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Mathematical Models for Epidemic Dynamics with Adult
Vaccination against Waning Immunity
免疫失活に対する成人ワクチン接種を伴う伝染病感染動態に関する数理モデル
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Abstract. We analyze two simple mathematical models taking account of the waning immunity, specifically
formulated with measles in mind, to give some insight about the effect of vaccination in adult age class
according to the elimination of measles within the whole population. First model is non-age-structured one,
and the second model is with three age classes: infant, young, and adult. With mathematical and numerical
analyses making use of parameter values which could correspond to the demographic situation of a Japanese
community, we show the result emphasizing that the vaccination program should be planned with taking
account of the size of population within which the disease transmission is taking place. Especially in case of
Japan, although our numerical calculations imply that it would be hard to increase the infant vaccination rate
enough to make the population approach the disease-free equilibrium, the increase of infant vaccination rate
above the present level would be more effective than the promotion of secondary vaccination for an adult age
class in order to reduce the infective population.

免疫が一時的であり, 失活を伴う場合の単純な伝染病感染動態に関する数理モデル 2 つ, 年齢構造のないものと,
3つの年齢グループ (幼年, 少年, 成年) からなるもの, を考察する。数理モデルには, 成入に対するワクチン接
種の効果を導入する。特に, 具体例として, 麻疹感染を取り上げ, 麻疹撲滅に対するワクチン接種の効果に関する
試論を展開する。数学的解析, および, 高知県の人ロデータおよび麻疹感染データを参照したパラメータ値による
数値計算の結果は, 幼年期におけるワクチン接種に加えて, 成年期でのワクチン接種 $\acute{\text{を}}$行っても, その効果は期待
できないということ, ただし, 成年期でのワクチン接種が有効であるような人ロサイズもありえることを示唆する
ものである。特に, 大きな人口集団における伝染病感染に対しては, ワクチンの 2次接種よりも, 幼年期でのワク
チン接種率の向上が感染者数減少により効果的であると示唆された。

1. Introduction

Epidemic dynamics has been attracting not a few theoretical and mathematical researchers (for in$\sim$

stance, see [1-5] and their references). In this paper, we analyze two simple mathematical models
taking account of the waning immunity, specificaliy formulated with measles in mind, to give some
insight about the effect of vaccination in adult age class according to the elimination of measles within
the whole population. First model is non-age-structured one, with which we see the interaction be
tween the immunity waning and the secondary vaccination. Second model is with three age classes:
infant, young, and adult. With the model, we discuss the efflciency of adult vaccination for the elim-
ination of measles, with numerical analysis making use of parameter values which could correspond
to the demographic situation of a Japanese community, the Kochi Prefecture, which is one of locat
communities that have experienced some serious outbreaks of measles in several years (see Fig. 1) [6].

In recent Japan, measles cases counts 11,000-22,000 a year in a certain average, and estimated at
286,000 especially for 2001, according to the report of infectious disease surveillance by the Infectious
Disease Surveillance Center (IDSC) of the Japanese Ministry of Health, Labour and Welfare $[7,8]$ .
More than 60% of the patients in the data are infants below two years old, and more than 95% are
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Fig. 1. Number of infant measles cases reported by pediatric sentinel clinics in the Kochi Prefecture, JaPan,
from July 1979 (the first month) to February 2004 (the 296th month), given by the Kochi Prefectural Infectious
Disease Surveillance Center [6].
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Fig. 2. Age distribution of measles cases in Japan. Drawn by the cumulative data from the $14\mathrm{t}\mathrm{h}$ week in 1999
to the 29th in 2002 [9].

non-vaccinated. As indicated by Fig. 2, most infected age class is from one to five years old. Every

year local outbreak of measles is repeated in Japan [7-9].

Adult measles is defined for patients over 18 years old. Since several years, it has been reported

that teenagers vaccinated in the infant period are infected by measles $[9, 10]$ . As for the adult measles

in Japan, it has no decreasing tendency with about 3-4% of all cases, and the reported number of

measles cases decreases in age over 24 years old (see Fig. 3) $[8,9]$ .
Today, as seen from Fig. 4, the measles vaccination rate for infants is more than 80% in average

over the whole Japan, although there are some local communities with the rate around 50-60% [7-9].

It is said that 3-5% of vaccinated individuals fail to get the immunity $[11, 12]$ . On the other hand, the

report for the Sapporo City in Japan indicates that around 40% of the measles patients were non-
vaccinated [8]. So only such failure of immunization is insatisfactory to explain the measles infection to

vaccinated individuals. It is likely that the effective period of immunity becomes shorter than before.

In fact, some sero epidemiological estimates of antibody decay suggest that 25 years after vaccination,

measles antibody levels have waned to below protection levels [13-17]. A hypothesis is that, in past,

the imrnunity was reinforced by $\mathrm{r}$ -encountering the pathogen [18-22], what is sometimes called the
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Fig. 3. Age distribution of adult measles cases in Japan. Drawn by the cumulative data from the 14th week
in 1999 to the 29th in 2002 [9].
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Fig. 4. Measles vaccination rate for infant in Japan [9]. The rate in the data is calculated by the ratio of
vaccinated infant population to the PoPuiation of one year old.

