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1 Crossed products
In this note, we discuss several generalizations of dynamical systems and their
crossed products. Throughout this note, $A$ denotes a C’-algebra.

Let $G$ be a locally compact group. An action of $G$ on $A$ is a strongly continuous
homomorphism $\alpha:Garrow \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . The triple $(A, G, \alpha)$ is called a C’-dynamical
system. Prom a $C^{*}$-dynamical system $(A, G, \alpha)$ , we get a $C^{*}$ algebra $A$ $\mathrm{x}_{\alpha}G$ which
is called the crossed $product^{\uparrow}$ (see [Pe], for the detail).

When $G=\mathbb{Z}$ , an action a : $\mathbb{Z}arrow \mathrm{A}\mathrm{u}\mathrm{t}(A)$ is determined by $\alpha_{1}\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . By an
abuse of notation, we denote a1 by $\alpha$ , and identify actions of $\mathbb{Z}$ and automorphisms.
The C’-algebra A $\rangle\triangleleft_{\alpha}\mathbb{Z}$ is sometimes called the crossed product by the automorphism
$\mathrm{c}\mathrm{r}$ .

Definition 1.1 The crossed product $A\rangle\triangleleft_{\alpha}\mathbb{Z}$ is the universal $C$’-algebra generated by
the images of the $*\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}$ $\pi:Aarrow A>\triangleleft_{\alpha}\mathbb{Z}$ and the linear map $t:Aarrow A\mathrm{x}_{\alpha}\mathbb{Z}$

satisfying

(i) $t(x)\pi(a)=\mathrm{t}\{\mathrm{x}\mathrm{a})$ ,

(i) $t(x)^{*}t(y)=\pi(x^{*}y)$ ,

(iii) $\pi(a)t(x)$ $=t(\alpha(a)x)$ ,

(iv) $t(x)t(y)^{*}=\pi(\alpha^{-1}(xy^{*}))$

for $a$ , $x$ , $y\in A$ .

In the definition above, “universal” means that for any C’-algebra $B$ , any $*$-ho-
momorphism $\pi’$ : $Aarrow B$ and any linear map $t’$ : $Aarrow B$ satisfying (i) – (iv) above,
there exists a $*\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}$

$\rho$ : $A\rangle\triangleleft_{\alpha}\mathbb{Z}arrow B$ such that $\pi’=\rho\circ\pi$ and $t’=\rho\circ t$ .
We can show that there exists a unitary $u$ in the multiplier algebra of $A$ $x_{\alpha}\mathbb{Z}$ such
that $t(x)=u\pi(x)$ for $x\in A$ . This unitary $u$ satisfies

$u\pi(a)u’=\pi(\alpha^{-1}(a))$ for $a\in A$ . $(*)$

$\dagger \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ are two types of crossed products, namely the reduced ones and the full ones. We do
not go to the detail because we are only interested in the case $G=\mathbb{Z}$ where the two types of
C’-algebras coincide
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Conversely, if a $*$-homomorphism $\pi’$ : $Aarrow B$ and a unitary $u’$ in the multiplier

algebra of $B$ satisfies $(*)$ , then the pair of the $*$-homomorphism $pif$ and the linear
map $t’$ : $Aarrow B$ defined by $t(x)=\mathrm{t}(\mathrm{x})$ for $x\in A$ satisfies (i) $-(\mathrm{i}\mathrm{v})$ . Thus the above
definition coincides with the ordinal one using the covariant condition $(*)$ (see for
example [Pe] $)$ . There are many generalizations of this construction. One of them is
a crossed product by a Hilbert $C_{l}^{*}$-bimodule [AEE].

Definition 1.2 ([BMS]) A Hilbert $A$ -bimodule X is a Banach space which is an
$A$-bimodule and has A-valued left and right inner products (., .) and \langle ., .\rangle such that

(i) $(\xi,\xi)\geq 0$ , $\langle\xi,\xi\rangle\geq 0$ ,

(ii) $||\xi||=||(\xi,\xi)||^{1/2}=||\langle\xi,\xi\rangle||^{1/2}$,

(iii) $(a\xi, \eta)=a(\xi, \eta)$ , $\langle\xi, \eta a\rangle=\langle\xi,\eta\rangle a$ ,

(iv) $(\xi, \eta)\zeta=\xi\langle\eta, \zeta\rangle$

for $($ , $\eta\}$
$($ $\in X$ , $a\in A$ .

