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Balance Line in a Lotka-Volterra competition system
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1 Introduction

In this paper, let us consider the simplest expression of competing two species,

which is called a Lotka-Volterra competition system:

{x'l(t) = z1(t)[r, — az1(t) — bao(t)],

(1.1)
:L'Z(t) = 1‘2(?5)[7"2 - Cﬂ;l(t) - dw?(t)]’

Here 2;(t) denotes the i-th population densities of competing two species (i = 1,2).
All parameters are assumed to be positive. Let Eq, £1 and Fy denote equilibria
of system (1.1) which always exist:

By = (0,0), By = (T—;o) By — (0, %)
Suppose that

T1 a
—_ < -, 1.2
s (1.2)

b <
d
Then system (1.1) has a unique positive equilibrium which is a stable node:

X oL (% R\ d"“l"b?@ ary — Cry
E .—(11712)“<ad_607 ad—bc>'

It is well known that the positive equilibrium of system (1.1) is globally asymp-

totically stable if (1.2) holds. Various approaches are known to show the global
attractivity result of the positive equilibrium: The second method of Liapunov
can give a global stability result when a suitable Liapunov function is found (see
for example, [3] and [6]). On planar systems, Poincaré-Bendixon Theorem is a

powerful tool to figure out the behavior of system dynamics. Monotone theory
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is also a powerful and conceptual tool if one considers competitive (cooperative)
system (see [5] and references therein).

Here we take a different approach to show the global attractivity result for the
positive equilibrium of system (1.1): By introducing a function with respect to the
ratio between densities of two species P,; = z;/z;, we will show the global attrac-
tivity of the positive equilibrium if (1.2) holds. Moreover we will give the explicit
form of separatrix if system (1.1) is bistable. In the next section, basic properties
for the function P; are shown. In Section 3, we show that the positive equilibrium
is globally attractive if it exists. In Section 4, the graph of the trajectory of the
solution of (1.1) are shown. Finally we discuss our results in Section 5.

2 Preliminaries

Consider the following general autonomous planar system:

2y = 21 fi(z1, 22),
, (G)
Fy = -r2f2(3;}_, 2:2)7
with the initial condition
z1(0) > 0 and 22(0) > 0, | (2.1)

where fi and fo are continuously differentiable. The function 7 is said to be a

continuous dynamical system if 7 is continuous and has the following properties:
(i) m(z,0) = z;
(it) 7(z,t+s) = m(n(z,t),5).

Then (G) generates a continuous dynamical system by defining 7(z,t) = z{t),
where z(t) = (z1(f),z2(t)) is a solution of (G) satisfying (2.1). Given a point
z, the set {m(z,t)|t > 0} is called the positive trajectory. A set S is said to be
positively invariant if all trajectories that begin in S remain in S for all positive
time. Let {£,}52, be a sequence of real numbers which tends to infinity as n
tends to infinity. If P, = 7(z,t,) converges to a point P, then P is said to be
an omega limit point of . The set of all such omega limit points is called the
omega limit set of z, denoted w(z). An equilibrium point of (G) (if exists) is said
to be repeller if it cannot be in the omega limit set of any trajectory other than
itself. The dynamical system is said to be dissipative if all positive trajectories
eventually lie in a bounded set. If the system is dissipative, the omega limit set is
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a non-empty, compact, connected, invariant set (see also a standard textbook of
dynamical systems, e.g. Bhatia and Szegé [1]).

Let Py : [0,00) X (0,00) — [0,00) be a continuously differentiable function
(1,5 = 1,2, i # j). Py is defined by

By the definition, it follows that
P-(i): By Py =1,
P-(ii): Py =0iff z; = 0.

The derivative of P;; along the solution of (G) is denoted by P;(x(t)). Direct

calculation gives

Pya®) _ oo e
B ) = ) ~ 1)

Note that this property is stated as the quotient rule on replicator dynamics (Excer-
sise 7.1.1 in [3]). Hereafter we simply write P,;(z(t)) as P;(t) for the convenience.
Competitive Advantage Set, or simply Advantage Set A; and Ajy are defined by
A= {(2:1,:1:2) € R\ filwr, 22) > fg(fL’l,IQ)},
Az = {(zl,zg) € R%|fi(z1,22) < fz(:cl,a:g)} .

Competitive Balance Set, or simply Balance Set B is defined by
B:= {(5’517%) € Riifl(gfl,l‘z) = f2(3317$2)} .