Fig. 5. Estimated number of measles susceptibles in Japan [25]

“boosting effect” , whereas the chance to re–encounter the pathogen recently becomes less and less [23,
24]. Indeed, as shown in Fig. 5, the age distribution of Japanese susceptible population indicates a
small peak in teenagers and twenties [25]. Besides, it is said that the Japanese vaccine would be less
effective against mutated strains of measles virus $[8,9]$ .

Promoting the vaccination program for infants is a possible public health strategy against the
measles outbreak. Another strategy is to carry out the secondary vaccination for older age class, which
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can be regarded as playing role of an artificial “boosting effect”. Such two dose vaccination program
is recently under consideration for a teenager class in Japan $[8,9]$ , while, in the other countries, for
example, the United States, Canada, and Australia, it has been promoted for the younger class around
or less than 10 years old. Some mathematical models have been analyzed to discuss problems related
to such two-dose vaccination schedule [26-30]. In this paper, we consider the secondary vaccination
in the adult age class over 18 years old, focusing the adult measles transmission, to get some insights
about the efficiency of such two-dose vaccination program for Japanese situation.

2. Preliminary Model

2. 1 Modeling

We consider the epidemic dynamics given by the following SIRM model (see Fig. 6) :

$\frac{dS}{dt}=-\beta SI-\omega_{2}S+\rho_{1}(I)R+\rho_{0}(I)M+(1-\omega_{1})bN-\mu S$ (1)

$\frac{dI}{dt}=\beta SI-\gamma(I\rangle$$I-\mu I$ (2)

$\frac{dR}{dt}=\gamma(I)I-\rho_{1}(I)R-\mu R$ (3)

$\frac{dM}{dt}=\omega_{1}bN+\omega_{2}S-\rho_{0}(I\rangle$$M-\mu M, (4)$
where $S(t),$ $I(t),$ $R(t)$ and $M(t)$ are respectively the susceptible population, the infective population,
the recovered and infection-induced immune population, and the vaccine induced immune population
at time $t$ . Although not a few models have taken account of latent period [1-3, 31,32], with an additional
subpopulation frequently denoted by $E$ , exposed to the epidemic disease, we do not consider it in our
model.

Parameters $b,$ $\beta,$
$\mu,$ $\omega_{1}$ , and $\omega_{2}$ are positive constants. Parameter $b$ is the birth rate, $\mu$ the natural

death rate, $\beta$ the infection rate. Term $\beta SI$ introduces the mass-action type of disease transmission
from infective to susceptible, like well-known Kermack-McKendrick SIR model [33] (see also [1-3]).

Parameter $\omega_{1}(0\leq\omega_{1}\leq 1)$ is the vaccination rate in the infant period, while $\omega_{2}(0\leq\omega_{2}\rangle$ can be

regarded as that in the elder period,
The recovery rate $\gamma(I)$ is $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\Lambda$ to be a function of infective population density, and so are the

immunity waning rates $\rho_{0}(I)$ and $\rho_{1}(I)$ as well. Vaccine induced immune individual loses its immunity

and comes back to susceptible with rate $\rho \mathrm{o}(I)$ , while the infection-induced immune individual does with

rate $\rho_{1}(I)$ . Waning rate of the vaccine induced immunity is in general less than that of the infection-

induced one, as indicated by some serological studies [13-15, 19, 22,34,35]. With these #-dependence,

we introduce the boosting effect into our model. As the infective population density gets larger, the

recovery of infective individual becomes harder because the infective individual gets more chance for

the re-infection of antigen. So the recovery rate averaged over the population is in general decreasing

in terms of infective population density. Similarly, the increase of chance for the $\mathrm{r}\mathrm{e}rightarrow \mathrm{i}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of antigen

makes the reinforcement of immune system against the antigen, so that the immunity waning rate

averaged over the population is decreasing in terms of infective population density.

We consider a stationary population, that is, a constant total population $N=S+I+R+M$ at

any time $t$ . Hence, from (1-4), at any time $t$ ,

$\frac{dN}{dt}=\frac{dS}{dt}+\frac{dI}{dt}+\frac{dR}{dt}+\frac{dM}{dt}=(b-\mu)N=0$.

Therefore, we assume $\mu=b$ hereafter.

2. 2. Disease-free Equilibrium

From (1-4), we can easily find that the disease-free equilibrium $(S^{*}, I^{*}=0, R^{*}=0, M^{*}=N-S^{*})$

always exists, where

$S^{*}= \frac{(1-\omega_{1})b+\rho_{0}(0)}{b+\rho_{0}(0)+\omega_{2}}N$ .
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Fig. 6. SIRM model (1-4).

By means of the standard eigenvalue analysis, we can easily obtain the following condition for its
locally asymptotic stability:

$N< \frac{\{b+\rho_{0}(0)+\omega_{2}\}\{b+\gamma(0)\}}{\{(1-\omega_{1})b+\rho_{0}(0)\}\beta}=N_{\mathrm{c}}^{*}$ . (5)

For the population of size $N>N_{\mathrm{c}}^{*}$ , the epidemic disease eventually becomes endemic. This result
simultaneously means that the basic reproductive number $R_{0}$ is given by

島 $= \frac{\{(1-\omega_{1})b+\rho_{0}(0)\}\beta N}{\{b+\rho_{0}(0)+\omega_{2}\}\{b+\gamma(0)\}}$ . (6)

Disease free equilibrium is asymptotically stable if $R_{\mathrm{O}}<1$ , while it is unstable if $R_{0}>1$ . The basic
reproductive number $R_{0}$ is monotonically increasing in terms of $\rho_{0}(0)$ , that is, $R_{0}$ becomes larger as
the wane of immunity gets faster. However, $R_{0}$ does not infinitely increase but has the upper bound
$N/N_{\mathrm{c}1}$ , where

$N_{\mathrm{c}1}= \frac{\gamma(0)+b}{\beta}$ .

