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1 Introduction

In this paper, let us consider the simplest expression of competing two species,

which is called a Lotka-Volterra competition system :

$\{$

$x_{1}’(t)=x_{1}(t)[r_{1}-ax_{1}(t)-b_{X_{2}^{\mathrm{f}}}(t)]$ ,

$x_{2}’(t)=x_{2}(t)[r_{2}-cx_{1}(t)-dx_{2}(t)]$ ,
(1.1)

Here $x_{i}(t)$ denotes the i-th population densities of $\mathrm{c}\mathrm{o}1\mathrm{n}\mathrm{p}\mathrm{e}\mathrm{t}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ two species $(\mathrm{i}=1, 2)$ .

All para meters are assum ed to be positive. Let $E0$ , $E_{1}$ and E2 denote equilibria

of system (1.1) which always exist:

$E_{0}=$ $(0, 0)$ , $E_{1}=( \frac{r_{1}}{a},0)$ , $E_{2}=(0,$ $\frac{r_{2}}{d})$ .

Suppose that

$\frac{b}{d}<\frac{r_{1}}{r_{2}}<\frac{a}{c}$ . (1.2)

Then system (1.1) has a unique positive equilibriu$\ln$ which is a stable node:

$E^{*}:=(x_{1}^{*}, x_{2}^{*})=( \frac{d\mathrm{r}_{1}-br_{2}}{ad-bc},$ $\frac{ar_{2}-cr_{1}}{ad-bc}.)$ .

It is well know $\mathrm{n}$ that the positive equilibrium of systelll (1.1) is globally $\mathrm{a}_{\int}\mathrm{s}\mathrm{y}_{111}\mathrm{p}-$

totically stable if (1.2) holds. Various approaches axe known to show the global

attractivity result of the positive equilibrium: The second method of Liapunov

can give a global stability result when a suitable Liapunov function is found (see

for example, [3] and [6] $)$ . On planar systems, Poincar\’e-Bendixon Theorem is $\mathrm{a}$

powerful tool to figure out the behavior of system dynamics. Monotone theor
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is also a powerful and conceptual tool if one considers competitive (cooperative)
system (see [5] and references therein).

Here we take a different approach to show the glob al attractivity result for the

positive equilibrium of system (1.1): By introducing a function with respect to the

ratio between densities of two species $P_{\mathrm{z}j}=x:/Xj$ , we will show the global attrac-
tivity of the positive equilibrium if (1.2) holds. Moreover we will give the explicit

form of sepax atrix if system (1.1) is bistable. In the next section, basic properties

for the function $P_{\mathrm{i}j}$ are shown. In Section 3 we show that the positive equilibrium

is globally attractive if it exists. In Section 4, the graph of the trajectory of the
solution of (1.1) are shown. Finally we discuss our results in Section 5.

2 Preliminaries

Consider the following general autonomous planar system:

$\{$

$x_{1}’=x_{1}f_{1}(x_{1}, x_{2})$ ,
$x_{2}’=x_{2}f_{2}(x_{1}, x_{2})$ ,

(G)

with the initial condition

$x_{1}(0)>0$ and $x_{2}(0)>0$ , (2.1)

$\mathrm{w}1_{1}^{\gamma}\mathrm{e}1^{\cdot}\mathrm{e}f1$ and $f_{2}$ are continuously differentiable. The function $\pi$ is said to be $\mathrm{a}$

continuous dynamical system if $\pi$ is continuous and has the following properties:

(i) $\pi(x, 0)=x$ ;

(ii) $\pi(x,$ $t+i5\grave{)}=\pi(\pi(x, t)\dot,$ $s)$ .

Then (G) generates a continuous dynamical system by defining $\pi(x, t)=x(t)$ ,
where $x(t)=(x_{1}(t), x_{2}(t))$ is a solution of (G) satisfying (2.1). Given a point
$x$ , the set $\{\pi(x, t)|t\geq 0\}$ is called the positive trajectory. A set $S$ is said to be
positively invariant if all trajectories that begin in $S$ remain in $S$ for all positive
time. Let $\{t_{\tau\iota}\}_{n=1}^{\infty}$ be a sequence of real numbers which tends to infinity as $n$