Note that for any z(t) € B, P;(t) = 0. Moreover P;(t) > 0 if 2(t) € A;, while
.F.’,;j(t) <0 1f(L(t) S .Aj.
Strongly Advantage Set S = 8 ® Ss is defined by
S = {(.Tb.’fg) € All_fl(fL'l,(L'z) > 0 and fg(ﬂi‘l,.I‘z) < 0},
Sy 1= {(Il,l’z) S Az'f}(lfl,il:g) < 0 and fz(.’l’,'},xz) > O} .

The null clines of fi(z1,22) and fa(z1, 22) are denoted by N; and Ns, respectively.
That is,

Ni = {(z1,22) € RE|fu(w1,22) = O},

Ny = {(z1,72) € RY|fa(z1,22) = O}.

Let 2! and ), denote toots of fi(z1,0) = fo(21,0) and F1(0, 22) = f2(0, o) (if they
exist), respectively. In general, B is a curve on R? which is formed by connecting
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two points (z],0) € Band (0,2}) € B. Note that B is a line for system (1.1). intR2
denotes the interior of RZ. intR?2 is divided by B, that is, intR} = A; ® B® A,.
(see Figs 1 and 2 in Section 4). Finally the solution ratio line L, is defined by

Li = {(21,59) € R% |2y = Py(t)z;} . (2.3)

Then z(t) € L;.

3 Global attractivity

Let us set fi(z1,x2) = r1 — azy — bxe and fo(z1,22) = 72 — cx1 — dxy. First we
state some basic properties of system (1.1} without the proof. Throughout the

reminder of this section, we assume that (1.2) holds.

Proposition 3.1. System (1.1) is dissipative. Fy is a repeller. Moreover By and
E; are also repellers if (1.2) holds.

Proposition 3.2. Assume that (1.2) holds. Then E* € B. Ey € B if and only if
ri=ry Ei ¢ B and Ex ¢ B.

Proof. The first and the second assertions are clear. By (1.2), ad — bc > 0. Then
a # corb+#d Suppose that a # c. Then 21 = (1 — r2)/(a — ¢) exists. Since
(1.2) holds, direct calculation shows that z — o= (cry — ary)/ala — ¢) # 0.

Consequently E; ¢ B if a # ¢. In the same way, we can show that Ey ¢ Bif b # d.
This completes the proof. U

Let E denote a set of equilibria of system (1.1)

E — {EO, El, EQ, E*}
Proposition 3.3. Assume that r1 = o and (1.2) holds. Then B is positively
nvariant.

Proof. We claim that zafo(21,22) # 0 for any z = (z1,22) € B\ E. In fact,
zafa(z1,22) = 0 if and only if 2o = 0 or fo(z1,29) = 0. Note that z, = 0 iff z € Ey
on B. Moreover BN N, = E*. Hence the implicit function theorem implies that
for any z € B\ E,

Ox1 _ mifi(zy,2e)  m

Oxy _5'32f2(1751,l”2) - —;5;
It follows from (1.2) that @ > c and d > b if r; = ry. Hence z € B\ E satisfies
x1/32 = &2 = g} /2%, Consequently we obtain that z;(t) = 27/2}24(t) for any

z(t) € B. That is, £; = B. This completes the proof. g



Proposition 3.4. Assume that r # ry and (1.2) holds. Then B\ E is not posi-

twely invariant.

Proof. Assume that there exists T > 0 such that z(t) € B\ E for any t > T.
Hereafter let us fix ¢ arbitrary for ¢ > T. Then Pi(t) = 0. Hence Pis(t), or
equivalently, z;(t)z;* (¢) is a positive constant, which is denoted by C'. Moreover
L, is fixed, which is denoted by £. Then z(t) € BN L. It is clear that BN L # (.
Since both of B and £ are lines on R2, either (i) B = £ or (ii) BN L is a point set.
Note that B = £ if and only if 7, = r; and C = &2 = }/z}. Since we assume
ri # T4, only the case (ii) is possible. Then x(t) must be an equilibrium point.
More specifically, Proposition 3.2 implies that z(¢) = E*. This is a contradiction
since z(t) € B\ E. This completes the proof. O

