(Fu)(y) = (& ?u(y &), u(y ,—€™)).
Then 7 is a unitary operator. We note that 7 (C3'(R")) C % (R") x #(R”), since
Ynlte?/? < Cypif £,k € Z4 and y, < k. For (£,g) € #(R") x & (R") we define
a(y)D%(f,8) = (a(y)D* f(),a(y)D*8(y))-

Recall that A = x,D, —i/2 and Q(x,D) = DT + Yigi<m,a1<m aaD""Aa". Since
‘A = —A, we have 'Q(x,D) = (—-1)"DT + E|a[<m’m<m(—-l)lafaaD""A“". More-
over, we have -

(7(Du))y) = De(Tu)(y) (1<k<n—1),

(7 (Au))(y) = Du( T u)(y),
G.1) (Z(Q(x,Dyu))(y) = (—1)" QD) T u)(y)
foru € #(R"), where Q(n) = nf’+EIaISm,aKm(—1)’"‘|"”aan“. Write
(3.2) o(n) = Hl(’“ ~ (")),

Jj=

where {A;(n")} is enumerated as

Re A1(n") <Re Az(n") <+ <Re Am(n"),
Im A;(n") <Im A4(n") ifRe A;(n")=Re A(n")and j <k.

It is obvious that Re 4;(n") is continuous. Let T > 0, and let v € #/(R") satisfy
supp v C {y € R"; |y1| < T'}. Then we have

T . 2
33 = U_T e My, n")dy:| < ZT'W(}’l,ﬂ")“iZ(Ryl)a
where ¥(y1,n") = Fp[v(y1,Y")}(n"). Let € > 0, and let A be a Lebesgue measur-

able set of R” such that u(A(n")) < € for a.e. " € R"~!, where A(n") := {n: €
R; (n1,1") € A} and p denotes the Lebesgue measure in R. Then (3.3) yields

M7= @) [ 9 Pan+@ay [ s
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<Em)" | (A(n”) 1901, 1", y 4 ) dn”
+em) [, P
< @e/mEm ™ [ 15000 g, dn + @0 [ (0P
= (re/m)plf+2m)" [ o)
Therefore, we have
(3.4) WF/2<@m™ [ [o(n)?dn  if Te/m < 1/2.

Now we choose
(3.5) A={n e€R% |n—Re A;(n")| < €/(2m) for some j}.

Then A is a Lebesgue measurable set of R” and u(A(n")) < € foreach " e R*1,
since Re 4;(n") is continuous. From (3.2), (3.4) and (3.5) we have

1O 2 )" [ (B3P an

2 (e/m)" )" [ 1P dn 2272 e mp P

if ve #(RY), supp v C {y € R"; |y1| < T} and 2T¢ < ®. This, together with
(3.1), gives

(3.6) 10, Dyul? = |O(D) Tull} > 27" (g/m)™™|| T ul}
=272 e /m)?"||u)]?

if u € CF(R™), supp u C {x € R"; |x;| < T} and 2Te < 7. Let y € (Z4)". Since
ADY = DY(A + i), we have DY *Q(x,D)u = *Q¥(x,D)D"u, where Q¥(x,D) =
Dy +E[a;5m,a1<maal)a (A +i%)%. (3.6) with Q(x,D) replaced by Q¥(x,D)
yields

IDYul| < 2212 (mT [ m)™||DY* Q(x, D)u]

for u € C3(R™) with supp u C {x € R"; |x;| < T}. Therefore, for any s € Z, there
is Cs > 0 such taht
(D) u]| < CT™|[(DY *Q(x, D)ul|

for u ¢ C3(R™) with supp u C {x € R"; |x;| < T'}. This, together with Proposition
2.1, proves Theorem 1.5.
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