From the condition (5), as shown by Fig. 7 we can see three different cases: i) the disease free equi-
librium can be asymptotically stable even without any vaccination; $\mathrm{i}\mathrm{i}$ ) only the infant vaccination can
bring the disease free equilibrium even without secondary vaccination; $\mathrm{i}\mathrm{i}$ ) the secondary vaccination
is necessary for the disease elimination.

The first case corresponds to the sufficiently small size of total population such that $N\leq N_{\mathrm{c}1}$ .
In this case, the condition (5) is satisfied for any pair of $\omega_{1}$ and $\omega_{2}$ . Besides, as mentioned for the
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果

Fig. 7. $(\omega_{1} , \omega_{2})$-dependence of the local stability of disease free equilibrium. The boundary is a line depending
on the total population size $N$ . Boundary line moves upper as $N$ gets larger. As for the detail explanation,
see text.

basic reproductive number in the above, if $N\leq N_{\mathrm{c}1}$ , then $R_{0}<1$ for any value of $\rho_{0}(0)$ , so that the
disease free equilibrium is asymptotically stable independently of the strength of boosting effect.

The second case is for an intermediate size of total population such that

$N_{\mathrm{c}1}<N<N_{\mathrm{c}2}= \frac{\rho_{0}(0)+b}{\rho_{0}(0)}N_{\mathrm{c}1}$ . (7)

In this case, with the infant vaccination satisfying the below condition, the disease free equilibrium

can be asymptotically stable even without secondary vaccination:

$\omega_{1}\geq\omega_{1\mathrm{c}}^{1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}}.=\frac{\rho_{0}(0\rangle+b}{b}(1-\frac{N_{\mathrm{c}1}}{N})$ . (8)

In the same case, even without infant vaccination, the disease-free equilibrium can be asymptotically
stable if the secondary vaccination satisfies

$\omega_{2}\geq\omega_{2\mathrm{c}}^{\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}}=\{\rho_{0}(0)+b\}(\frac{N}{N_{\mathrm{c}1}}-1)$ . (9)

The last case is for sufficiently large population such that $N\geq N_{\mathrm{c}2}$ . In this case, even with
perfect vaccination for infant age class, that is, with $\omega_{1}=1$ , the disease is endemic. This is the case
same as that discussed by [36]. So the secondary vaccination is necessary for the asymptotic stability

of disease free equilibrium. For the asymptotic stability of disease free equilibrium, the rate w2 of

secondary vaccination must satisfy the condition that

$\omega_{2}>\omega_{2\mathrm{c}}^{1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}}=\{\rho_{0}(0)+b\}(\frac{N}{N_{\mathrm{c}2}}-1)$ . (10)

If $\omega_{2}\leq\omega_{2\mathrm{c}}^{1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}}$ , the disease becomes endemic independently of any infant vaccination. The secondary

vaccination could contribute to the elimination of disease only if $\omega_{2}>\omega_{2\mathrm{c}}^{1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}}$. If $\omega_{2}$ is large enough to

satisfy (9), the disease free equiiibrium is asymptotically stable even without infant vaccination.
Since both $\omega_{2\mathrm{c}}^{1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}}$ and $\omega_{2\mathrm{c}}^{\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}}$ are linearly increasing in terms of the total population size $N$ , the

higher rate of secondary vaccination is required for the asymptotic stability of disease free equilibrium,

as the total population size gets larger.
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Fig. 8. Three age class model (11-22). As for the detail explanation, see text.

We remark that these results are independent of mathematically detail features of functions $\gamma(I)$

and $\rho_{i}(I)(\mathrm{i}=0,1)$ except for values $\gamma(0)$ and $\rho_{0}(0)$ . Therefore, our results are valid for a family of
functions for $\gamma(I)$ and $\rho_{i}(I)(\mathrm{i}=0,1)$ .

When the disease free equilibrium is unstable, the system approaches some endemic state. Depend-
ing of the detail features of $I$-dependence of functions $\gamma(I)$ and $\rho_{i}(I)(\mathrm{i}=0,1)$ , the detail features of
endemic state, such as its bifurcation structure, could appear mathematically interesting even for our
simple model. However, we do not analyze them here, and will present elsewhere, In this paper, we are
focusing the invasion of epidemic disease, so that the main subject is the local stability of disease free
equilibrium. If the disease free equilibrium is asymptotically stable, we translate the situation as that
an invading small infective population decreases toward zero and its invasion fails. Otherwise, the
invading infective population increases and occurs an outbreak of disease transmission.

3. Three Age Class Model

3.1 Modelin9
POPULATION DYNAMICS

Now, we construct a mathematical model with three age classes: infant age class (Group 1) from age
0 to $a_{1}$ , young age class (Group 2) from age $a_{1}$ to $a_{2}$ , and adult age class (Group 3) from age $a_{2}$ to
$a_{3}$ (see Fig. 8).

