Construction of C^{*}－algebras

Takeshi Katsura（勝良 健史）
Department of Mathematics，Hokkaido University，
Sapporo，060－0810，JAPAN
e－mail：katsura＠math．sci．hokudai．ac．jp

1 Crossed products

In this note，we discuss several generalizations of dynamical systems and their crossed products．Throughout this note，A denotes a C^{*}－algebra．

Let G be a locally compact group．An action of G on A is a strongly continuous homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$ ．The triple (A, G, α) is called a C^{*}－dynamical system．From a C^{*}－dynamical system (A, G, α) ，we get a C^{*}－algebra $A \rtimes_{\alpha} G$ which is called the crossed product ${ }^{\dagger}$（see［Pe］，for the detail）．

When $G=\mathbb{Z}$ ，an action $\alpha: \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ is determined by $\alpha_{1} \in \operatorname{Aut}(A)$ ．By an abuse of notation，we denote α_{1} by α ，and identify actions of \mathbb{Z} and automorphisms． The C^{*}－algebra $A \rtimes_{\alpha} \mathbb{Z}$ is sometimes called the crossed product by the automorphism α ．

Definition 1．1 The crossed product $A \dot{\rtimes}_{\alpha} \mathbb{Z}$ is the universal C^{*}－algebra generated by the images of the $*$－homomorphism $\pi: A \rightarrow A \rtimes_{\alpha} \mathbb{Z}$ and the linear map $t: A \rightarrow A \rtimes_{\alpha} \mathbb{Z}$ satisfying
（i）$t(x) \pi(a)=t(x a)$ ，
（ii）$t(x)^{*} t(y)=\pi\left(x^{*} y\right)$ ，
（iii）$\pi(a) t(x)=t(\alpha(a) x)$ ，
（iv）$t(x) t(y)^{*}=\pi\left(\alpha^{-1}\left(x y^{*}\right)\right)$
for $a, x, y \in A$ ．
In the definition above，＂universal＂means that for any C^{*}－algebra B ，any $*$－ho－ momorphism $\pi^{\prime}: A \rightarrow B$ and any linear map $t^{\prime}: A \rightarrow B$ satisfying（i）－（iv）above， there exists a $*$－homomorphism $\rho: A \rtimes_{\alpha} \mathbb{Z} \rightarrow B$ such that $\pi^{\prime}=\rho \circ \pi$ and $t^{\prime}=\rho \circ t$ ． We can show that there exists a unitary u in the multiplier algebra of $A \rtimes_{\alpha} \mathbb{Z}$ such that $t(x)=u \pi(x)$ for $x \in A$ ．This unitary u satisfies

$$
\begin{equation*}
u \pi(a) u^{*}=\pi\left(\alpha^{-1}(a)\right) \quad \text { for } a \in A . \tag{*}
\end{equation*}
$$

[^0]Conversely, if a $*$-homomorphism $\pi^{\prime}: A \rightarrow B$ and a unitary u^{\prime} in the multiplier algebra of B satisfies (*), then the pair of the $*$-homomorphism $p i^{\prime}$ and the linear map $t^{\prime}: A \rightarrow B$ defined by $t(x)=u \pi(x)$ for $x \in A$ satisfies (i) - (iv). Thus the above definition coincides with the ordinal one using the covariant condition $(*)$ (see for example [Pe]). There are many generalizations of this construction. One of them is a crossed product by a Hilbert C^{*}-bimodule [AEE].

Definition 1.2 ([BMS]) A Hilbert A-bimodule X is a Banach space which is an A-bimodule and has A-valued left and right inner products (\cdot, \cdot) and $\langle\cdot, \cdot\rangle$ such that
(i) $(\xi, \xi) \geq 0, \quad\langle\xi, \xi\rangle \geq 0$,
(ii) $\|\xi\|=\|(\xi, \xi)\|^{1 / 2}=\|\langle\xi, \xi\rangle\|^{1 / 2}$,
(iii) $(a \xi, \eta)=a(\xi, \eta), \quad\langle\xi, \eta a\rangle=\langle\xi, \eta\rangle a$,
(iv) $(\xi, \eta) \zeta=\xi\langle\eta, \zeta\rangle$
for $\xi, \eta, \zeta \in X, a \in A$.
For $\xi, \eta \in X$ and $a \in A$, we can show $(\eta, \xi)=(\xi, \eta)^{*},\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$ from (i), and

