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WKB ANALYSIS TO NORMAL FORM THEORY OF
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1. INTRODUCTION

In this note we shall study the relations between the exact asymptotic
analysis of a so-called homology equation and the normal form theory
of a singular vector field. A homology equation is a system of partial
differential equations which appear in linearizing a singular vector field
by the change of independent variables. We shall introduce a WKB
solution of a homology equation which is a natural extension of the
one introduced by Aoki-Kawai- Takei for the Painlevé equation. We
then give a new unexpected connection between Poincaré series and
the WKB solution via resummation procedure.

2. HOMOLOGY EQUATION

Let = (z1,... ,Z,) € C*, n > 2 be the variable in C*. We consider
a singular vector field near the origin of C”

X:Z@J(Z’)'az, CEJ(O):O, jzl, , 12,
j=1

where a;(z) ( = 1,2,... ,n) are holomorphic in some neighborhood of
the origin. We set

X(z) = (a:(z), . »an(2)), 5% - (5%,... ,82n),

and write

X =X(z)- 56—, X(z) = Az + R(z),
z
R(z) = (Ru(z), ..., Ra(2)), R(z) = O(lz]),
where A is an n-square constant matrix.
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We want to linearize X by the change of variables,

(T)’ SU——"U,(y), 'U':(Uq,... :Un),
namely,
AN 0
X(u(y))%g— = X (u(y)) (%) % _ Ay%

It follows that u satisfies the equation

X (u(y) (g-g) - Ay,

that is 3
Au+ R(u) = Aygz—.

Hence, the vector field X is linearized by (T) iff u satisfies the following
homology equation

d
Lu = Ay—u = Au + R(u).
Oy
For simplicity, we rewrite the variable y as z, and we assume that A is
a diagonal matrix with diagonal components given by A;,1=1,...,n

in the following. Then L is given by

‘ 0
L= )\sz—
Hence the homology equation is written in the following form

,Cuj:/\juj+Rj(u), j=1,...,n

3. WKB SOLUTION OF A HOMOLOGY EQUATION

Introduction of a large parameter
The natural way of introducing a large parameter in the symmetric
form of a Painlevé equation is the following

n U = A+ Ui(Us — Us)
Uy = A+ Us(Us — Un)
nUL, = A3+ Us(Up — Us).
This is identical with the one introduced by Aoki-Kawai- Takei from

the viewpoint of a monodromy preserving deformation apart from some
minor constant. In view of the similarity of the homology equation to



the symmetric form of a Painlevé equation, we introduce the large
parameter in the homology equation in the following way

N LU; = Lloguy) = Aj + }%(ul, i=1...,n,
j

where U; = log u;.

A WKB solution (0 - instanton solution)

For the sake of simplicity we set u{z) = = + v(z) in the original ho-
mology equation and we introduce a large parameter n by the above
argument. The resultant equation is

(HG), 7 Lv; = My + Ri(z +o(x)), j=1,...,n

Definition (WKB solution). A WKB solution (0 - instanton so-
lution) v(z,n) of (HG), is a formal power series solution of (HG), in
the form

(31)  vlz,m) =Y _n w(z) =) +n nlw) + -,

where the series is a formal power series in 1 with coefficients v, (z)
holomorphic vector functions in z in some open set in C" independent

of v.
By setting v = (v',...,v") we substitute the expansion (3.1) into
(HG),. First we note

Lo =" Lvl(zn™,
v=0
Ri(z +v) = Rj(z +vo + v +van ™ +--+)

", (OR; _
= Ri(z+vo) +7n " Z (5—;]3) (z 4+ vo)vF + O(n7?).
k=1

By comparing the coefficients of 77, 7° = 1 and "' of both sides of
(HG), we obtain |

(3.2)  MNvd(z) + Ri(w1 +vg,... ,an+ug) =0, j=12,...,n,

. O (OR; |
(3.3)  Lu] = M\l + ; (525) (x4 v, i=12,...,n
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In order to determine v,(z) (v > 2) we compare the coefficients of 7.
We obtain

. , "/ OR.
(34) ,CU,]/__l = )\j’l)z, -+ ; (—8—;;5—) (l‘ -+ 'U())’UiC
+ (terms consisting of 'uz, k<v-—1landj=1,...,n).

In order to determine v, from the above recurrence relations we need
a definition. Let A be the diagonal matrix with diagonal components
given by A1,..., A, in this order.

Definition (turning point). The point z such that

(3.5) det (A + (OR/0z)(z +v)) =0

is called a turning point of the equation (HG),,.

Assumption. We assume

(A.1) A; # 0, i=1,...,n.

Note that the origin z = 0 is not a turning point of (HG), for any
holomorphic vg(z) = O(|z[*), because det A # 0.

Then, we have

Proposition Assume that det A # 0. Then every coefficient v,(z) of
a WKB solution is uniquely determined as a holomorphic function in
some neighborhood of the origin z = 0 independent of v.