tends to infinity. If $P_{r\iota}=\pi(x, t_{n})$ converges to a point $P$ , then $P$ is said to be
an omega $1\dot{\mathrm{u}}$nit point of $x$ . The set of all such omega limit points is called the
omega limit set of $x$ , denoted $\omega(x)$ . An equilibrium point of (G) (if exists) is said
to be repeller if it cannot be in the omega limit set of any trajectory other than
itself. The dynamical system is said to be dissipative if all positive trajectories
eventually lie in a bounded set. If the system is dissipative, the omega limit set is
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a non-empty, compact, connected, invariant set (see also a standard textbook of

dynamical systems, e.g. Bhatia and $\mathrm{S}\mathrm{z}\mathrm{e}\mathrm{g}\acute{\acute{\mathrm{o}}}[1])$ .
Let $P_{\tau j}$ : $[0, \infty)$ $\mathrm{x}$ $(0, \infty)arrow[0, \infty)$ be a continuously differentiable function

$(\mathrm{i}\mathrm{j}=1,2, \mathrm{i}\neq j)$ . $P_{ij}$ is defined by

$P_{?j}.(x_{i}, x_{j})=x_{i}/x_{\gamma}$ . (2.2)

By the definition, it follows that

P-(i): $P_{ij}\cdot P_{j?}$. $=1$ ,

p-(ii): $P_{ij}=0$ iff $x_{i}=0$ .

Tlle derivative of $P_{?j}$. along the solution of (G) is denoted by $\dot{P}_{xj}(x(t))$ . Direct

calculation gives
$\frac{\dot{P}_{\mathrm{r}j}(x(t))}{P_{i_{J}}(x(t))}=f_{i}(x(t))-f_{j}.(x(t))$ .

Note that this property is stated as the quotient rule on replicator dynamics (Excer-

sise 7. 1I in [3] $)$ . Hereafter we simply write $\dot{P}_{ij}(x(t))$ as $Pij(t_{/})$ for the convenience.

Competitive Advantage Set, or simply $Adva\uparrow$? tage Set $A_{1}$ and A2 are defined by

$A_{1}:=\{(x_{1}, x_{2})\in \mathbb{R}_{+}^{2}|f_{1}(x_{1}, x_{2})>f_{2}(x_{1}, x_{2})\}$ ,

$A_{2}:=\{(x_{1}, x_{2})\in \mathbb{R}_{+}^{2}|f_{1}.(x_{1}, x_{2})<f_{2}.(x_{1}, x_{2})\}$ .

Competitive $Bala\uparrow \mathit{2}$ ce Set, or simply $Bala\uparrow\prime ce$ Set $B$ is defined by

$B:=\{(x_{1}, x_{2})\in \mathbb{R}_{+}^{2}|f_{1}.(x_{1}, x_{2})=f_{2}.(x_{1}, x_{2})\}$ .

Note that $\mathrm{f}_{\dot{\mathrm{O}}1}\cdot \mathrm{a}11_{\mathrm{c}}\gamma x(t)\in B,\dot{P}_{jj}(t)=0$ . $\mathrm{M}_{01}\cdot \mathrm{e}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\dot{P}_{ij}(t)>0$ if $x(t)\in A_{?}$ , while

$\dot{P}_{?j}(t)<0$ if $x(t)\in A_{j}$ .

Strongly Advantage Set $\mathrm{S}$ $=\mathrm{S}_{1}\oplus \mathrm{S}_{2}$ is defined by

$\mathrm{S}_{1}:=$ { $(x_{17}x_{2})\in A_{1}|fi(x_{1},$ $x_{2})>0$ and $f_{2}(x_{1},$ $x_{2})<0$},

$\mathrm{S}_{2}:=$ { ( $x_{1}$ , $x_{2})\in A_{2}|f1(x_{1},$ $x_{2})<0$ and $f_{2}(x_{1},$ $x_{2})>0$ } .

The null clines of $f_{1}(x_{1}, x_{2})$ and $f_{2}’(x_{1}, x_{2})$ are denoted by $N_{1}$ and $N_{2}$ , respectively.

That is,

$N_{1}=\{(x_{1}, x_{2})\in \mathbb{R}_{+}^{2}|f_{1}.(x_{1}, x_{2})=0\})$

N2 $=\{(x_{1_{\dot{\prime}}}x_{2})\in \mathbb{R}_{+}^{2}|f_{2}.(x_{1}, x_{2})=0\}$.