Let us consider the susceptible, the infective, the recovered, and the $\mathrm{v}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}/\mathrm{i}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}$ sub-
populations in each age class $(i=1,2,3)$ :
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$S_{i}(t)$ : the susceptible population in Group $\mathrm{i}$ at time $tj$

$I_{i}(t)$ : the infective population in Group $\mathrm{i}$ at time $t$ ;
$R_{i}(t)$ : the recovered population in Group $\mathrm{i}$ at time $t$ ;
$M_{i}(t)$ : the vaccinated or immunized population in Group $\mathrm{i}$ at time $t$ ;
$G_{i}(8)$ : the population size of each age class at time $t:G_{i}(t)=S_{i}(t)+I_{:}(t)+R_{i}(t)+M_{i}(t)$ .

Especially $M_{1}$ means the vaccinated infant population. In contrast, $M_{2}$ includes the individuals vacci-
nated in the infant age class and those recovered from the infection in the infant age class. We assume
that those who can get the immunity in the infant age class can carry an effective immunity even in

the young age class, and becomes susceptible in the adult age class because of the waning immunity.

We introduce the secondary vaccination in the adult age class. Hence, $M_{3}$ includes the individuals
recovered from the infection in the young age class and those vaccinated in the adult age class.

We consider the population dynamics governed by the following system:

$\frac{dS_{1}}{dt}=bG_{3}-\lambda_{1}(I_{1}, I_{2}, I_{3})S_{1}-\omega_{1}S_{1}-\phi_{1}S_{1}-\mu_{1}S_{1}$ (11)

$\frac{dI_{1}}{dt}=\lambda_{1}(I_{1}, I_{2}, I_{3})S_{1}-\gamma_{1}I_{1}-\phi_{1}I_{1}-\mu_{1}I_{1}$ (12)

$\frac{dR_{1}}{dt}=\gamma_{1}I_{1}-\phi_{1}R_{1}-\mu_{1}R_{1}$ (13)

$\frac{dM_{1}}{dt}=\omega_{1}S_{1}-\phi_{1}M_{1}-\mu_{1}M_{1}$ (14)

$\frac{dS_{2}}{dt}=-\lambda_{2}(I_{1}, I_{2}, I_{3})S_{2}+\phi_{1}S_{1}-\phi_{2}S_{2}-\mu_{2}S_{2}$ (15)

$\frac{dI_{2}}{dt}=\lambda_{2}(I_{1}, I_{2}, I_{3})S_{2}-\gamma_{2}I_{2}+\phi_{1}I_{1}-\phi_{2}I_{2}-\mu_{2}I_{2}$ (16)

$\frac{dR_{2}}{dt}=\gamma_{2}I_{2}-\phi_{2}R_{2}-\mu_{2}R_{2}$ (17)

$\frac{dM_{2}}{dt}=\phi_{1}(M_{1}+R_{1})-\phi_{2}M_{2}-l^{\lambda_{2}M_{2}}$ (18)

$\frac{dS_{3}}{dt}=-\lambda_{3}(I_{1}, I_{2}, I_{3})S_{3}-\omega_{2}S_{3}+\phi_{2}(S_{2}+M_{2})-\phi_{3}S_{3}-\mu_{3}S_{3}$ (19)

$\frac{dI_{3}}{dt}=\lambda_{3}(I_{1}, I_{2}, I_{3})S_{3}-\gamma_{3}I_{3}+\phi_{2}I_{2}-\phi_{3}I_{3}-\mu_{3}I_{3}$ (20)

$\frac{dR_{3}}{dt}=\gamma_{3}I_{3}-\phi_{3}R_{3}-\mu_{3}R_{3}$ (21)

$\frac{dM_{3}}{dt}=\omega_{2}S_{3}+\phi_{2}R_{2}-\phi_{3}M_{3}-\mu_{3}M_{39}$ (22)

where the disease infection force functions $\lambda_{i}(\mathrm{i}=1,2,3)$ are given by

$\lambda_{i}(I_{1}, I_{2}, I_{3})=\beta_{i1}I_{1}+\beta_{i2}I_{2}+\beta_{i3}I_{3}$ .

Parameters $b,$ $\phi_{i},$ $\beta_{ij},$ $\gamma_{i},$ $\mu_{i},$ $\omega_{1}$ , and $\omega_{2}(\mathrm{i}, j=1,2,3)$ are all positive constants. Meaning of each

parameter is given in Table 1. As indicated in (11), the net birth rate is proportional to the population

size $G_{3}$ of Group 3. We assume that any reproductive individual belongs to Group 3.

ASSUMPTION OF CONSTANT POPULATION SIZE

We assume that the population size of each age class, $G_{i}(\mathrm{i}=1,2,3)$ , is temporally constant, that is,

assume a stationary age class distribution. Eventually, the total population size $N=G_{1}+G_{2}+G_{3}$

is also assumed constant. By this assumption, the following equations must be satisfied according to

(11-22):

$\frac{dG_{1}}{dt}=bG_{3}-(\mu_{1}+\phi_{1})G_{1}=0$ (23)
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Table 1. Parameter list in the three age class model (11-22).