Proposition 3.5. Assume that (1.2) holds. Then Fi;(t) / 0 if t — oo,

Proof. Assume that P;;(t) — 0ast — oo. Then there exists a monotone increasing
sequence {t,}°, such that P(t,) — 0.as n — oo. Note that for any z(t) € B,
P;{t) = 0. Hence for any initial point 2° € intR}, w(z’) C BU E. Since
system (1.1) is dissipative, w(z°) is positively invariant. Note that by Proposition
3.1, Fy, Fy and E, are repellers. Moreover Propositions 3.3 and 3.4 imply that
w(z®) € B\ Eg if ry = and w(z%) € E* if r; # ro. This is a contradiction and

hence completes the proof. (W
In the same way as the proof of Proposition 3.5, we can show the following:

Proposition 3.6. Assume that (1.2) holds. If there ezists a positive constant Py

such that Py(t) — P} ast — oo, then 2(t) — E* ast — 0.

Proposition 3.7. Assume that (1.2) holds. If x(t) eventually remains either in
A, or Az, then z(t) — E* ast — oo. |

Proof. Note that if z(T) € A, for some T > 0, Pio(t) > 0 as long as z(t) € A; for
t > T. Similarly if z(T) € A, for some T 2 0, Piy(t) < 0 as long as z(t) € A, for
¢ > T. Hereafter we only consider the case where z(t) € A; for t 2 T. Then we
claim that there exists a positive constant Pj, such that Piy(t) — P, as t — o0.
Assume that Ppa(t) — 0o as t — oo. Since system (1.1) is dissipative, z3(t) — 0
as t — o0o. Then by P-(ii), Pu(t) — 0 as t — oco. However this contradicts to

Proposition 8.5. Therefore Proposition 3.6 implies that z(t) — E* ast — o0o. This -

completes the proof. O

Proposition 3.8. Assume that (1.2) holds. S U N, UN, is positively invariant.
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Proof. Tt is sufficient to notice for the solutions on the boundary of S. Note that
the boundary of S consists of null clines A; and Ns. If there exists 7' > 0 such
that z(T) € A; NNy, then 21(T) = 0 and 22(T") < 0. By the continuity of the
solution, there exists € > 0 such that z(¢) € & for T' <t < T+ ¢. The same

procedure proves the assertion (see Figure 2). L

Theorem 3.1. Assume that (1.2) holds. Then all solutions tend to the positive

equilibrium as t tends to infinity.

Proof. First let us consider the case r1 # ry. If there exists T > 0 such that
z(T) € S UN, UN,, Proposition 3.7 together with 3.1 implies that z(t) — E* as
t — o0 and hence the assertion is true. Otherwise, all solutions remain in intR2 \ 8
for any positive t. We claim that such solutions also eventually remain either in A;
or Az. The following two cases are possible: (i) There is no solution which crosses
B or (ii) There is a solution which crosses B. The claim is true for the case (i) by
Proposition 3.7. So let us consider the case (ii). If there exists Ty > 0 such that
z(Ty) € B, Proposition 3.4 implies that there exists T > T such that z(71) ¢ B.
More specifically, if 2;(Ty) > 0, then z(T}) € As. Conversely if #;(75) < 0, then
z(Ty) € A;. In both cases, we can see that z(t) € A; or z(t) € A, for any t > T1.
Hence the claim holds true by Proposition 3.7.

Next suppose that r; = ro. Since B is positively invariant, it is sufficient to
consider either (iil) z(t) ¢ B for all £t > 0 or (iv) z(t) € B for all £ > 0. In the
case (iil), z(t) € A; or z(t) € A; for all t > 0. Hence Proposition 3.7 implies that
z(t) — E* as t — 00 and the assertion holds true. Finally let us consider the case
(iv). Note that fi(z1,22) = fo(z1,22) = f(x1,23) on B. Let 2 = z; + x. Then

A
= z1f1(21, 22) + 22 fo(21, 22)

= zf(21, Ta).