Proof. The function v)(z) is holomorhic at the origin z = 0 and
satisfies that v}(z) = O(|z|*). Hence it is uniquely determined by (3.2)
in view of the implicit function theorem. Then the functions

vilg), k=1,2,...,5=1,...,n

can be uniquely determined by (3.4) as holomorphic functions in some
neighborhood of the origin by the assumption because the origin z = 0
is not a turning point of the equation. We note that vl,(z) are deter-
mined recursively by differentiation and algebraic manupulations. This
implies that all vJ(z) are holomorphic in some neighborhood of the ori-
gin independent of v. U

Definition (Resonance condition). We say that 7 is resonant, if

(3.6) Z AZ'OQ' - 77/\5' : O,
i=1
for some o = (0,... ,00) € Z7, |al > 2 and j,1 < j < n. If 7 is not

resonant, then we say that n is nonresonant.



Definition (Poincaré condition) We say that a homolgy equation
satisfies a Poincaré condition, if the conver hull of X;,(j = 1,... ,n)
in the complex plane does not contain the origin.

If a Poincaré condition is not verified, then we assume the following
condition

)\jER, j‘—"l,,n

In this case, there are two important cases, namely, a Diophantine case
and Liouville case. In the former case, either a Siegel condition or a
Bruno (type) Diophantine condition is verified among A;, j = 1,... ,n.
If no such conditions are satisfied, then we say that we are in a Liouville
domain under our assumption.

We note that, if a Poincaré condition is verified, then the number of
resonance is finite, while in a Siegel case, the number of resonance is,
in general, infinite. Moreover the resonance may be a dense subset of
a real line.

4. SUMMABILITY OF A WKB SOLUTION IN A POINCARE DOMAIN

For the direction &, (0 < & < 27) and the opening § > 0 we define
the sector Sgg by

(4.1) Sf,GZ{WEC; !Afgﬁ—€f<"g},

where the branch of the argument is the principal value. Then we have

Theorem 1. (Resummation) Suppose that
m .
(C) ’Arg)\j|<z, j=1,...,n.

Then, there exist a direction &, an opening 6 > 7, a neighborhood U
of the origin © = 0 and V(z,n) such that V(z,n) is holomorphic in
(z,n) € U X Seo and satisfies (HG),. The function V(z,n) is a Borel
sum of the WKB solution v(z,n) in U X S¢g when n — oo. Namely,
for every N > 1 and R > 0, there exist C' > 0 and K > 0 such that

(4.2) Viz,n) — > n v, (z)| < CKYN![n~,

v=0

V(SIZ,T/‘) c U x Sg,g, I’I?I > R.

Remark. The condition (C) implies the Poincaré condition.
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5. RECONSTRUCTION OF A POINCARE SOLUTION VIA ANALYTIC
CONTINUATION OF A WKDB SOLUTION

We shall make an analytic continuation (with respect to n) of a
resummed WKB solution to the right half plane. We note that there
exist an infinte number of resonaces on the right-half plane Ren > 0
which accumulate only at infinity. The solution may be singular with
respect to n at the resonances. We have

Theorem 2. Suppose that (C) is verified. Then the resummed WKB
solution is analytically continued to the right half plane as a single-
valued function except for resonances. If the nonresonance condition
holds, then the analytic continuation of a resummed WKB solution
ton = 1 coincides with a classical Poincaré solution of a homology
equation.

Next we consider the case where a Poincaré condition is verified,
while the condition (C) is not satisfied. The essential difference in this
case is that there is not a unique correspondence between the WKB
solution and the Poincaré solution.

Theorem 3. Suppose that the Poincaré condition is verified. Then,
there exist a direction &, an opening 8 > 0, a neighborhood U of the
origin z = 0 and V (z,n) such that V(z,n) is holomorphic in (z,m) €
U x S¢ and satisfies (HG),. The WKB solution v(z,n) is a Gevrey 2
asymptotic expansion of V(z,n) in U X S¢p when n — oo.

The function V(z,n) is analytically continued with respect to 7 to
the right half plane as a single- valued function except for resonances.
If the nonresonance condition is verified, then we can take V (z,n) such
that the analytic continuation of V(z,n) to n = 1 coincides with a
classical Poincaré solution of a homology equation with n = 1.

6. WKB SOLUTION IN A SIEGEL DOMAIN

In this section we assume that we are in a Siegel domain. Moreover,
we assume, for the sake of simplicity

A; €R (j =1,2,...,n) are linearly independent over Q.

Then the set of all resonances is dense on R. We have

Theorem 4. Under the above conditions, there exist a direction &, an
opening 6 > 0, a neighborhood U of the origin z = 0 and V(z,n) such
that V(xz,n) is holomorphic in (z,n) € U x Sgy and satisfies (HG),.

The WKB solution v(z,n) is an asymptotic expansion of the function
V(z,n) in U x S¢p when n — oo.



The function V(z,n) is analytically continued with respect to n to

the upper (respectively lower) half plane as a single-valued function. If

the nonresonance condition is verified, then we can take V(x,n) such
that

lim V(z,n)

+n—1

exists as a formal power series and they coincide with a Siegel solution
of a homology equation as a formal power series solution.

Remark. i) We do not know whether the WKB solution v(z,7) is a
Gevrey asymptotic expansion of V(z,7) in U x Sgg when n — oo.

ii) On the real line R, V(z,7) has dense singularities in . Hence,
V(z,mn) cannot be continued analytically to the point n = 1.
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