$b$ birth rate
$\mu_{i}$ natural eath rate in roup $i$

$\phi_{t}$ population transfer rate from Group $i$ to the subsequent age class
$\beta_{\mathrm{i}i}$ infection rate within the same GrouP $i$

$\beta_{ij}$ $(i\neq j)$ in ection rate rom rouP $j$ to GrouP $i$

$\gamma_{i}$ recovery rate of the infective in GrouP $i$

$\omega_{1}$ vaccination rate in the infant age class
$\omega_{2}$ vaccination rate in the ult age claes

$\frac{dG_{2}}{dt}=\phi_{1}G_{1}-(\mu_{2}+\phi_{2})G_{2}=0$ (24)

$\frac{dG_{3}}{dt}=\phi_{2}G_{2}-(\mu_{3}+\phi_{3})G_{3}=0$. (25)

BALANCE EQUATIONS

Next, we consider the population renewal in the infant age class. As indicated in (11), the newborn
population $bG_{3}\Delta t$ enters into the infant age class during $[t, t+\Delta t)$ . This cohort of newborn population
decreases to $bG_{3}e^{-\mu_{1}a_{1}}\Delta t$ at time $t+a_{1}$ with the natural death of rate $\mu_{1}$ . On the other hand,
population $\phi_{1}G_{1}\Delta t$ of age $a_{1}$ is transfered from Group 1 to Group 2 during at. Thus, we obtain the
following equation:

$bG_{3}e^{-\mu_{1}a_{1}}\Delta t=\phi_{1}G_{1}\Delta t$ . (26)

In the same way, we can get the similar equations for each age class:
$\phi_{1}G_{1}e^{-\mu 2(a_{2}-a_{1})}\Delta t=\phi_{2}G_{2}\Delta t$; (27)

$\phi_{2}G_{2}e^{-\mu s(a\mathrm{a}-a_{2})}\Delta t=\phi_{3}G_{3}\Delta t$ . (28)

From these equations (26-28), we can obtain the expression for $\phi_{1},$ $\phi_{2)}$ and $\phi_{3}$ with the other param-
eters:

$\phi_{1}=b\frac{G_{3}}{G_{1}}e^{-\mu_{1}a_{1}}$ (29)

$\phi_{2}=b\frac{G_{3}}{G_{2}}e^{-\{\mu_{1}a_{1}+\mu_{2}(a_{2}-a_{1})\}}$ (30)

$\phi_{3}=be^{-\{\mu_{1}a_{1}+\mu_{2}(a_{2}-a_{1})+\mu_{3}\langle a_{3}-a_{2}\rangle\}},$ . (31)

With the assumption of a stationary age class distribution, those equations (23-25) and (29-31)
give the following relation between birth rate $b$ and death rates $\mu_{1},$ $\mu_{2}$ , and $\mu_{3}$ :

$b= \frac{\mu_{3}e^{\mu_{1}a_{1}+\mu_{2}(a_{2}-a_{1})}}{1-e^{-\{\mu_{3}(a_{3}-a_{2})\}}}$ . (32)

Since the total population size $N$ is constant, from (23-25) and (29-31), we can obtain the following
$\mathrm{e}\mathrm{q}\mathrm{u}$ations, too:

$\frac{G_{1}}{N}=\frac{b\mu_{2}(1-e^{-\mu_{1}a_{1}})}{b\mu_{2}(1-e^{-\mu_{1}a_{1}})+b\mu_{1}e^{-\mu_{1}a_{1}}(1-e^{-\mu_{2}(a_{2}-a\iota)})+\mu_{1}\mu_{2}}$ (33)

$\frac{G_{2}}{N}=\frac{b\mu_{1}e^{-\mu_{1}a\mathrm{z}}(1-e^{-\mu 2(a_{2}-a_{\mathrm{I}}\rangle})}{b\mu_{2}(1-e^{-\mu_{1}a_{1}})+b\mu_{1}e^{-\mu_{1}a_{1}}(1-e^{-\mu_{2}\langle a_{2}-a_{1})})+\mu_{1}\mu_{2}}$ (34)

$\frac{G_{3}}{N}=\frac{\mu_{1}\mu_{2}}{b\mu_{2}(1-e^{-\mu \mathrm{x}a_{1}})+b\mu_{1}e^{-\mu_{1}a_{1}}(1-e^{-\mu 2(a_{2}-a_{1})})+\mu_{1}\mu_{2}}$ . (35)

Consequently, for given natural death rates $\mu_{i}(\mathrm{i}=1,2,3)$ , the birth rate $b$ is uniquely determined
by (32), and then, from (33-35), ratios $G_{i}/N(\mathrm{i}=1,2,3)$ are determined, and vice versa. Further,
from (29-31), population transfer rates $\phi_{i}(\mathrm{i}=1,2,3)$ are determined, too.
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Ihble 2. Parameter values for numerical calculation

*Data of the Kochi Prefecture in Japan, 2000.
**Group 3 consists of every individual over 18 years old.

3.2. Parameters for Numerical Calculation

For our three age class model, we analyze it mainly with numerical calculations, making use of measles
data for the Kochi Prefecture in Japan [6]. Parameter values used for numerical calculations are given
in Table 2.

AGE CLASS

In Japan, the infant measles infection occurs mostly from one to five years old [9], so that we put

$a_{1}=5$ . Since the adult mealses infection is defined for individual over 18 years old in Japan, we put
$a_{2}=18$ , and $a_{3}=\infty$ in our model. Therefore, Group 3 consists of every individual over 18 years old.