For 4, y7 $\in X$ and $a\in A$ , we can show $(\eta, \xi)=(\xi, \eta)^{*}$ , $\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$ from (i),
and

$(\xi a,\eta)=(\xi, \eta a^{*})$ , $\langle\xi,a\eta\rangle=\langle a^{*}\xi, \eta\rangle$

from (iv). An automorphism a $\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ determ ines a Hilbert $A$-bimodule $X_{\alpha}$ as
follows: As Banach spaces, $X_{\alpha}$ is isomorphic to $A$ via the map $A\ni x\mapsto\xi_{x}\in X_{\alpha}$ .
The bimodule structure and inner products are defined as

$a\xi_{x}b:=\xi_{\alpha(a)\mathrm{x}\mathrm{b}}$ , $(\xi_{x}, \xi_{y}):=\alpha^{-1}(xy^{*})$ , $\langle\xi_{x}, \xi_{y}\rangle:=x^{*}y$

for $a$ , $x$ , $y\in A$ . By this construction, we think that Hilbert C’-bimodules general-
ize automorphisms. The compositions of automorphisms correspond to the tensor
products of Hilbert $C^{*}- \mathrm{b}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{e}\mathrm{s}^{\uparrow}$, and the inverses correspond to the dual Hilbert
C’-bimodules.

Definition 1.3 ([AEE, Definition 2.1]) The crossed product $A$ $\mathrm{x}_{X}\mathbb{Z}$ of a $C^{*}$-al-
gebra $A$ by a Hilbert $A$-bimodule $X$ is the universal C’-algebra generated by the
images of the $*$-homom orphism $\pi$ : $Aarrow A$ )$\triangleleft x$

$\mathbb{Z}$ and the linear map $t:Xarrow A>\mathrm{t}\chi \mathbb{Z}$

satisfying

(i) $t(\xi)\pi(a)=t(\xi a)$ ,

(ii) $t(\xi)^{*}t(\eta)=\pi(\{\xi, \eta\rangle)$ ,

(iii) $\pi(a)t(\xi)=t(a\xi)$ ,

(iv) $t(\xi)t(\eta)^{*}=\pi((\xi, \eta))$ ,

for $a\in A$ and $\xi,$ $\eta\in X$ .

$\uparrow \mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}$ our convention, we have $X_{\alpha}\otimes X_{\beta\beta}\cong X\mathrm{a}$ .
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The conditions (i) and (iii) hold automatically from the conditions (ii) and (iv),
respectively. It is straightforward to see $A\rangle \mathrm{r}_{X_{a}}\mathbb{Z}\cong A$ )$\triangleleft_{\alpha}\mathbb{Z}$ for a $\in \mathrm{A}\mathrm{n}\mathrm{t}(\mathrm{A})$ .

Another generalization of the crossed products by automorphisms is crossed
products by endomorphisms [$\mathrm{M}$ , St]. These two generalizations can be unified to
the construction of the Pimsner algebra $\mathcal{O}_{X}$ from a $C^{*}$ -correspondence\dagger $X$ , which is
defined in [Pi] and modified in [Ka5].

Definition 1,4 If a Banach space $X$ satisfies all the conditions for Hilbert A-
bimodules except the existence of a left inner product but instead satisfies $\langle a\xi, \eta\rangle=$

$\langle\xi, a^{*}\eta\rangle$ for $\xi,\eta\in X$ and $a\in A$ , then it is called a C’-correspondence over $A$ .