$$
(\xi a, \eta)=\left(\xi, \eta a^{*}\right), \quad\langle\xi, a \eta\rangle=\left\langle a^{*} \xi, \eta\right\rangle
$$

from (iv). An automorphism $\alpha \in \operatorname{Aut}(A)$ determines a Hilbert A-bimodule X_{α} as follows: As Banach spaces, X_{α} is isomorphic to A via the map $A \ni x \mapsto \xi_{x} \in X_{\alpha}$. The bimodule structure and inner products are defined as

$$
a \xi_{x} b:=\xi_{\alpha(a) x b}, \quad\left(\xi_{x}, \xi_{y}\right):=\alpha^{-1}\left(x y^{*}\right), \quad\left\langle\xi_{x}, \xi_{y}\right\rangle:=x^{*} y
$$

for $a, x, y \in A$. By this construction, we think that Hilbert C^{*}-bimodules generalize automorphisms. The compositions of automorphisms correspond to the tensor products of Hilbert C^{*}-bimodules ${ }^{\dagger}$, and the inverses correspond to the dual Hilbert C^{*}-bimodules.

Definition 1.3 ([AEE, Definition 2.1]) The crossed product $A \rtimes_{X} \mathbb{Z}$ of a C^{*}-algebra A by a Hilbert A-bimodule X is the universal C^{*}-algebra generated by the images of the $*$-homomorphism $\pi: A \rightarrow A \rtimes_{X} \mathbb{Z}$ and the linear map $t: X \rightarrow A \rtimes_{X} \mathbb{Z}$ satisfying
(i) $t(\xi) \pi(a)=t(\xi a)$,
(ii) $t(\xi)^{*} t(\eta)=\pi(\langle\xi, \eta\rangle)$,
(iii) $\pi(a) t(\xi)=t(a \xi)$,
(iv) $t(\xi) t(\eta)^{*}=\pi((\xi, \eta))$,
for $a \in A$ and $\xi, \eta \in X$.

[^1]The conditions (i) and (iii) hold automatically from the conditions (ii) and (iv), respectively. It is straightforward to see $A \rtimes_{X_{\alpha}} \mathbb{Z} \cong A \rtimes_{\alpha} \mathbb{Z}$ for $\alpha \in \operatorname{Aut}(A)$.

Another generalization of the crossed products by automorphisms is crossed products by endomorphisms [M, St]. These two generalizations can be unified to the construction of the Pimsner algebra \mathcal{O}_{X} from a C^{*}-correspondence ${ }^{\dagger} X$, which is defined in $[\mathrm{Pi}]$ and modified in [Ka5].

Definition 1.4 If a Banach space X satisfies all the conditions for Hilbert A bimodules except the existence of a left inner product but instead satisfies $\langle a \xi, \eta\rangle=$ $\left\langle\xi, a^{*} \eta\right\rangle$ for $\xi, \eta \in X$ and $a \in A$, then it is called a C^{*}-correspondence over A.

For a definition and properties of the Pimsner algebra, see the next section. Recently, Exel defines generalized correspondences and gives a method to construct C^{*}-algebras from them ([E]). A ternary ring of operators (TRO) is a Banach space X with a ternary operation $[\cdot, \cdot, \cdot]: X \times X \times X \rightarrow X$ which satisfies the conditions that the map $(x, y, z) \mapsto x y^{*} z$ satisfies ($\left.[Z]\right)$. A generalized correspondence over A is an A-bimodule which is a TRO such that the ternary operation satisfies

$$
[\xi, a \eta, \zeta]=\left[\xi, \eta, a^{*} \zeta\right], \quad[\xi, \eta a, \zeta]=\left[\xi a^{*}, \eta, \zeta\right]
$$

for $\xi, \eta, \zeta \in X$ and $a \in A$. A C^{*}-correspondence is a generalized correspondence by setting $[\xi, \eta, \zeta]:=\xi\langle\eta, \zeta\rangle$.