BIRTH RATE, DEATH RATE, AND POPULATION TRANSFER RATE

In our model, the population renewal is assumed proportional to the population size $G_{3}$ . In contrast,

given ‘birth rate’ $\tilde{b}$ in the demographic data is generally defined by the ratio of newborn numbers to

the total population $N$ . Hence, we get the following relation between $\tilde{b}$ and $b$ :

$b= \tilde{b}\cdot\frac{N}{G_{3}}$ .

From a demographic data for $\tilde{b}$ in Japan [37], we roughly choose the parameter value of $b$ as in Table

2.
With thle estimated value of $b$ , we can numerically estimate values of $\mu_{1}$ and #2 from (33-35),

then can get the value of $\mu_{3}$ from (32). As for the population transfer rate $\phi_{3}$ , we put $\phi_{3}=0$ because

Group 3 consists of every individual over 18 years old. From (29-31), we can obtain values of $\phi_{1}$ and
$\phi_{2}$ .

RECOVERY RATE

We assume that the mean duration of infection till recovery is common for any infective individual,

independently of age. From the general knowledge about the measles infection, we put the mean
duration of infection 9 days. Therefore, from $\gamma_{i}=\gamma=1/9(\mathrm{i}=1,2,3)$ per day, we can get the value

of $\gamma$ per year in Table 2.
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Table 3. Infection rate for numerical calculation.
Infection rate VaIue year

$\beta_{11}$ 1.3 $\mathrm{x}$ $10^{-}$

$\beta_{12}=\beta_{21}=\beta_{22}$ 2.5 $\mathrm{x}$ $10^{-}$

$\beta 13=\beta 23=\beta 33=\beta_{32}=\beta_{3l}$ 3.3 $\mathrm{x}$ $10^{-}$

INFANT VACCINATION RATE

In the surveillance data, the vaccination rate $\tilde{\omega}$ is defined by the ratio of vaccinated infant population
to the population of one year old. On the other hand, the measles vaccination for Japanese infant is
scheduled at present for those from twelve to ninety months after birth. In this reason, the vaccination
rate $\overline{\omega}$ in the surveillance data can be beyond 100% (see Fig. 4).

In our numerical calculation, we give the population of one year old, $J$ , by

$J= \int_{1}^{2}bG_{3}e^{-\mu\iota^{t}}dt=\frac{bG_{3}(e^{-\mu_{1}}-e^{-2\mu 1}\rangle}{\mu_{1}}$ . (36)

Then, at an equilibrium state with the equilibrium value $M_{1}^{*}$ , we assume that $\tilde{\omega}=M_{1}^{*}/J$ . If the
vaccination rate in data is 80%, we use the correspondence such that $M_{1}^{*}/J=0.8$ .

At the equlibrium state for our model, we can get the expression of $M_{1}^{*}$ from (11-14) as follows:

$M_{1}^{*}= \frac{\omega_{1}\{bG_{3}-(\gamma_{1}+\phi_{1}+\mu_{1})I_{1}^{*}\}}{(\phi_{1}+\mu_{1})(\omega_{1}+\phi_{1}+\mu_{1})}$ . (37)

Hence, for instance, according to the surveillance data for the Kochi Prefecture in 2002 and 2003 [6],
except for years when the measles infection outbreaks, if we put $I_{1}^{*}=16$ , then, with $\tilde{\omega}=M_{1}^{*}/J=0.8$ ,
we can get the infant vaccination rate $\omega_{1}=$ 4.483 $\mathrm{x}10^{-2}$ .

According to the disease-free equilibrium with parameter values in Table 2, making use of (37)
with $I_{1}^{*}=0$ , we can numerically calculate the correspondence between $\tilde{\omega}$ and $\omega_{1}$ : $\omega_{1}=$ 2.856 $\mathrm{x}10^{-2}$

for $\tilde{\omega}=0.6,$ $\omega_{1}=$ 3.411 $\mathrm{x}10^{-2}$ for $\tilde{\omega}=0.7,$ $\omega_{1}=$ 3.993 $\mathrm{x}10^{-2}$ for $\tilde{\omega}=0.8,$ $\omega_{1}=$ 4.604 $\mathrm{x}10^{-2}$ for
$\tilde{\omega}=0.9$ , and $\omega_{1}=$ 5.246 $\mathrm{x}10^{-2}$ for $\tilde{\omega}=1.0$ .

With parameter values in Table 2, $\tilde{\omega}$ becomes beyond 100% at relatively small value of $\omega_{1}$ . Besides,
the value of $\tilde{\omega}$ significantly depends on the infective population size $I_{1}^{*}:$

$\tilde{\omega}$ becomes beyond 100% with
zy more than about 132. This indicates that, even for relatively small infective population size $I_{1}^{*}$ , the
vaccination rate $\tilde{\omega}$ corresponding to that in the demographic data is beyond 100%.