For a definition and properties of the Pimsner algebra, see the next section.
Recently, Exel defines generalized correspondences and gives a method to construct
$C$’-algebras from them ([E]). A ternary ring of operators (TRO) is a Banach space
$X$ with a ternary operation $[\cdot, \cdot, \cdot]:X\mathrm{x}$ $X\mathrm{x}$ $Xarrow X$ which satisfies the conditions
that the map ( $x,$ $y$ , z)\mapsto $y $*z$ satisfies ([Z]). A generalized correspondence over $A$ is
an A-bimodule which is a TRO such that the ternary operation satisfies

$[\xi, a\eta, \zeta]=[\xi, \eta, a^{*}\zeta]$ , $[\xi,\eta a, \zeta]=[\xi a^{*}, \eta, \zeta]$

for $\xi$ , $\eta$
)

$\zeta\in X$ and $a\in A$ . A $C^{*}$-correspondence is a generalized correspondence by
setting $[\xi, \eta, \zeta]:=\xi\langle\eta, \zeta\rangle$ .

dual

$\dagger \mathrm{p}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{n}\mathrm{e}\mathrm{r}$ called it a Hilbert-bimodule, and he assumed that its left action is faithful
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The class of generalized correspondences is a natural class which contains $C^{*}-$

correspondences and is invariant under “taking duals”. In [E], Exel suggests one
way to construct a C’-algebra $C^{*}(A, X)$ from a generalized correspondence $X$ over
$A$ , which generalizes the construction of Pimsner algebras. There are several things
remained which have to be checked. For example, we do not know whether the
natural embedding map $Aarrow C^{*}(A, X)$ is injective or not.

So far, we only consider the generalization of actions and crossed products for the
case that the group is $\mathbb{Z}$ (or the semigroup $\mathrm{N}$ ). There is a generalization of actions
by general groups using $C$’correspondences, which is called a product system.

Definition 1.5 Let $\Gamma$ be a cone of a group. $A$ product system over $\Gamma$ is a family
$\{X_{\gamma}\}_{\gamma\in\Gamma}$ of C’-correspondences over A together with the isomorphisms as C’-corre-
spondences

$w_{\gamma,\mu}$ : $X_{\gamma}\otimes X_{\mu}arrow X_{\gamma\mu}$ ,

satisfying the associative low

$w_{\gamma\mu,\nu}\circ(w_{\gamma,\mu}\otimes \mathrm{i}\mathrm{d}_{X_{\nu}})=w_{\gamma,\mu\nu}\mathrm{o}(\mathrm{i}\mathrm{d}_{X_{\gamma}}\otimes w_{\mu,\nu})$ .

We should be careful of $X_{e}$ where $e\in\Gamma$ is the identity (see [F]). If $\Gamma$ has a
topology (e.g. $\Gamma=\mathbb{R}_{+}$ ), then we have to take care of the “continuity” (or ‘(measur-

ability” ) of the map $\gammaarrow X_{\gamma}$ (see [H]). Product systems over the positive real line
$\mathbb{R}_{+}$ are related to $E_{0}$-semigroup (see $[\mathrm{H}$ , Sk]). A higher rank graph introduced in
[KP] gives an example of product systems over the semigroup $\mathrm{N}^{k}$ (see $[\mathrm{F}$ , RSY]).

There is a natural construction of a C’-algebra from a product system, which is
analogue of Toeplitz algebra $\mathcal{T}_{X}$ define$\mathrm{d}$ below. However, except for special cases,
we do not know how to define analogues of crossed products or Pimsner algebras of
product systems.

2 Pimsner algebras
Let $A$ be a C’-algebra, and $X$ be a C’-correspondence over $A$ .

Definition 2.1 A representation of X on a C“-algebra B is a pair $(\pi,$t) consisting
of a $*$-homomorphism $\pi$ : A $arrow B$ and a linear map t:X $arrow B$ satisfying

(i) $t(\xi)\pi(a)=t(\xi a)$ ,

(ii) $t(\xi)^{*}t(\eta)=\pi(\langle\xi,\eta\rangle)$ ,

(ii) $\pi(a)t(\xi)=t(a\xi)$

for $a\in A$ and $\xi,\eta$ $\in X$ . We denote by $C^{*}(\pi,t)$ the C’-algebra generated by the
images of $\pi$ and $t$ in $B$ .