[^2]The class of generalized correspondences is a natural class which contains C^{*} correspondences and is invariant under "taking duals". In $[\mathrm{E}]$, Exel suggests one way to construct a C^{*}-algebra $C^{*}(A, X)$ from a generalized correspondence X over A, which generalizes the construction of Pimsner algebras. There are several things remained which have to be checked. For example, we do not know whether the natural embedding map $A \rightarrow C^{*}(A, X)$ is injective or not.

So far, we only consider the generalization of actions and crossed products for the case that the group is \mathbb{Z} (or the semigroup \mathbb{N}). There is a generalization of actions by general groups using C^{*}-correspondences, which is called a product system.

Definition 1.5 Let Γ be a cone of a group. A product system over Γ is a family $\left\{X_{\gamma}\right\}_{\gamma \in \Gamma}$ of C^{*}-correspondences over A together with the isomorphisms as C^{*}-correspondences

$$
w_{\gamma, \mu}: X_{\gamma} \otimes X_{\mu} \rightarrow X_{\gamma \mu}
$$

satisfying the associative low

$$
w_{\gamma \mu, \nu} \circ\left(w_{\gamma, \mu} \otimes \operatorname{id}_{X_{\nu}}\right)=w_{\gamma, \mu \nu} \circ\left(\operatorname{id}_{X_{\gamma}} \otimes w_{\mu, \nu}\right)
$$

We should be careful of X_{e} where $e \in \Gamma$ is the identity (see $[F]$). If Γ has a topology (e.g. $\Gamma=\mathbb{R}_{+}$), then we have to take care of the "continuity" (or "measurability") of the map $\gamma \rightarrow X_{\gamma}$ (see [H]). Product systems over the positive real line \mathbb{R}_{+}are related to E_{0}-semigroup (see $[\mathrm{H}, \mathrm{Sk}]$). A higher rank graph introduced in $[\mathrm{KP}]$ gives an example of product systems over the semigroup \mathbb{N}^{k} (see $[\mathrm{F}, \mathrm{RSY}]$).

There is a natural construction of a C^{*}-algebra from a product system, which is analogue of Toeplitz algebra \mathcal{T}_{X} defined below. However, except for special cases, we do not know how to define analogues of crossed products or Pimsner algebras of product systems.

2 Pimsner algebras

Let A be a C^{*}-algebra, and X be a C^{*}-correspondence over A.
Definition 2.1 A representation of X on a C^{*}-algebra B is a pair (π, t) consisting of a *-homomorphism $\pi: A \rightarrow B$ and a linear map $t: X \rightarrow B$ satisfying
(i) $t(\xi) \pi(a)=t(\xi a)$,
(ii) $t(\xi)^{*} t(\eta)=\pi(\langle\xi, \eta\rangle)$,
(iii) $\pi(a) t(\xi)=t(a \xi)$
for $a \in A$ and $\xi, \eta \in X$. We denote by $C^{*}(\pi, t)$ the C^{*}-algebra generated by the images of π and t in B.

Definition 2.2 We denote the universal representation by ($\bar{\pi}_{X}, \bar{t}_{X}$). The C^{*}-algebra $C^{*}\left(\bar{\pi}_{X}, \bar{t}_{X}\right)$ is called the Toeplitz algebra of X, and denoted by \mathcal{T}_{X}.

The Toeplitz algebra \mathcal{T}_{X} is not an analogue of crossed products. We need the condition corresponding (iv) in Definition 1.1 or Definition 1.3. To express this condition, we introduce some notations.

Definition 2.3 A map $T: X \rightarrow X$ is said to be adjointable if there exists $T^{*}: X \rightarrow$ X such that $\langle\xi, T \eta\rangle=\left\langle T^{*} \xi, \eta\right\rangle$ for $\xi, \eta \in X$.

We denote by $\mathcal{L}(X)$ the set of all adjointable operators on X.
It is routine to check that $\mathcal{L}(X)$ is a C^{*}-algebra, and the left action defines the $*$-homomorphism $\varphi: A \rightarrow \mathcal{L}(X)$ by $\varphi(a) \xi=a \xi$.