Let $x_{1}^{\dagger}$ aanndd $x_{2}^{\mathrm{f}}$ denote roots of $f_{1}.(x_{1}, \mathrm{O})=f_{2}(x_{1},0)$ and $f1(0, x_{2})=f_{2}(0, x_{2})$ (if they

exist), respectively. In general, $B$ is a curve on $\mathbb{R}_{+}^{2}$ which is formed by connecting
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two points $(x_{1}^{\mathrm{T}},0)\in B$ and $(0, x_{2}^{\dagger})\in B$ . Note that 13 is a line $\mathrm{f}_{01}$ . system (1.1). $\acute{\mathrm{I}}11\mathrm{t}\mathbb{R}_{+}^{2}$

denotes the interior of $\mathbb{R}_{+}^{2}$ . $\mathrm{i}\mathrm{n}\mathrm{t}\mathbb{R}_{+}^{2}$ is divided by $B$ , that is, $\mathrm{i}\mathrm{n}\mathrm{t}\mathbb{R}_{+}^{2}=A_{1}\oplus B$ $\oplus A_{2}$ .
(see Figs 1 and 2 in Section 4). Finally the solution ratio line $\mathcal{L}_{f}$ is defined by

$\mathcal{L}_{t}:=\{(x_{1}, x_{2})\in \mathbb{R}_{+}^{2}|x, =P_{lj}(t)xj\}$ . (2.3)

$\mathrm{T}1_{1}\mathrm{e}\mathrm{n}x(t)\in \mathcal{L}_{t}$.

3 Global attractivity

Let us set $f1(x_{1}, x_{2})=r_{\mathrm{I}}-ax_{1}-bx_{2}$ and $f_{2}(x_{1}, x_{2})=r_{2}-cx_{1}-dx_{2}$ . First we
state some basic properties of system (1.1) without the proof. Throughout the
reminder of this section, we assume tl at (1.2) holds.

Proposition 3.1. System (1.1) is dissipative. $E_{0}$ is a repeller. Moreover $E_{1}$ and

E2 are also repellers if (1.2) holds,

Proposition 3.2. Assume that (1.2) holds. Then $E^{*}\in B$ . $E_{0}\in B$ if and only if
$r_{1}=r_{2}$ . $E_{1}\not\in B$ $a?\iota d$ $E_{2}\not\in B$ .

Proof. The first and the second assertions are clear. By (1.2), ad-bc $>0$ . Then
$a\neq c$ or $b\neq d$ . Suppose that $a\neq c$ . Then $x_{1}^{\mathrm{f}}=(r_{1}-r_{2})/(a-c)$ exists. Since
(1.2) holds, direct calculation shows that $x_{1}^{\uparrow}-\lrcorner 7\mathrm{a}$ $=(cr_{1}-ar_{2})/a(a-c)\neq 0$ .
Consequently $E_{1}$ ( $B$ if $a\neq \mathrm{c}$ . In the same way, we can sllow that $E_{2}\not\in B$ if $b\neq d$ .

This completes the proof. $\square$

Let $E$ denote a set of equilibria of system (1.1)

$E=\{E_{0}, E_{1}, E_{2_{?}}E^{*}\}$ .

Proposition 3.3. Assume that $r_{1}=r_{2}$ and (1.2) holds. Then B is positively
invariant.

Proof. We claim that $x_{2}f_{2}(x_{1}, x_{2})\neq 0$ for any $x=(x_{1}, x_{2})\in B\backslash E$ . In fact,
$x_{2}f_{2}(x_{1}, x_{2})=0$ if and only if $x_{2}=0$ or $f_{2}(x_{1}, x_{2})=0$ . Note that $x_{2}=0$ iff $x\in E_{0}$

on $B$ . Moreover $B$ $\cap N_{2}=E^{*}$ . Hence the implicit function theorem implies that
for any $x\in B$ $\backslash E$ ,

$\frac{\partial x_{1}}{\partial x_{2}}=-\frac{x_{1}’f_{1}(x_{1},x_{2})}{x_{2}f_{2}(x_{1},x_{2})}.=-\frac{x_{1}}{x_{2}}$.