Definition 2.2 We denote the universal representation by $(\overline{\pi}_{X},\overline{t}_{X})$ . The C’-alge-
bra C’ $(\overline{\pi}_{X},\overline{t}_{X})$ is called the Toeplitz algebra of X, and denoted by $\mathcal{T}_{X}$ .
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The Toeplitz algebra $T_{X}$ is not an analogue of crossed products. We need the
condition corresponding (iv) in Definition 1.1 or Definition 1.3. To express this
condition, we introduce some notations.

Definition 2.3 A map $T:Xarrow X$ is said to be adjointable if there exists $T^{*}:$ $Xarrow$

$X$ such that $\langle\xi, T\eta\rangle=\langle T^{*}\xi, \eta\rangle$ for $\xi$ , $\eta\in X$ .
We denote by $\mathcal{L}(X)$ the set of all adjointable operators on $X$ .

It is routine to check that $\mathcal{L}(X)$ is a C’-algebra, and the left action defines the
$*$-homomorphism $\varphi$ : $Aarrow \mathcal{L}(X)$ by $\varphi(a)\xi=a\xi$ .

Definition 2.4 For $\xi$ , yy $\in X$ , the operator $\theta_{\xi,\eta}\in \mathcal{L}(X)$ is defined by $\theta_{\xi,\eta}(\zeta)=$

$\xi\langle\eta$ , $\langle$ $)$ for $\zeta\in X$ . We define $\mathcal{K}(X)$ $\subset \mathcal{L}(X)$ by

$\mathcal{K}(X)=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{\theta_{\xi,\eta}|\xi, \eta\in X\}$,

which is an ideal of $\mathcal{L}(X)$ .

For the proof of the next lemma see [KPW, Lemma 2.2] or [$\mathrm{F}\mathrm{R}$ , Remark 1.7].

Lemma 2.5 For a representation $(\pi,$t) of X, there exists a unique $*$ -homomor-
phism $\psi_{t}$ : $\mathcal{K}(X)$ $arrow C^{*}(\pi,$t) such that $\psi_{t}(\theta_{\xi,\eta})=t(\xi)t(\eta\rangle^{*}for$ $\xi$ , $\eta\in X$ .

Definition 2.6 For a $C^{*}$-correspondence X , we define an ideal $J_{X}$ of A by

$J_{X}:=$ {a $\in A|\varphi(a)\in \mathcal{K}(X)$ and $ab=0$ for all $b\in \mathrm{k}\mathrm{e}\mathrm{r}\varphi$}.

Definition 2.7 A representation $(\pi,$t) of X is said to be covar iant if $\psi_{t}(\varphi(a))=$

$\pi\langle a$ ) for all a $\in J_{X}$ .

Definition 2.8 Let $(\pi_{X}, t_{X})$ be the universal covariant representation, and set
$\mathcal{O}_{X}:=C^{*}(\pi_{X}, t_{X})$ which is called the Pimsner algebra of X.

One can check that this construction generalizes the crossed products by endo-
morphisms and the ones by Hilbert C’-bimodules as well as other classes of C’-al-
gebras (see Section 3). We will give several characterizations of the representation
$(\pi_{X}, t_{X})$ and the Pimsner algebra $\mathcal{O}_{X}$ .

Definition 2.9 For two representations $(\pi_{1}, t_{1})$ and $(\pi_{2}, t_{2})$ of $X$ , we write $(\pi_{1}, t_{1})$ ?
$(\pi_{2},t_{2})$ if there exists a $*$-homomorphism $p:C^{*}(\pi_{1}, t_{1})$ $arrow C^{*}(\pi_{2}.,t_{2})$ such that $\pi_{2}=$

$\rho\circ\pi_{1}$ and $t_{2}=\rho\circ t_{1}$ .