Definition 2.4 For $\xi, \eta \in X$, the operator $\theta_{\xi, \eta} \in \mathcal{L}(X)$ is defined by $\theta_{\xi, \eta}(\zeta)=$ $\xi\langle\eta, \zeta\rangle$ for $\zeta \in X$. We define $\mathcal{K}(X) \subset \mathcal{L}(X)$ by

$$
\mathcal{K}(X)=\overline{\operatorname{span}}\left\{\theta_{\xi, \eta} \mid \xi, \eta \in X\right\}
$$

which is an ideal of $\mathcal{L}(X)$.
For the proof of the next lemma see [KPW, Lemma 2.2] or [FR, Remark 1.7].
Lemma 2.5 For a representation (π, t) of X, there exists a unique $*$-homomorphism $\psi_{t}: \mathcal{K}(X) \rightarrow C^{*}(\pi, t)$ such that $\psi_{t}\left(\theta_{\xi, \eta}\right)=t(\xi) t(\eta)^{*}$ for $\xi, \eta \in X$.

Definition 2.6 For a C^{*}-correspondence X, we define an ideal J_{X} of A by

$$
J_{X}:=\{a \in A \mid \varphi(a) \in \mathcal{K}(X) \text { and } a b=0 \text { for all } b \in \operatorname{ker} \varphi\} .
$$

Definition 2.7 A representation (π, t) of X is said to be covariant if $\psi_{t}(\varphi(a))=$ $\pi(a)$ for all $a \in J_{X}$.

Definition 2.8 Let (π_{X}, t_{X}) be the universal covariant representation, and set $\mathcal{O}_{X}:=C^{*}\left(\pi_{X}, t_{X}\right)$ which is called the Pimsner algebra of X.

One can check that this construction generalizes the crossed products by endomorphisms and the ones by Hilbert C^{*}-bimodules as well as other classes of C^{*}-algebras (see Section 3). We will give several characterizations of the representation (π_{X}, t_{X}) and the Pimsner algebra \mathcal{O}_{X}.

Definition 2.9 For two representations (π_{1}, t_{1}) and (π_{2}, t_{2}) of X, we write $\left(\pi_{1}, t_{1}\right) \succeq$ $\left(\pi_{2}, t_{2}\right)$ if there exists a $*$-homomorphism $\rho: C^{*}\left(\pi_{1}, t_{1}\right) \rightarrow C^{*}\left(\pi_{2}, t_{2}\right)$ such that $\pi_{2}=$ $\rho \circ \pi_{1}$ and $t_{2}=\rho \circ t_{1}$.

Such a *-homomorphism ρ is, if it exists, unique and surjective. We will say that two representations (π_{1}, t_{1}) and (π_{2}, t_{2}) are equivalent if $\left(\pi_{1}, t_{1}\right) \succeq\left(\pi_{2}, t_{2}\right)$ and $\left(\pi_{1}, t_{1}\right) \preceq\left(\pi_{2}, t_{2}\right)$. This is the same as the existence of an isomorphism $\rho: C^{*}\left(\pi_{1}, t_{1}\right) \rightarrow$ $C^{*}\left(\pi_{2}, t_{2}\right)$ with $\pi_{2}=\rho \circ \pi_{1}$ and $t_{2}=\rho \circ t_{1}$. The set of equivalence classes of representations is an ordered set by the order \preceq. The universal representation ($\bar{\pi}_{X}, \bar{t}_{X}$) is the largest element in this set.

Definition 2.10 A representation (π, t) of X is said to be injective if a *-homomorphism π is injective, and said to admit a gauge action if for each $z \in \mathbb{T}$, there exists a $*$-homomorphism $\beta_{z}: C^{*}(\pi, t) \rightarrow C^{*}(\pi, t)$ such that $\beta_{z}(\pi(a))=\pi(a)$ and $\beta_{z}(t(\xi))=z t(\xi)$ for all $a \in A$ and $\xi \in X$.

