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Blowup of solutions
to some systems related to Keller-Segel

system
(Keller-Segel 系に関係する方程式の解の爆発について)

宮崎大学・工学部 仙葉 隆 (Takasi Senba)
Faculty of Engineering, University of Miyazaki

Keller and Segel introduced a parabolic system to describe the aggrega-
tion of cellular slime molds.

Keller and Segel introduced a parabolic system to describe the aggrega-
tion of cellular slime molds. They introduce the system according to the
following hypothesis.

Cells sense the gradient of chemical concentration and move toward higher
concentration. We refer to the phenomenon as chemotaxis. Cells produce
the chem ical substance.

Then, the chemical substance is an attractant.
The following system is so called Keller-Segel system.

(KS) $\{$

$\frac{vu_{t}\partial^{t}u}{\partial\nu}=\frac{\partial vv}{\partial\nu}=0\mathrm{o}\mathrm{n}\partial\Omega \mathrm{x}[0,\infty)=\Delta-v+u\mathrm{i}\mathrm{n}\Omega \mathrm{x}[0,\infty)=\nabla\cdot(\nabla u-u\nabla v)\mathrm{i}\mathrm{n}\Omega \mathrm{x}[,0,’\infty)$

,

$u(\cdot,0)=u_{0},v(\cdot,0)=v_{0}$ in $\Omega$ .

Here, $\Omega\subseteq \mathrm{R}^{2}$ is a bounded domain with smooth boundary $\partial\Omega$ and $u\mathrm{o}(\not\equiv 0)$

and $v_{0}$ are smooth and nonnegative in 0.
$u(x, t)$ represents the density of cells at $(x, t)$ and $v(x, t)$ represents the

chemical concentration at $(x, t)$ .
In this system, cells sense the gradient of chemical substance, move to-

ward higher concentration and produce the chemical substance. Then, the
direction of flow due to chemotaxis is almost opposite to one of diffusion.

If we can neglect the diffusion of cells and chemical substance. At a place,
some cells exist and produce some chemical substance. Then, some cells sense
the gradient of chemical concentration, and move toward the place. Then
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at the place the density of cells increases and much chemical substance is
produced. By repeating this story, the aggregation of cells occurs.

However, in this explanation the diffusion is neglected. Then, when the
intensity of chemotaxis is more strong than one of diffusion the aggrega-
tion occurs. I think that the blowup of solutions to mathematical model
corresponds to the aggregation.

The followings are fundamental mathematical results.

Proposition 1 The system (KS) has the unique classical solution (u, v)
for given initial conditions $u_{0}$ and $v_{0}$ in $\Omega\cross$ $(0, T_{\max})$ and the solution satisfies
that

$u(x, t)>0$ and $v(x, t)>0$ for $(x, t)\in\overline{\Omega}\mathrm{x}$ $(0, T_{\max})$

and that
$\oint_{\Omega}u(x, t)dx=\int_{\Omega}u_{0}(x)dx\equiv$ A.

If $T_{\max}<\infty$ , it holds that

$\lim_{tarrow\max}\mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{\Omega}}u(x, t)=\lim_{tx\inarrow T_{\max}}\mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{\Omega}}v(x, t)=\infty x\in$.

$Here_{f}T_{\max}$ denotes the maximal existence time.

If $\lim_{tarrow T}(x\mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{\Omega}}u(x, t))\in=\infty$ , we say that

the solution blows uP at the time $T$ and
that $T$ is the blowup time.

If there exist two sequences $\{q_{n}\}\subset$

$\overline{\Omega}$ and $\{t_{n}\}$ $\subset$ $(0, T)$ such that
$\lim_{narrow\infty}(q_{n}, t_{n})=(q, T)$ and $\lim_{\tau\iotaarrow\infty}u(q_{n}, t_{n})=$

+00, we say that the point $q$ is a blowup
point. Moreover, 5 denotes the set of
blowup points.

Before the explanation of our mathe-
matical results, I shall describe our conjec-
ture of blowup solutions. The conjecture
is one of our goal. And our mathematical
results mentioned late are evidences that (Balls represents
this conjecture is true. delta functions $4\pi\delta_{q}$ or $8\pi\delta_{q}.$)

Our Conjecture: Suppose that the
solution blows up in finite time $T_{\max}$ .