Such a $*$-homomorphism $\rho$ is, if it exists, unique and surjective. We will say
that two representations $(\pi_{1}, t_{1})$ and $(\pi_{2},t_{2})$ are equivalent if $(\pi_{1}, t_{1})[succeq](\pi_{2},t_{2})$ and
$(\pi_{1},t_{1})$ $\preceq(\pi_{2}, t_{2})$ . This is the same as the existence of an isomorphism $\rho:C^{*}(\pi_{1}, t_{1})arrow$

$C^{*}(\pi_{2}, t_{2})$ with $\pi_{2}=\rho 0\pi_{1}$ and $t_{2}=\rho$ $\circ t_{1}$ . The set of equivalence classes of repre-
sentations is an ordered set by the order $\preceq$ . The universal representation $(\overline{\pi}x,\overline{t}x)$

is the largest element in this set
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Definition 2.10 A representation $(\pi, t)$ of $X$ is said to be injective if a $*$-homo-
morphism $\pi$ is injective, and said to admit a gauge action if for each $z\in??$ , there
exists a $*$-homomorphism $\beta_{z}$ : C’ $(\pi,t)arrow C"(\pi, t)$ such that $\beta_{z}(\pi(a))=\pi(a)$ and
$\beta_{z}(t(\xi))=zt(\xi)$ for all $a\in A$ and $\xi\in X$ .

By the universality, the representation $(\pi_{X}, t_{X})$ on $\mathcal{O}_{X}$ admits a gauge action.
We denote this action by $\gamma$ : $\mathbb{T}arrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{O}_{X})$ and call it the gauge action on $\mathcal{O}_{X}$ . We
can also see that $(\pi_{X}, t_{X})$ is injective by using Fock representation [Ka6] .

Theorem 2.11 ( $[\mathrm{K}\mathrm{a}6$ , Theorem 6.4], [Ka7, Propostion 7.14]) Each of the fol-
loeving three conditions characterizes the representation $(\pi_{X}, t_{X})$ on the Pimsner
algebra $\mathcal{O}x$ :

(i) $(\pi_{X}, t_{X})$ is the largest in the set of all covariant representations.

(ii) $(\pi_{X}, t_{X})$ is the smallest in the set of all injective representations admitting
gauge actions.

(iii) $(\pi_{X},\iota xx)$ is the only injective covariant representation admitting a gauge action.

(i) is nothing but the definition of $\acute{(}\pi_{X}$ , $t_{X}$ ). The uniqueness part of (iii) is called
the gauge-invariant uniqueness theorem, (ii) gives characterizations of $(\pi_{X}, t_{X})$ and
$\mathcal{O}_{X}$ without using the covariance nor the ideal Jx-

The most important part of the proof of Theorem 2.11 is an analysis of the fixed
point algebra 0 $X\gamma$ of the gauge action (see the proof of the next theorem).

Theorem 2.12 (see [DS, Theorem 3.1], [Ka6, Theorems 7.1, 7.2])
$A$ : nuclear $\Rightarrow \mathcal{O}_{X}^{\gamma}$ : nuclear $\Leftrightarrow \mathcal{O}_{X}$ : nuclear.

$A$ : exact $\Leftrightarrow \mathcal{O}_{X}^{\gamma}$ : $exact\Leftrightarrow \mathcal{O}_{X}$ : exact.

Sketch of Proof The two equivalences

“
$\mathcal{O}_{X}^{\gamma}$ : nuclear $\Leftrightarrow \mathcal{O}_{X}$ : nuclear”, “

$\mathcal{O}_{X}^{\gamma}$ : exact $\Leftrightarrow \mathcal{O}_{X}$ : exact



7

follow from the general fact on fixed point algebras by actions of compact groups (see
[DLRZ] $)$ . We sketch the proof of $\mathrm{U}\mathrm{A}$ : nuclear $\Rightarrow \mathcal{O}_{X}^{\gamma}$ : nuclear” (the corresponding
statement for exactness can be proven similarly).

Suppose that $A$ is nuclear, and we will prove that $\mathcal{O}_{X}^{\gamma}$ is nuclear. We set $Y_{0}=$

$\pi_{X}(A)$ $\subset \mathcal{O}_{X}$ and

$Y_{n+1}=t_{X}(X)Y_{n}$ $:=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{x\mathrm{y}\in \mathcal{O}_{X}|x\in t_{X}(X), y\in Y_{n}\}$

for $n\in$ N. Then we have

$\mathcal{O}_{X}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}(\cup Y_{n}Y_{m}^{*})n,m\in \mathrm{N}$ ’ $\mathcal{O}_{X}^{\gamma}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}(_{n\in \mathrm{N}}\cup Y_{n}Y_{n}^{*})$ .