Observe that z is expressed by z; and z, explicitly if and only if the following

system of equations has a unique root:

1+ Iy = 2,
ax| + biLz = Iy + de’z

Since a — ¢ # b ~ d, direct calculation gives

_ (d=b) _ la=c=
S iTe——a M= T g

T



Then z(t) is a solution of following differential equation

x':rm(l—%), z€B (3.1)

where 7 = r; and K = %=<2@=bl — 2% 4 23 Then (3.1) becomes the Logistic

ad—be
equation and hence z(t) — 2} + 2} as t — oo on B. This completes the proof. U

4 Trajectories

In this section, let us show some projections onto 2;zy-phase plane of trajectories
for different sets of parameters. Due to the symmetry of system (1.1), we can
assume that 71 > ro. Figs 1 and 2 illustrate the null-clines and the balance line,
each of which corresponds to dashed lines and the thick line. Figs 3-4 illustrate
the trajectories of the solution of (1.1). On these figures, the balance line is drawn
by thin line, while the trajectory is drawn by thick line. On Fig.3, the parameters
satisfy that ry > ro, g—:—z < 0 and (1.2) holds. The initial point 2 is taken on B.
The trajectory is immediately away from B and eventually lies in §&;. On Fig.4,
the parameters satisfy that r; > 79, ;‘f—:—i > 0 and (1.2) holds. The initial point is
also taken on B. The trajectory is also away from B and finally converges to the
positive equilibrium. On Fig.5, the parameters satisfy that r; = rp. The initial
point is taken on B. Note that by Proposition 3.3, B is positively invariant. The
solution converges to the positive equilibrium along the line 2o = x5 /2571, Finally
Fig. 6 illustrates the trajectory for ry = ry. The initial point is taken on Az. The

solution eventually lies on S, and converges to the positive equilibrium.
Ty Iy

B

N,

N>

0 N, 1 O

Figure 1: 71 > ry, d=b 0 {a#c) Figure2: r >3, %—}z >0 (a #c)

a—C
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Z2

Figure 3: 11 > 7o, f—:—g <0, 2z% € B. Figure 4: r; > 1y,

Ty

x1

I

d=h ~ 0, 2% € B.

a—c

Figure 5: ry = ry, 2° € B.

Figure 6: 7, = ry, 2° € A,.



5 Conclusions

We proved the global attractivity of solutions of system (1.1) by introducing the
function in terms of the ratio between z; and z5. It was shown that the balance
set BB separates the positive cone. One of separated regions A; gives a competitive
advantage for z;, while another region A, gives a competitive advantage for z».
For almost sets of parameters under the situation where the positive equilibrium
exists, the balance line B except for the positive equilibrium is not positively
invariant. On the region A; N {(z1,72) € R2|fi(z1,22) < 0, fa(z1,22) < O}, it
can happen that the ratio 2;/zy increases although z; decreases (see Figs 3 and
4). This situation is likely to occur when z; has the low density while zo has the
high density. The density dependence effect highly decreases the density of x5 even
if 2, is decreasing. If 11 = 7o and z° € B, as we have shown in Proposition 3.3
and Theorem 3.1, the solution converges to the positive equilibrium along the line.
Moreover the total density 21+ follows the logistic equation (see also Fig.5). This
implies that two species are regarded as the same species on Bif r; = ry. Geritz
et. al considered the dynamics of a population of residents that is being invaded
by an initially rare mutant [2]. They showed in [2] that under relatively mild
conditions the sum of the mutant and resident population sizes stays arbitrarily
close the initial attractor of the monomorphic resident population whenever the
mutant has a strategy sufficiently similar to that of the resident (This is called
a Tube Theorem). This result implies that the orbit will stay in a narrow tube
in the resident-mutant population state space. Schreiber [4] considered a model
for apparent competition where two prey share one predator. In [4], it was shown
that a model without the positive equilibrium is almost surely permanence. The
similar idea of Tube Theorem is exploited in the proof. It would be interesting
to study the relationship between the tube set and the balance set. Since system
(1.1) is dissipative, there must exist an accumulation set of the ratio function
P,; on some compact subset of the positive cone. In this paper, it was shown
that the accumulation set corresponds to the positive equilibrium point. If the
accumulation set consists of two points, then the solution will be periodic. It is
expected that chaotic behaviors is expressed in such a way that the ratio function
has infinitely multiple accumulation points. In this paper we only considered the
case where the stable positive equilibrium exists. It is well known that there is a
separatrix curve if system (1.1) is bistable. Simple consideration shows that the
balance set B corresponds to the separatrix curve if r; = 72 and system (1.1) is
bistable. It is interesting to give explicit form of the separatrix curve for ry # ra.
This leaves for our future consideration. On the systems where more than three
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species are interacting with, the chaotic behavior can occur. The method exploited
in this paper should be also exploited to higher dimensional systems. This also

feaves for our future consideration.
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