By the universality, the representation $\left(\pi_{X}, t_{X}\right)$ on \mathcal{O}_{X} admits a gauge action. We denote this action by $\gamma: \mathbb{T} \rightarrow \operatorname{Aut}\left(\mathcal{O}_{X}\right)$ and call it the gauge action on \mathcal{O}_{X}. We can also see that $\left(\pi_{X}, t_{X}\right)$ is injective by using Fock representation [Ka6].

Theorem 2.11 ([Ka6, Theorem 6.4], [Ka7, Propostion 7.14]) Each of the following three conditions characterizes the representation $\left(\pi_{X}, t_{X}\right)$ on the Pimsner algebra \mathcal{O}_{X} :
(i) $\left(\pi_{X}, t_{X}\right)$ is the largest in the set of all covariant representations.
(ii) $\left(\pi_{X}, t_{X}\right)$ is the smallest in the set of all injective representations admitting gauge actions.
(iii) ($\pi_{X}, \hat{\imath}_{X}$) is the only injective covariant representation admitting a gauge action.
(i) is nothing but the definition of $\left(\pi_{X}, t_{X}\right)$. The uniqueness part of (iii) is called the gauge-invariant uniqueness theorem. (ii) gives characterizations of (π_{X}, t_{X}) and \mathcal{O}_{X} without using the covariance nor the ideal J_{X}.

The most important part of the proof of Theorem 2.11 is an analysis of the fixed point algebra \mathcal{O}_{X}^{γ} of the gauge action (see the proof of the next theorem).

Theorem 2.12 (see [DS, Theorem 3.1], [Ka6, Theorems 7.1, 7.2])
A: nuclear $\Rightarrow \mathcal{O}_{X}^{\gamma}$: nuclear $\Longleftrightarrow \mathcal{O}_{X}$: nuclear.
$A:$ exact $\Longleftrightarrow \mathcal{O}_{X}^{\gamma}:$ exact $\Longleftrightarrow \mathcal{O}_{X}:$ exact.
Sketch of Proof. The two equivalences

$$
\text { " } \mathcal{O}_{X}^{\gamma}: \text { nuclear } \Longleftrightarrow \mathcal{O}_{X}: \text { nuclear", } \quad \text { " } \mathcal{O}_{X}^{\gamma}: \text { exact } \Longleftrightarrow \mathcal{O}_{X}: \text { exact" }
$$

follow from the general fact on fixed point algebras by actions of compact groups (see [DLRZ]). We sketch the proof of " A : nuclear $\Rightarrow \mathcal{O}_{X}^{\gamma}$: nuclear" (the corresponding statement for exactness can be proven similarly).

Suppose that A is nuclear, and we will prove that \mathcal{O}_{X}^{γ} is nuclear. We set $Y_{0}=$ $\pi_{X}(A) \subset \mathcal{O}_{X}$ and

$$
Y_{n+1}=t_{X}(X) Y_{n}:=\overline{\operatorname{span}}\left\{x y \in \mathcal{O}_{X} \mid x \in t_{X}(X), y \in Y_{n}\right\}
$$

for $n \in \mathbb{N}$. Then we have

$$
\mathcal{O}_{X}=\overline{\operatorname{span}}\left(\bigcup_{n, m \in \mathbb{N}} Y_{n} Y_{m}^{*}\right), \quad \mathcal{O}_{X}^{\gamma}=\overline{\operatorname{span}}\left(\bigcup_{n \in \mathbb{N}} Y_{n} Y_{n}^{*}\right) .
$$

We set $B_{n}=Y_{n} Y_{n}^{*}$ and $B_{[0, n]}=B_{0}+B_{1}+\cdots+B_{n}$. Then we have $\mathcal{O}_{X}^{\gamma}=\lim _{\longrightarrow} B_{[0, n]}$. It suffices to show that the C^{*}-algebra $B_{[0, n]}$ is nuclear for all $n \in \mathbb{N}$. We will prove this by induction on n. The C^{*}-algebra $B_{[0,0]}=B_{0} \cong A$ is nuclear by the assumption. Suppose we will prove that $B_{[0, n-1]}$ is nuclear. The C^{*}-algebra B_{n} is strongly Morita equivalent to the C^{*}-algebra $Y_{n}^{*} Y_{n} \subset \mathcal{O}_{X}$ which is isomorphic to an ideal of A. Hence B_{n} is nuclear. Since B_{n} is an ideal of $B_{[0, n]}$ and $B_{[0, n]}=B_{[0, n-1]}+B_{n}$, we have $B_{[0, n]} / B_{n} \cong B_{[0, n-1]} /\left(B_{[0, n-1]} \cap B_{n}\right)$ which is nuclear.