It follows from (1.2) that $a>c$ and $d>b$ if $r_{1}=r_{2}$ . Hence $x\in B$ $\backslash E$ satisfies
$x_{1}/x_{2}= \frac{d-b}{a-c},$ $=x_{1}^{*}/x_{2}^{*}$ . Consequently we obtain that $x_{1}(t)=x_{1}^{*}/x_{2}^{*}x_{2}(t)$ for any
$x(t)\in B$ . That is, $\mathcal{L}_{t}\equiv B$ . This completes the proof. $\square$
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Proposition 3.4. Assume that $r_{1}\neq r_{2}$ and (1.2) holds. Then $B\backslash E$ is ttot posi-

tively invariant.

Proof. Assume that there exists $T\geq 0$ such that $x(t)\in B$ $\backslash E$ for any $t>T$ .

Hereafter let us fix $t$ arbitrary for $t>T$ . Then $\dot{P}_{12}(t)=0$ . Hence $P_{12}(t)$ , or

equivalently, $x_{1}(t)x_{2}^{-1}(t)$ is a positive constant, which is denoted by $C$ . Moreover
$\mathcal{L}_{t}$ is fixed, which is denoted by $\mathcal{L}$ . Then $x(t)\in B$ $\cap \mathcal{L}$ . It is clear that $B\cap \mathcal{L}\neq\emptyset$ .

Since both of $B$ and $\mathcal{L}$ are lines on $\mathbb{R}_{+}^{2}$ , either (i) $B=\mathcal{L}$ or (ii) $B\cap \mathcal{L}$ is a point set.

Note that $B$ $=\mathcal{L}$ if and only if $r_{1}=r_{2}$ and $C= \frac{d-b}{a-c}=x_{1}^{*}/x_{2}^{*}$ . Since we assume
$r_{1}\neq r_{2)}$ only the case (ii) is possible. Th en $x(t)$ must be an equilibrium point.

More specifically, Proposition 3.2 implies that $x(t)$ $\equiv E^{*}$ . This is a contradiction

since $x(t)\in B$ $\backslash E$ . This C0lnpletes the Proof.
$\square$

Proposition 3.5. Assume that (1.2) holds. Then $P_{j}j(t)\star$ O if. t $arrow\infty$ .

Proof. Assume that $P_{ij}(t)arrow \mathrm{O}$ as $tarrow\infty$ . Then there exists a monotone increasing

sequence $\{t_{7\mathrm{L}}\}_{7L}^{\infty}=1$ such that $P_{\iota j}’,(t_{n})arrow 0$ as $n$ $arrow\infty$ . Note that for any $x(t)\in B$ ,

$\dot{P}_{ij},(t)=0$ . Hence for any initial point $x^{0}\in \mathrm{i}_{1}\mathrm{z}\mathrm{t}\mathbb{R}_{+}^{2}$ , $\omega(x^{0})\subseteq B$ $\cup E$ . Since

system (1.1) is dissipative, $\omega(x^{0})$ is positively invariant. Note that by Proposition

3.1, $E_{0}$ , $E_{1}$ and $E_{2}$ are repellers. Moreover Propositions 3.3 and 3.4 imnply that
$\omega(x^{0})\subseteq B$ $\backslash F_{0}\lrcorner$ if $r_{1}=r_{2}$ and $\omega(x^{0})\in E^{*}$ if $r_{1}.\neq r_{2}$ . This is a contradiction and

hence completes the proof. $\square$

In the same way as the proof of Proposition 3.5, we can show the following:

Proposition 3.6. Assume that (1.2) holds. If there exists a positive $C\mathit{0}?l$ stant $P_{?j}^{*}$.

such that $P_{?j}(t)arrow P_{\tau j}^{*}$ as t $arrow\infty_{f}the\uparrow \mathit{1}$ $x(t)arrow E^{*}$ as t $arrow\infty$ .

Proposition 3.7. $Assu\uparrow ne$ that (1.2) holds. If $x(t)eve\uparrow l,tually$ $rema\mathrm{i}_{77S}$ either in

$A_{1}$ or A2, then $x(t)arrow E^{*}$ as t $arrow\infty$ .