We set $B_{n}=Y_{n}Y_{n}^{*}$ and $B[0,n]=B_{0}+B_{1}+\cdots+B_{n}$ . Then we have $\mathcal{O}_{X}^{\gamma}=\lim_{arrow}B[0,n]$ . It
suffices to show that the $C^{*}$ algebra $B\mathfrak{l}^{0,n]}$ is nuclear for all $n\in$ N. We will prove this
by induction on $n$ . The C’-algebra $B[0,0]=B_{0}\cong A$ is nuclear by the assumption.
Suppose we will prove that $B_{[0,n-1]}$ is nuclear. The C’-algebra $B_{n}$ is strongly Morita
equivalent to the C’-algebra $Y_{n}^{*}Y_{n}\subset \mathcal{O}_{X}$ which is isomorphic to an ideal of $A$ .
Hence $B_{n}$ is nuclear. Since $B_{n}$ is an ideal of $B[0,n]$ and $B[0,n\} =B10,n-1]$ $+B_{n}$ , we
have $B[0,n]/B_{n}\cong B[0,n-1]/(B[0,n-1]\cap B_{n})$ which is nuclear.

0 $-\neq B_{[0,n-1]}\cap B_{n}arrow B_{[0,n-1]}arrow B_{[0,n-1]}/(B_{[0,n-1]}\cap B_{n})arrow 0$

$\downarrow$ $\downarrow$ $||$

$0arrow$ $B_{n}$ $arrow$ $B_{[0,n]}$ $arrow$ $B_{[0,n]}/B_{n}$ $arrow \mathrm{O}$

Therefore $B_{[0,n]}$ is nuclear being an extension of nuclear C’-algebras. This completes
the proof. I

Remark 2.13 $T_{X}$ is nuclear (resp. exact) if and only if $A$ is nuclear (resp. exact).
There is an example of a $C^{*}$ corresponding $X$ over a non-nuclear C’-algebra $A$

such that $\mathcal{O}_{X}$ is nuclear (see [Ka6, Example 7.7]).

There have been some results on the ideal structures of Pimsner algebras ([Ka7],
[MT1] $)$ , and a criterion for their simplicity in a special case ([Sc]). However we do
not know when they are simple in general. On the $K$-theory of Pimsner algebras,
we have the following (see [Pi, Theorem 4.9] and [Ka6, Theorem 8.6, Proposition
8.8]).

Theorem 2.14 The Pimsner algebra $\mathcal{O}_{X}$ satisfies the Universal Coefficient Theo-
rem of $[RS]$, if both $A$ and $J_{X}$ satisfy it. We have the following exact sequence;

$K_{0}(J_{X})\vec{\iota_{*}-[X]}K_{0}(A)\vec{(\pi_{X})_{*}}K_{0}(\mathcal{O}_{X})$

$\uparrow$
$\downarrow$

$K_{1}(\mathcal{O}_{X})\mapsto(\pi_{X})_{*}K_{1}(A)\mapsto\iota_{*}-[X]K_{1}(J_{X})$ .
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3 Topological quivers

In this section, we give methods to construct $C$’-correspondences over commutative
$C^{*}$-algebras.

Definition 3.1 ([MT2]) A topological quiver $Q$ $=(E^{0}, E^{1}, d,r, \lambda)$ consists of two
locally compact spaces $E^{0}$ and $E^{1}$ , a continuous open map $d:E^{1}arrow E^{0}$ , a continuous
map $r:E^{1}arrow E^{0}$ , and a family of Rad on measures A $=\{\lambda_{v}\}_{v\in E^{0}}$ on $E^{1}$ satisfying
the following two conditions:

(i) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\lambda_{v}=d^{-1}(v)$ for all $v\in E^{0}$ ,

(ii) $v\mapsto f_{E^{1}}\xi(e)d\lambda_{v}(e)$ is an element of $C_{a}(E^{0})$ for all $\xi\in C_{c}(E^{1})$ .