Therefore $B_{[0, n]}$ is nuclear being an extension of nuclear C^{*}-algebras. This completes the proof.

Remark $2.13 \mathcal{T}_{X}$ is nuclear (resp. exact) if and only if A is nuclear (resp. exact). There is an example of a C^{*}-correspondence X over a non-nuclear C^{*}-algebra A such that \mathcal{O}_{X} is nuclear (see [Ka6, Example 7.7]).

There have been some results on the ideal structures of Pimsner algebras ($[\mathrm{Ka}]$], [MT1]), and a criterion for their simplicity in a special case ([Sc]). However we do not know when they are simple in general. On the K-theory of Pimsner algebras, we have the following (see [Pi , Theorem 4.9] and [Ka6, Theorem 8.6, Proposition 8.8]).

Theorem 2.14 The Pimsner algebra \mathcal{O}_{X} satisfies the Universal Coefficient Theorem of $[R S]$, if both A and J_{X} satisfy it. We have the following exact sequence;

3 Topological quivers

In this section, we give methods to construct C^{*}-correspondences over commutative C^{*}-algebras.

Definition 3.1 ([MT2]) A topological quiver $\mathcal{Q}=\left(E^{0}, E^{1}, d, r, \lambda\right)$ consists of two locally compact spaces E^{0} and E^{1}, a continuous open map $d: E^{1} \rightarrow E^{0}$, a continuous map $r: E^{1} \rightarrow E^{0}$, and a family of Radon measures $\lambda=\left\{\lambda_{v}\right\}_{v \in E^{0}}$ on E^{1} satisfying the following two conditions:
(i) $\operatorname{supp} \lambda_{v}=d^{-1}(v)$ for all $v \in E^{0}$,
(ii) $v \mapsto \int_{E^{1}} \xi(e) d \lambda_{v}(e)$ is an element of $C_{c}\left(E^{0}\right)$ for all $\xi \in C_{c}\left(E^{1}\right)$.

Take a topological quiver $\mathcal{Q}=\left(E^{0}, E^{1}, d, r, \lambda\right)$. We set $A:=C_{0}\left(E^{0}\right)$. For $\xi, \eta \in C_{c}\left(E^{1}\right)$,

$$
v \mapsto \int_{E^{1}} \overline{\xi(e)} \eta(e) d \lambda_{v}(e)
$$

is an element of $C_{c}\left(E^{0}\right)$. We denote this function by $\langle\xi, \eta\rangle \in A$. The linear space $C_{c}\left(E^{1}\right)$ is an A-bimodule by

$$
f \xi g: E^{1} \ni e \mapsto f(r(e)) \xi(e) g(d(e))
$$

for $f, g \in A$ and $\xi \in C_{c}\left(E^{1}\right)$. Let X be the completion of $C_{c}\left(E^{0}\right)$ with respect to the norm defined by $\|\xi\|=\|\langle\xi, \xi\rangle\|^{1 / 2}$. The A-valued inner product and the A-bimodule structure are naturally extended to X. Thus X is a C^{*}-correspondence over A.

Definition 3.2 The Pimsner algebra \mathcal{O}_{X} of the C^{*}-correspondence X over A constructed above is said to be the C^{*}-algebra associated to \mathcal{Q}, and denoted by $C^{*}(\mathcal{Q})$.