Proof. Note that if $x(T)\in A_{1}$ for some $T\geq 0,\dot{P}_{12}(t)>0$ as long as $x(t)\in A_{1}$ for

$t\geq T$ . Similarly if $x(T,)\in A_{2}$ for sonle $T\geq 0,\dot{P}_{12}(t)<0$ as long as $x(t)\in A_{2}$ for

$t\geq T$ . Hereafter we only consider the case where $x(t)\in A_{1}$ for $t\geq T$ . Then we

claim that there exists a positive constant $P_{12}^{*}$ such that $P_{12}(t)arrow P_{12}^{*}$ as $tarrow\infty$ .

Assulne that $P_{12}(t)arrow\infty$ as $tarrow\infty$ . Since system (1.1) is dissipative, $x_{2}(t)arrow 0$

as $tarrow\infty$ . Then by P-(ii), $P_{21}(t)arrow \mathrm{O}$ as $tarrow\infty$ . However this contradicts to

Proposition 3.5. Therefore Proposition 3.6 implies that $x(t)arrow E^{*}$ as $tarrow\infty$). This

completes the proof.
$\square$

Proposition 3.8. Assume that (1.2) holds. S $\cup N_{1}\cup N_{2}$ is positively invariant.
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Proof. It is sufficient to notice for the solutions on the boundary of S. Note that
the boundary of $\mathrm{S}$ consists of null clines $N_{1}$ and $N_{2}$ . If there exists $T\geq 0$ such
that $x(T)\in A_{1}\cap N_{1}$ , then $x_{1}..(T)$ $=0$ and $\dot{x}_{2}(T)$ $<0$ . By the continuity of the
solution, there exists $.\tau>0$ such that $x(t)\in \mathrm{S}_{1}$ for $T<t\leq T+\in$ . The same

procedure proves the asertion (see Figure 2). $\square$

Theorem 3.1. Assume that (1.2) holds. Then all solutions tend to the positive

equilibrium as $t$ tends to infinity.

Proof. First let us consider the $\mathrm{c}\mathrm{a},\mathrm{s}\mathrm{e}r_{1}\neq r_{2}$ . If there exists $T\geq 0$ such that
$x(T)\in \mathrm{S}$ $\mathrm{u}N_{1}\cup N_{2}$ , Proposition 3.7 together with 3.1 implies that $x(?)$ $arrow E^{*}$ as
$tarrow\infty$ and hence the assertion is true. Otherwise, all solutions remain in $\mathrm{i}_{11}\mathrm{t}\mathbb{R}_{+}^{2}\backslash \mathrm{S}$

for any positive $t$ . We claim that such solutions also eventually remain either in $A_{1}$

or $A_{2}$ . The following two cases are possible: (i) There is no solution which crosses
$B$ or (ii) There is a solution which crosses $B$ . The claim is true for the case $(\tilde{1})$ by
Proposition 3.7. So let us consider the case (ii). If there exists $T_{0}\geq 0$ such that
$x(T_{0})\in B$ , Proposition 3.4 implies that there exists $T_{1}>T_{0}$ such that $x(T_{1})\not\in B$ .
More specifically, if $\dot{x}_{1}(T_{0})>0$ , then $x(T_{1})\in A_{2}$ . Conversely if $\dot{x}_{1}.(T_{0})<0$ , then
$x(T_{1})\in A_{1}$ . In both cases, we can see that $x(t)\in A_{1}$ or $x(t)\in A_{2}$ for any $t\geq T_{1}$ .
Hence the claim holds true by Proposition 3.7.

Next suppose that $r_{1}=r_{2}$ . Since $B$ is positively invariant, it is sufficient to
consider either (iii) $x(t)\not\in B$ for all $t\geq 0$ or (iv) $x(t)\in B$ for all $t\geq 0$ . In the
case (iii), $x(t)\in A_{1}$ or $x(t)\in A_{2}$ for all $t$ $\geq 0$ . Hence Proposition 3.7 implies that
$x(t)\neg E^{*}$ as $tarrow$ oo and the assertion holds true. Finally let us consider the case
(iv). Note that $f_{1}.(x_{1}, x_{2})=f_{2}(x_{1}, x_{2})=f(x_{1}, x_{2})$ on S. Let $x=x_{1}+x_{2}$ . Then

$x’=x_{1}’+x_{2}’$

$=x_{1}f_{1}.(x_{1}, x_{2})+x_{2}f_{2}.(x_{1}, x_{2})$

$=xf(x_{1}, x_{2})$ .