Take a topological quiver $Q$ $=(E^{0}, E^{1}, d, r, \lambda)$ . We set $A:=C_{0}(E^{0})$ . For
$\xi$ , $\eta\in C_{\mathrm{c}}(E^{1})$ ,

$v \mapsto\oint_{E^{1}}\overline{\xi(e)}\eta(e)d\lambda_{v}(e)$

is an element of $C_{c}(E^{0})$ . We denote this function by $\langle\xi, \eta\rangle\in A$ . The linear space
$C_{c}(E^{1})$ is an A-bimodule by

$f\xi g:E^{1}\ni e\mapsto f(r(e))\xi(e)g(d(e))$

for $f$ , $g\in A$ and $\xi\in C_{c}(E^{1})$ . Let $X$ be the completion of $C_{c}(E^{0})$ with respect to the
norm defined by $||\xi||=||\langle\xi,\xi\rangle||^{1/2}$ . The $A$-valued inner product and the A-bimodule
structure are naturally extended to $X$ . Thus $X$ is a $C^{*}$-correspondence over $A$ .

Definition 3.2 The Pimsner algebra 0 X of the C’-correspondence X over A can
structed above is said to be the C’-algebra associated to Q, and denoted by $C^{*}(Q)$ .

A quadruple $E=(E^{0}, E^{1}, d, r)$ consisting of two locally compact spaces $E^{0}$ and
$E^{1}$ , a local homeomorphism $d:E^{1}arrow E^{0}$ , and a continuous map $r:E^{1}arrow E^{0}$ , is
called a topological graph ([Kal]). For a topological graph $E=(E^{0}, E^{1},d, r)$ , the
quintuple $Q_{E}=(E^{0}, E^{1}, d, r, \lambda)$ is a topological quiver, where $\lambda_{v}$ is the counting
measures on $d^{-1}(v)$ for $v\in E^{0}$ . The $C^{*}$ algebra $C^{*}(Q_{E})$ is denoted by $\mathcal{O}(E)$ in
[Kal]. When $d:E^{1}arrow E^{0}$ is a branched covering between Riemann surfaces, the
counting measures $\lambda_{v}$ on $d^{-1}(v)$ for $v\in E^{0}$ with multiplicities at branched points
satisfy two conditions in Definition 3.1. Thus we get a topological quiver, and the
$C^{*}$-algebras associated to this type of topological quivers are analyzed in [KW] .

For $C$’-algebras associated to topological quivers, we know the conditions for the
simplicity ( $[\mathrm{M}\mathrm{T}2$ , Theorem 10.2], see also [Ka3, Theorem 8.12]).

By Theorems 2.12 and 2.14, the class of the C’-algebras associated to topological
quivers are included in the class of nuclear C’-algebras satisfying the Universal
Coefficient Theorem. There may be possibilities that all separable simple nuclear
C’-algebras satisfying the Universal Coefficient Theorem can be obtained as $C^{*}-$

algebras associated to topological quivers. In fact, the following $C^{*}$ algebra were
shown to be obtained as C’-algebras associated to topological quivers (or actualiy
topological graphs [Ka2; Ka4] $)$ :
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(i) all AF-algebras,

(ii) many ASH-algebras including all simple AT-algebras with real rank zero,
(iii) all classifiable Kirchberg algebras.

We do not know whether the following examples arise as C’-algebras associated to
topological quivers:

(i) a simple $C^{*}$-algebra with a finite and an infinite projection found in [Ro] ,

(ii) all TAF-algebras classified in [L],

(iii) the Jiang and Su algebra $Z$ defined in [JS].

A dynamical system $(C_{0}(\Omega), G, \alpha)$ of a commutative $C^{*}$ algebra $C_{0}(\Omega)$ gives rise
to an action of $G$ on the space O. Such an action defines a groupoid $\Omega\rangle\triangleleft G$ which is
called a transformation group, and the crossed product $C_{0}(\Omega)i\triangleleft_{\alpha}G$ is isomorphic to
the C’-algebra of this groupoid [Re]. From a topological graph $E$ , we can construct
a groupoid $\mathcal{G}_{E}$ using negative orbits so that the $C^{*}$ algebra $\mathcal{O}(E)$ is isomorphic to the
C’-algebra of the groupoid $\mathcal{G}_{E}$ . This observation may help when we try to extend
the construction in this section to the more general setting involving general groups.
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