A quadruple $E=\left(E^{0}, E^{1}, d, r\right)$ consisting of two locally compact spaces E^{0} and E^{1}, a local homeomorphism $d: E^{1} \rightarrow E^{0}$, and a continuous map $r: E^{1} \rightarrow E^{0}$, is called a topological graph ([Ka1]). For a topological graph $E=\left(E^{0}, E^{1}, d, r\right)$, the quintuple $\mathcal{Q}_{E}=\left(E^{0}, E^{1}, d, r, \lambda\right)$ is a topological quiver, where λ_{v} is the counting measures on $d^{-1}(v)$ for $v \in E^{0}$. The C^{*}-algebra $C^{*}\left(\mathcal{Q}_{E}\right)$ is denoted by $\mathcal{O}(E)$ in [Ka1]. When $d: E^{1} \rightarrow E^{0}$ is a branched covering between Riemann surfaces, the counting measures λ_{v} on $d^{-1}(v)$ for $v \in E^{0}$ with multiplicities at branched points satisfy two conditions in Definition 3.1. Thus we get a topological quiver, and the C^{*}-algebras associated to this type of topological quivers are analyzed in [KW].

For C^{*}-algebras associated to topological quivers, we know the conditions for the simplicity ([MT2, Theorem 10.2], see also [Ka3, Theorem 8.12]).

By Theorems 2.12 and 2.14, the class of the C^{*}-algebras associated to topological quivers are included in the class of nuclear C^{*}-algebras satisfying the Universal Coefficient Theorem. There may be possibilities that all separable simple nuclear C^{*}-algebras satisfying the Universal Coefficient Theorem can be obtained as C^{*} algebras associated to topological quivers. In fact, the following C^{*}-algebras were shown to be obtained as C^{*}-algebras associated to topological quivers (or actually topological graphs [Ka2, Ka4]):
(i) all AF-algebras,
(ii) many ASH-algebras including all simple AT-algebras with real rank zero,
(iii) all classifiable Kirchberg algebras.

We do not know whether the following examples arise as C^{*}-algebras associated to topological quivers:
(i) a simple C^{*}-algebra with a finite and an infinite projection found in [Ro],
(ii) all TAF-algebras classified in [L],
(iii) the Jiang and Su algebra \mathcal{Z} defined in [JS].

A dynamical system ($\left.C_{0}(\Omega), G, \alpha\right)$ of a commutative C^{*}-algebra $C_{0}(\Omega)$ gives rise to an action of G on the space Ω. Such an action defines a groupoid $\Omega \rtimes G$ which is called a transformation group, and the crossed product $C_{0}(\Omega) \rtimes_{\alpha} G$ is isomorphic to the C^{*}-algebra of this groupoid [Re]. From a topological graph E, we can construct a groupoid \mathcal{G}_{E} using negative orbits so that the C^{*}-algebra $\mathcal{O}(E)$ is isomorphic to the C^{*}-algebra of the groupoid \mathcal{G}_{E}. This observation may help when we try to extend the construction in this section to the more general setting involving general groups.