Figure 1: Image of Our Conjectur$\mathrm{e}$
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Then, the number of blowup points is fi-
nite, and the solution satisfies the follow-
ing.

$u( \cdot, t)arrow\sum_{q\in B}m_{*}(q)\delta_{q}+f$
in $\mathcal{M}(\overline{\Omega})$

as $t\prec T_{\max}$ .

Here, $m_{*}(q)=\{$

the point $q$ and

$8\pi$ if $q\in\Omega$ , , $\delta_{q}$ is the delta function whose suppose is
$4\pi$ if $q\in\partial\Omega$ ,

$f$ is a nonnegative function belonging in $L^{1}(\Omega)\cap C(\overline{\Omega}\backslash B)$

For our conjecture, I can get the following results.

Theorem 1 (Herrero-Velazquez) Let $\Omega=$ {x $\in \mathrm{R}^{2}||x|<L\}$ and
$L\in(0, \infty)$ . Then, there exists a radial solution to (KS) satisfying

$u(\cdot, t)arrow \mathrm{S}\pi\delta_{0}+f$ in $\mathcal{M}(\overline{\Omega})$ ,
as $tarrow T_{\max}(<\infty)$ ,

where $f$ is a nonnegative and radial function belonging in $L^{1}(\Omega)\cap C(\overline{\Omega}\backslash \{0\})$ .

Theorem 1 says only the existence of a blowup solution having the delta
function singularity. Then, we do not know whether all blowup solutions
have such a delta function singularities or not.

Theorem 2 (Nagai-Senba-Suzuki) Suppose that the $solu_{b}^{l}ion$ to (KS)
blows uP in the finite time and that the blowup points are finite. Then, it holds
that

$u( \cdot, t)arrow\sum_{q\in B}m(q)\delta_{q}+f$
in $\mathcal{M}(\overline{\Omega})$ as $tarrow T_{\max}$ ,

where $m(q)\geqq m_{*}(q)$ and $f$ is a nonnegative function belonging in $L^{1}(\Omega)\cap$ $C(\overline{\Omega}\backslash B)$ .

Theorem 2 say that all blowup solutions have delta function singularities.
However, if our conjecture is true, the assumption of finiteness of blowup
points is not necessary, and the constants $m(q)$ must be equal to $8\pi$ or $4\pi$ .

In order to consider the finiteness of blowup points and the decision of
the quantity $m(q)$ , we consider the following system.

(N) $\{$

$u_{t}=\nabla$ . (Vu $-u\nabla v$ ) in $\Omega \mathrm{x}[0, \infty)$ ,
$0=\triangle v-v+u$ in $\Omega \mathrm{x}$ $[0, T_{\max})$ ,
$\frac{\partial u}{\partial\iota\prime}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega \mathrm{x}[0, T_{\max})$ ,
$u(\cdot, 0)=u_{0}$ in $\Omega$ .
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This system is introduced as a simplified system of Keller-Segel system
by Professor Nagai, Then, we refer this system as Nagai system. The differ-
ence between Nagai system and Keller-Segel system is the second equation.
Since the second equation of Nagai system is an elliptic equation, the initial
condition $v_{0}$ is not necessary.

The analysis of solutions to Nagai system is more easy than one of Keller-
Segel system. And we believe that the structure of solutions to Nagai system
is similar as one of Keller-Segel system. Then, we investigate the blowup
solutions to Nagai system.

Theorem 3 (Suzuki) If the solution to (N) blows up in the finite time,
then the solution satisfies

$u( \cdot, t)arrow\sum_{q\in \mathcal{B}}m_{*}(q)\delta_{q}+f$
in At $(\overline{\Omega})$ as $tarrow T_{\max}$

where $f$ is a nonnegative function belonging in $L^{1}(\Omega)\cap C(\overline{\Omega}\backslash B)$ .

We consider the behavior of blowup solutions until now. Next, we shall
consider the condition of blowup of solutions for Nagai system.

Theorem 4(Suppose the following (i) or (ii).

(i) $\oint_{\Omega}u_{0}(x)dx>8\pi$ and $\int_{\Omega}u_{0}(x)|x-q|^{2}dx\ll 1$ for some $q\in\Omega$ .