Observe that $x$ is expressed by $x_{1}$ and $x_{2}$ explicitly if and only if the following
$\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\ln$ of equations $\mathrm{h}\mathrm{a}_{1}\mathrm{s}$ a unique root:

$\{$

$x_{1}+x_{2}=x$ ,

$ax_{1}+bx_{2}=cx_{1}+dx_{2}$

Since $a-c\neq b-d$ , direct calculation gives

$x_{1}= \frac{(d-b)x}{a-c-(b-d)}$ aannd $x_{2}= \frac{(a-c)x}{a-c-(b-d)}$ .
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Then $x(t)$ is a solution of following differential equation

$x’=rx(1- \frac{x}{I\acute{\mathrm{t}}})$ , $x\in B$ (3.1)

where $r=r_{1}$ and $K= \frac{CL-c+\zeta d-b[}{ad-bc}\tau\cdot=x_{1}^{*}+x_{2}^{*}$ . Then (3.1) becomes the Logistic

equation and hence $x(t)arrow x_{1}^{*}+x_{2}^{*}$ as $tarrow\infty$) on $B$ . This completes the proof. $\square$

4 Trajectories

In this section, let us show some projections onto $x_{1}x_{2}- \mathrm{p}\mathrm{h}\mathrm{a}|\mathrm{s}\mathrm{e}$ planle of trajectories

for different sets of parameters. Due to the symm etry of system (1.1), we can

assume that $r_{1}\geq r_{2}$ . Figs 1 and 2 illustrate the null-clin es and the balance line,

each of which corresponds to dashed lines and the thick line. Figs 3-4 illustrate

the trajectories of the solution of (1.1). On these figures, the balance line is drawn

by thin line, while the trajectory is drawn by thick line. On Fig.3, the parameters

satisfy that $r_{1}>r_{2}$ , $\frac{d-\mathrm{b}}{a-c}<0$ and (1.2) holds. The initial point $x^{0}$ is taken on $B$ .

The trajectory is immediately away from $B$ and evelltually lies in $\mathrm{S}_{1}$ . $\mathrm{o}_{11}\mathrm{F}\mathrm{i}\mathrm{g}.4$ ,

the parameters satisfy that $r_{1}>\gamma_{2}^{\eta}$ , $\frac{d-b}{c\iota-c}>0$ and (1.2) holds. The initial point is

also ta en on S. The trajectory is also away from $B$ an$\mathrm{n}\mathrm{d}$ finally converges to the

positive equilibrium. On Fig.5, the $\mathrm{p}\mathrm{a}_{!}1^{\wedge}\mathrm{a}1\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}$ satisfy that $r_{1}=\tau_{2}.$ . The initial

point is taken on $B$ . Note that by Proposition 3.3. $B$ is positively $\mathrm{i}11\mathrm{v}\mathrm{a}1^{\wedge}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}$ . The

solution converges to the positive equilibrium $\mathrm{a}1_{01\mathrm{l}}\mathrm{g}$ the line $x_{2}=x_{2}^{*}/x_{1}^{*}x_{1}$ . Finally

Fig. 6 illustrates the trajectory for $r_{1}=r_{2}$ . The initial point is $\mathrm{t}\mathrm{a}\mathrm{k}^{r}\mathrm{e}\mathrm{n}$ on $A_{2}$ . The

solution eventually lies on $\mathrm{S}_{2}$ and converges to the positive equilibrium.

Figure 1: $r_{1}>r_{2}$ , $\frac{d-b}{a-c}<0(a\neq c)$ Figure 2: $r_{1}>’\Gamma_{2)}$ $\frac{d-b}{a-c}>0(a\neq c)$
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Figure 3: $r_{1}>r_{2}$ , $\frac{d-b}{a-c}<0$ , $x^{0}\in B$ . Figure 4: $r_{1}>r_{2}$ , $\frac{d-b}{\alpha-c}>0$ , $x^{0}\in B$ .

Figure 5: $r_{1}=r_{2}$ , $x^{0}\in B$ . Figure 6: $r_{1}=r_{2)}x^{0}\in A_{2}$ .
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5 Conclusions

We proved the global attractivity of solutions of system (1.1) by introducing tlle

function in terms of the ratio between $x_{1}$ and $x_{2}$ . It was shown that the balance
set $B$ separates the positive cone. One of separated regions $A_{1}$ gives a competitive

avantage for $x_{1}$ , while another region $A_{2}$ gives a conlpetitive advantage for $x_{2}$ .