INFECTION RATE

If we apply those infection rates used in [38], $\beta_{11}=2.4\mathrm{x}10^{-4},$ $\beta_{12}=\beta_{21}=\beta_{22}=2.6\cross 10^{-4}$ ,
and $\beta_{13}=\beta_{23}=\beta_{33}=\beta_{32}=\beta_{31}=1.3\mathrm{x}10^{-4}$ , our numerical calculation with $\omega_{2}=0$ and
$\omega_{1}=$ 4.483 $\mathrm{x}10^{-2}$ which is derived in case of $\mathit{1}_{1}^{*}=16$ and $\tilde{\omega}=M_{1}^{*}/J=0.8$ with (37), indicates
a fluctuation around $(I_{1}, I_{2}, I_{3})\approx(16,100,200)$ in the stationary state. According to the case of the
Kochi Prefecture $\langle$ $[6]$ , and see Fig. 1), the corresponding values averaged over recent several years result
in $(I_{1}+I_{2}, I_{3})\approx(16,1)$ , which seems much smaller than the above numerical result. So we turned
infection rates so that those values of ( $I_{1},$ $I_{2}$ , I3) at the stationary state have order corresponding to
the data for the Kochi Prefecture, and as a result we choose those values in Table 3.

33. Disease-Free Equilibrium

As for the local stability analysis for the disease free equilibrium, we carry it out with numerically
calculating its eigenvalues with those parameter values in Tables 2 and 3. Our numerical calculations
show that the eigenvalues for the disease-free equilibrium are all real for any $\omega_{\mathrm{A}}1$ and $\omega_{2}$ .
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CRITICAL VA CCINATION RATE

At first, Jet us consider a specific case with $\omega_{2}arrow\infty$ . This is the case when the adult vaccination is
perfectly carried out so that no susceptible individual exists in Group 3 at any time $t$ . So $S_{3}=0$ at
the disease free equilibrium, too. In this case, the numerically obtained maximal eigenvalue is 22.526
with $\omega_{1}=0.0$ , and -29.907 with $\omega_{1}=1.0$ . It is numerically shown that the maximal eigenvalue is
monotonically decreasing in term $\mathrm{s}$ of $\omega_{1}$ . As a result, we find that, even with the perfect vaccination
in the adult age class, there exists a criticai value $\omega_{1}\mathrm{c}$ for $\omega_{1}$ such that the disease free equilibrium
is asymptotically stable with $\omega_{1}>\omega_{1\mathrm{C}}$ , and unstable with $\omega_{1}<\omega_{1\mathrm{C}}$ . We can numericall obtain
$\omega_{1\mathrm{C}}=$ 0.11367 in this case.

With $\omega_{1\mathrm{C}}=0.11367$ , we can numerically calculate the value of $M_{1}^{*}$ by (37) at the disease free
equilibrium, and obtain $\tilde{\omega}=M_{1}^{*}/J=$ 175.08% with the population size $J$ in Table 2.

Next, we consider another specific case with $\omega_{2}=0$ , when the adult vaccination is not carried out
at all. This case corresponds to the present situation in Japan. In the same way as for the previous
case, we can numerically obtain the maximal eigenvalue, 22.541 with $\omega_{1}=0.0$ , and -29.888 with
$\omega_{1}=1.\mathrm{O}$ . Compared to the maximal eigenvalue with $\omega_{2}arrow\infty$, the difference is very small: $10^{-2}-$

$10^{-1}\%$ in order. Indeed, the $\omega_{1}$-dependence of maximal eigenvalue is rather similar with that for the
case of $\omega_{2}arrow\infty$ , so that the difference is negligible. The critical value $\omega_{1}\mathrm{c}$ in this case is numerically
obtained as $\omega_{1\mathrm{C}}=0$.11379, and correspondingly $\tilde{\omega}=$ 175.20%,

On the other hand, we can consider another specific case with $\omega_{1}arrow\infty$ . This is the case when
the infant vaccination is perfectly carried out. In this case, no susceptible individuai exists in Group
1 at any time $t$ , and eventually no susceptible also in Group 2 at any time $t$ because of the effective
immunity, We can explicitly obtain the analytical expression of every eigenvalue for the disease free

equilibrium, and get the general condition for its asymptotic stability as follows:

$\omega_{2}>\frac{\phi_{3}+\mu_{3}}{\phi_{3}+\mu_{3}+\gamma_{3}}\cdot\{\beta_{33}G_{3}-(\phi_{3}+\mu_{3}+\gamma_{3})\}$ , (38)

where we used the equations (23-25). This condition means the existence of case when the adult
vaccination could be essential for the elim ination of disease. However, only in case when the right side
of (38) is positive, that is, when the population size $G_{3}$ of adult age class is sufliciently great beyond
a specific size, this condition could be meaningful. Indeed, in our case with parameter values given
in Tables 2 and 3, the right side of (38) has a negative value, so that the perfect vaccination in the

infant age class leads to the disease-free state, independently of the adult vaccination. Making use of
(35), we can numerically estimate the population size with which the condition (38) is meaningful:
$G_{3}>$ 1.236 $\mathrm{x}10^{7}$ that corresponds to the condition that the totai population size $N>$ 1.453 $\mathrm{x}10^{7}$ .
This result implies that a huge community with population over ten million could never reach the
disease-free state only vith the infant vaccination, whereas the secondary vaccination program might
be effective to eliminate the disease or decrease the infective population.

Consequently, our numerical calculations indicate that, almost independently of the value of $\omega_{2}$ ,

the population approaches the disease-free equilibrium if the infant vaccination rate $\omega_{1}$ is beyond a

critical value, whereas it approaches the endemic state if $\omega \mathrm{l}$ is below the critical value.

EFFECT OF TOTAL POPULATION SIZE

Critical value $\omega_{1\mathrm{C}}$ for the vaccination rate $\omega_{1}$ depends on the total population size $N=G_{1}+G_{2}+G_{3}$ .