(ii) $\oint_{\Omega}u_{0}(x)dx>4\pi$ and $\oint_{\Omega}u_{0}(x)|x$ $-q|^{2}dx\ll 1$ for some $q$ {: $\partial\Omega$ , and the
boundary is line in the neighbourhood of the point $q$ .
Then, the solution to (N) blows up in the finite time.

By Theorem 3, we obtain that the blowup solutions found by Theorem 4
have delta function singularities.

The conclusion about blowup condition is as follows.
If total mass is less than $4\pi$ , the solution can not blowup. In the radial

case, if total mass is less than $8\pi$ , the solution can not blowup.
If more than $4\pi$ mass concentrate near a point on the boundary, the

solution blows up. If more than $8\pi$ mass concentrate near a point in the
domain, the solution blows up.

If the solution blows up in finite time, the delta function appears at each
blowup point.
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Next, we describe the relation between the structure of solutions and the
assumption of the intensity of chemotaxis. In order to describe the relation,
we consider the following general case.

$(N)_{\varphi}\{$

$u_{t}=\nabla$ . (Vu $-u\nabla\varphi(v)$ ) in $\Omega\cross$ $[0, T_{\max})$ ,
$0=\Delta v-v+u$ in $\Omega \mathrm{x}[0, T_{\max})$ ,

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega \mathrm{x}[0, T_{\max})$ ,
$u(\cdot, 0)=u_{0}$ in $\Omega$ .

In the case where $\varphi(v)=v$ , the system is Nagai system.
The first equation represents the change of density of cells. The term $\nabla u$

represents the flow due to diffusion of cells, and the term $u\nabla\varphi(v)$ represents
the flow due to chemotaxis. Then, we assume that the flow due to chemotaxis
is expressed by the term $u\nabla\varphi(v)$ , by using a function $\varphi$ .

We refer to the function $\varphi$ as the sensitivity function. Since the chemical
substance is the attractant, then the differential of $\varphi$ must be positive.

The typical examples of sensitivity functions are $\log v$ , $v^{p}(p>0)7 \frac{v}{1+v}$

and so on.
Then, in order to investigate the relation between the intensity of chemo-

taxis and the structure of blowup solutions, we investigate the relation be-
tween the sensitivity function $\varphi$ and the structure of blowup solutions.

Here, we treat only the radial case.

Theorem 5 (Nagai-Senba) Let $\Omega=\{x\in \mathrm{R}^{2}||x|<L\}(0<L<\infty)$

and $u_{0}$ be positive and radial in $\overline{\Omega}$ .
(i) Suppose that $\varphi(v)=\log v$ or $v^{p}(0<p<1)$ . Then, the radial solution to
$(N)_{\varphi}$ exists globally in time and satisfies

$\sup\{u(x, t) |(x, t)\in\overline{\Omega}\mathrm{x}[0, \infty)\}<\infty$ .

(ii) Suppose that $\varphi(v)=v^{p}(1<p)$ . if $u_{0}$ satisfies

$\oint_{\Omega}u_{0}(x)dx>0$ and $\int_{\Omega}|x|^{2}u_{0}(x)dx\ll 1$ ,

the radial solution blows up in finite time.

Then, the relation between the sensitivity function and blowup of solu-
tions is as follows.

In the case where $\varphi(v)=v$ , it holds that the differential of $\varphi(v)$ is equal

to 1. Then, if the total mass is less than $4\pi$ , the blowup can not occur. If

the total mass is more than $4\pi$ , the blowup can occur.
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In the case where $\varphi(v)=\log v$ or $v^{p}(0<p<1)$ , it holds that $\lim_{varrow\infty}\varphi’(v)=$

$0$ . Then, the intensity of chemotaxis is more weak than one of $\varphi(v)=v$ , when
$v$ is large. In this case, Theorem 5 says that blowup can not occur,

In the case where $\varphi(v)=v^{p}(p>1)$ , it holds that $\lim_{varrow\infty}\varphi’(v)=\infty$.
Then, the intensity of chemotaxis is more strong than one of $\varphi(v)=v$ , when
$v$ is large. In this case, Theorem 5 says that blowup can occur, even if the
total mass is small.

That is to say, the structure of solutions change, when the system changes