For almost sets of parameters under the situation where the positive equilibrium

exists, the balance line $B$ except for the positive $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}1\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}_{\mathrm{U}\mathrm{l}}\mathrm{n}$ is not positively

invariant. On $\mathrm{t}\mathrm{l}\mathrm{e}$ region $A_{1}\cap\{(x_{1}, x_{2})\in \mathbb{R}^{2}|+f_{1}(x_{1}, x_{2})<0, f_{2}(x_{1}, x_{2})<0\}$ , it

can happen that the ratio $x_{1}/x_{2}\mathrm{i}_{11}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$ although $x_{1}$
. decreases (see Figs 3 and

4). This situation is likely to occur when $x_{1}$ has the low density while x2 has the

high density.The density dependence effect highly decreases the density of $x_{2}$. even

if $x_{1}$ is decreasing. If $r_{1}=\tau_{2}$
. and $x^{0}\in B$ , as we have shown in Proposition 3.3

and Theorem 3.1, the solution converges to the positive equilibrium along the line.

Moreover the total density $x_{1}+x_{2}$ follows tlze logistic equation (see also $\mathrm{F}\mathrm{i}\mathrm{g}.5$ ) . This

implies that two species are regarded as the same species on $B$ if $r_{1}=r_{2}$ . Geritz

et. $al$ considered tl$1\mathrm{e}$ dynamics of a population of residents that is being invaded

by an initially rare mutant [2]. They showed in [2] that under relatively mild

conditions the sum of $the\uparrow nuta??ta\mathit{7}\mathit{4}d$ $re|3^{\cdot}ide7/tpopulat,\mathrm{i}o\mathit{7}$ ? sizes stays arbitraxily

close the initial attractor of the monomorphic resident population whenever the

mutant has a strategy sufficiently $\mathrm{s}\mathrm{i}_{1}\mathrm{n}\mathrm{i}1\mathrm{a}\mathrm{r}$ to that of the resident (This is called

a Tube Theorem). This result $\mathrm{i}_{\mathrm{I}11}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{s}$ that the $01^{\cdot}\mathrm{b}\mathrm{i}\mathrm{t}$ will stay $\mathrm{i}_{11}a?\iota ar’r.owt,ube$

in the residents utant population state space. Schreiber [4] considered a model

for apparent competition where two prey share one predator. In [4] , it was $\mathrm{s}1_{1}\mathrm{o}\mathrm{w}\mathrm{n}$

that a model without the positive $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}1\mathrm{i}\mathrm{b}_{1}\cdot \mathrm{i}\mathrm{u}\mathrm{m}$ is $\mathrm{a}1_{1}\mathrm{n}\mathrm{o}\mathrm{s}\mathrm{t}$ $\mathrm{S}\mathrm{U}\mathrm{l}\cdot \mathrm{e}\mathrm{l}\mathrm{y}$ perlnanence. The

similar idea of Tube Theorem is exploited in the proof. It would be interesting

to study the relationship between the tube set and the balance set. Since system

(1.1) is dissipative, there must exist an accumulation set of the ratio function

$P_{ij}$ on so me compact subset of the positive cone. In this paper, it was shown

that the accumulation set corresponds to the positive $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}1\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}_{\mathrm{U}\mathrm{I}11}$ point. If the

accumulation set consists of two points, then the solution will be periodic. It is

expected that chaotic behaviors is expressed in such a way that the ratio function

has infinitely 1ultiple accumulation points. In this paper we only considered the

case where the stable positive equilibrium exists. It is well known that there is $\mathrm{a}$

separatrix curve if system (1.1) is bistable. Sim ple consideration shows that the

balance set 8 corresponds to the separatrix curve if $7^{\cdot}1=r_{2}$ and system (1.1) is

bistable. It is interesting to give explicit form of the $\mathrm{s}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\downarrow \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}$ curve for $r_{1}\neq r_{2}$ .

This leaves for our future consideration. On the systems where more than thr$\mathrm{e}\mathrm{e}$
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species are interacting with, the chaotic behavior can occur. The method exploited
in this paper should be also exploited to higher $\mathrm{d}\mathrm{i}_{1}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{J}$ systems. This also
leaves for our future consideration.
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