References

[AEE] Abadie, B.; Eilers, S.; Exel, R. Morita equivalence for crossed products by Hilbert C^{*}-bimodules. Trans. Amer. Math. Soc. 350 (1998), no. 8, 30433054.
[BS] Bhat, B. V. R.; Skeide, M. Tensor product systems of Hilbert modules and dilations of completely positive semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 4, 519-575.
[BMS] Brown, L. G.; Mingo, J. A.; Shen, N.-T. Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules. Canad. J. Math. 46 (1994), no. 6, 1150-1174.
[DLRZ] Doplicher, S.; Longo, R.; Roberts, J. E.; Zsido, L. A remark on quantum group actions and nuclearity. Rev. Math. Phys. 14 (2002), no. 7-8, 787-796.
[DS] Dykema, K.; Shlyakhtenko, D. Exactness of Cuntz-Pimsner C^{*}-algebras. Proc. Edinburgh Math. Soc. 44 (2001), 425-444.
[E] Exel, R. Interactions. Preprint 2004, math.OA/0409267.
[F] Fowler, N. J. Discrete product systems of Hilbert bimodules. Pacific J. Math. 204 (2002), no. 2, 335-375.
[FR] Fowler, N. J.; Raeburn, I. The Toeplitz algebra of a Hilbert bimodule. Indiana Univ. Math. J. 48 (1999), no. 1, 155-181.
[H] Hirshberg, I. C*-algebras of Hilbert module product systems. J. Reine Angew. Math. 570 (2004), 131-142.
[JS] Jiang, X.; Su, H. On a simple unital projectionless C^{*}-algebra. Amer. J. Math. 121 (1999), no. 2, 359-413.
[KPW] Kajiwara, T.; Pinzari, C.; Watatani, Y. Ideal structure and simplicity of the C^{*}-algebras generated by Hilbert bimodules. J. Funct. Anal. 159 (1998), no. 2, 295-322.
[KW] Kajiwara, T.; Watatani, Y. C*-algebras associated with complex dynamical systems. Preprint 2003, math.OA/0309293.
[Ka1] Katsura, T. A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras I, fundamental results. Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287-4322.
[Ka2] Katsura, T. A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras II, examples. Preprint 2004, math.OA/0405268, to appear in Internat. J. Math.
[Ka3] Katsura, T. A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras III, ideal structures. Preprint 2004, math.OA/0408190.
[Ka4] Katsura, T. A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras IV, pure infiniteness. Preprint 2005.
[Ka5] Katsura, T. A construction of C^{*}-algebras from C^{*}-correspondences. Advances in Quantum Dynamics, 173-182, Contemp. Math., 335, Amer. Math. Soc., Providence, RI, 2003.
[Ka6] Katsura, T. On C^{*}-algebras associated with C^{*}-correspondences. J. Funct. Anal. 217 (2004), no. 2, 366-401.
[Ka7] Katsura, T. Ideal structure of C^{*}-algebras associated with C^{*} correspondences. Preprint 2003, math.OA/0309294.
[KP] Kumjian, A.; Pask, D. Higher rank graph C^{*}-algebras. New York J. Math. 6 (2000), 1-20.
[L] Lin, H. Classification of simple C*-algebras of tracial topological rank zero. Duke Math. J. 125 (2004), no. 1, 91-119.
[MT1] Muhly, P. S.; Tomforde, M. Adding tails to C^{*}-correspondences. Doc. Math. 9 (2004), 79-106.
[MT2] Muhly, P. S.; Tomforde, M. Topological Quivers. Preprint 2003, math.OA/0312109.
[M] Murphy, G. J. Crossed products of C^{*}-algebras by endomorphisms. Integral Equations Operator Theory 24 (1996), no. 3, 298-319.
[Pe] Pedersen, G. K. C^{*}-algebras and their automorphism groups. London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979.
[Pi] Pimsner, M. V. A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z. Free probability theory, 189-212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997.
[RSY] Raeburn, I.; Sims, A.; Yeend, T. The C^{*}-algebras of finitely aligned higherrank graphs. Preprint 2003, math.OA/0305370.
[Re] Renault, J. A groupoid approach to C^{*}-algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980.
[Ro] Rørdam, M. A simple C^{*}-algebra with a finite and an infinite projection. Preprint.
[RS] Rosenberg, J.; Schochet, C. The Kunneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55 (1987), no. 2, 431-474.
[Sc] Schweizer, J. Dilations of C^{*}-correspondences and the simplicity of CuntzPimsner algebras. J. Funct. Anal. 180 (2001), no. 2, 404-425.
[Sk] Skeide, M. Dilation theory and continuous tensor product systems of Hilbert modules. Quantum probability and infinite dimensional analysis, 215-242, QP-PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publishing, River Edge, NJ, 2003.
[St] Stacey, P. J. Crossed products of C^{*}-algebras by *-endomorphisms. J. Austral. Math. Soc. Ser. A 54 (1993), no. 2, 204-212.
[Z] Zettl, H. A characterization of ternary rings of operators. Adv. in Math. 48 (1983), no. 2, 117-143.

[^0]: ${ }^{\dagger}$ There are two types of crossed products，namely the reduced ones and the full ones．We do not go to the detail because we are only interested in the case $G=\mathbb{Z}$ where the two types of C^{*}－algebras coincide．

[^1]: ${ }^{\dagger}$ With our convention, we have $X_{\alpha} \otimes X_{\beta} \cong X_{\beta \circ \alpha}$.

[^2]: ${ }^{\dagger}$ Pimsner called it a Hilbert-bimodule, and he assumed that its left action is faithful.