We numerically investigated the maximal eigenvalue for the disease-free equilibrium with parameter

values of Tables 2 and 3 except for population sizes, and found that the critical value $\omega_{1\mathrm{C}}$ has an
almost linear dependence on the total population size.

Also in these numerical investigations, the contribution of $\omega_{2}$ to the result appears negligible.
Indeed, even in the specific case of $\omega_{2}arrow\infty$ , the critical size of total population is 5.277 $\mathrm{x}10^{5}$ with
$\omega_{1}=0$ and 3.099 $\mathrm{x}10^{6}$ with $\omega_{1}=1$ , while, in case of $\omega_{2}=0$ , 5.276 $\mathrm{x}10^{5}$ with $\omega_{1}=0$ and 3.094 $\mathrm{x}10^{6}$

with $\omega_{1}=1$ .
In Table 4, we show numerically obtained critical infant vaccination rate in terms of the total

population size. We conclude that it would be hard for the population over eight hundred thousands to

reach the disease-free equilibrium with the present ievel of infant vaccination rate, while the population
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Table 4. Critical infant vaccination rate versus the total population size in case of $\mathrm{w}_{2}=0$ .
Total population size $(\mathrm{x}10^{\mathrm{d}})$ $\omega_{1}\mathrm{c}$ Corresponding $\tilde{\omega}$ (%)
$<5.276$ 0.00000 0.000

6.000 0.02818 59.304
6.010 0.02856 60.000
6.152 0.03411 70.000
6.302 0.03993 80.000
6.624 0.05246 100.000
7.000 0.06709 121.014
8.000 0.10600 167.296
9.000 0. 14492 203.293

10.000 O.IS384 232.092
100.000 3.73842 465.589

Fig. 9. Temporal variation toward the endemic state. Numerically calculated with parameter values given in
Tables 2 and 3 with $\omega_{2}=0$ . Initial conditions are given by $S_{1}(0)=G_{1}$ – 76, $I_{1}(0)=76,$ $S_{2}\langle 0$) $=G_{2}$ – 224,
I2(0) $=224,$ $S_{3}(0)=G_{3}$ , and I3(0) $=R_{i}(0)=M_{i}(0)=0(\mathrm{i}=1,2,3)$ , which correspond to the data fbr the
Kochi Prefecture [6]. (a) $\omega_{1}=3.0\mathrm{x}10^{-2}$ ; (b) $\omega_{1}=5.0\mathrm{x}10^{-2}$ . (a-1) and $(\mathrm{t}\succ 1)$ show the temPoral variation
of infective populations in logarithmic value, (a-2) and (b-2) show that of the corresponding ratio $M_{1}/J$ .

below seven hundreds thousands is likely to reach the disease free equilibrium. Furthermore, small
population below five hundreds thousands would eventually reach the disease free equilibrium without
any vaccination.

ENDEMIC STATE

As indicated by our numerical calculations in the previous section, with the present level of infant
vaccination rate, the population over seven hundred thousands would be on the way toward endemic
state. In our numerical calculations, such endemic state was always an equilibrium approached through
dumping oscillation with rather large amplitude, as shown in Fig. 9. Such nature of dumping oscillation
may be involved in typical repetitive outbreaks of measles as seen also for the case of the Kochi
Prefecture in Japan (Fig. 1). Characteristics of the dumping oscillation is sensitively affected by the
value of $\omega_{1}$ in our numerical calculations. We found such a tendency that the frequency of oscillation
becomes smaller as $\omega_{1}$ gets larger.
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4. Conclusion

Our results for both non-age-structured and three age class models clearly indicate that the vaccination
program should be planned with taking account of the size of population within which the disease
transmission is taking place. It is expected that the vaccination program would be effective to reduce
drastically the incidence within relatively small population, whereas it could not eliminate the repeated
outbreak of infection within relatively large population as in some Japanese local communities [7-9].

Especially with the present level of infant vaccination rate in Japan, it is likely that the measles
elimination would be far away from its realization. Besides, in case of Japan, the secondary vaccination
program for an adult age class would be little effective, compared to the promotion program of infant
vaccination. Although our numerical calculations imply that it would be hard to increase the infant
vaccination rate enough to make the population approach the measles-free equilibrium, the increase
of infant vaccination rate above the present level would be at least more effective than the secondary
vaccination for an adult age class in order to reduce the infective population.

For a relatively large population, the promotion of both infant vaccination and secondary vacci-
nation for an adult age class would be the proper strategy for the public health. In such case, the
selection of age class targeted by the secondary vaccination would be one of the most important factors
which determine the result of vaccination program. Many mathematical modeling considerations have
studied this subject [26-30]. However, as Guris [24] mentioned for the limited population of Palau,

we remark here that, for a relatively small population, such two-dose vaccination program would not
be necessarily more appropriate than the promotion of single dose vaccination program. Moreover,

for a sufficiently large population, the two-dose vaccination program would be less effective than the
promotion program of primary vaccination.

Although our models have mathematically simple structure with mass-action type of disease trans-
mission, we conjecture that, except for the detail bifurcation structure of solution, the essential feature
of solution would be similar to that for some SEIR model or even for the more sophisticated or com-
plicated model with a range of corresponding parameter values.
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