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Numerical Methods for Density Variation Fluid Flow Analysis

本田技術研究所 和光基礎技術研究センター 有馬敏幸 (Toshiyuki Arima)

Wako Research Center, Honda R&D Co., Ltd.

1 Introduction

Mathematical models which describe environmental fluid flow motions are discussed, and nu-

merical methods for environmental fluid flow analysis are treated, while Paying attention on the

grade of density change which is one of the most important factors of environmental fluids. In

this paper, the starting point is to present a statement of a complete system of detailed govern-

ing equations for fluid flows involving chemical reactions. Then, an approximate mathematical

model is formulated in terms of rate of density variation and stable numerical schemes for the

approximate model are proposed and verified in a numerical way.

This paper is organized as follows: In Section 2, a $\mathrm{c}\mathrm{o}$ mplete system of detailed governing equa-

tions for fluid flows involving chem ical reactions is presented. In Section 3, so-called Boussinesq

approximations are employed in the full Navier-Stokes equations to construct a mathematical

model describing fluid flow fields in the case in which the ratio of change in density to the change

in temperature is relatively small. A new numerical method is proposed that is based on an

iterative implicit time evolution and a high-accurate spatial discretization with TVD properties.

Numerical simulations of the fluid flow motions around two circular cylinders with ends have been

performed as specific fluid flow simulations around structures in environmental fluids by means

of our numerical methods.

In Section 4, the low-Mach number approximations are applied to the full Navier-Stokes

equations, so that we may construct another type of mathematical models to describe the fluid

flow fields in which large variation of density is caused by the large change in temperature.

Under the assumption that acoustic effects can be weak relative to advection effects, acoustic

effects can be removed from the governing equations. Since the model with low-Mach number

approximations includes a model for the incompressible flow and Boussinesq approximations as

portions of this model, it is applicable to various problems on environmental fluids with density

variation. The iterative implicit scheme proposed in Section 3 is employed for solving this model.

Our scheme is verified for test problems which are formulated for flows with large variation of

density due to large change in temperature which is caused by chemical reactions.

In Section 5 numerical schemes for solving fully compressible Navier-Stokes equations are

discussed, which describe the fluid flow fields in which density variation is caused by not only

change in temperature but also by variation of pressure. Although the acoustic effect can be

investigated through the full Navier-Stokes equations, classical numerical schemes seems to be

difficult to treat the flow fields in the case where the Mach number is less than 0.1, This difficulty

is caused by a disparity between the advection velocity and sound speed which correspond to the
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eigenvalues of the system. This lead us to stiffness problem for the system and hence the round-off
errors make the algebraic problem ill-conditioned under the low Mach number approximations.

A new numerical scheme is proposed to overcome this difficulty, in order to make it possible to

perform numerical analysis for low-speed flows up to high-speed flows. An important feature

of our schem $\mathrm{e}$ is that dependent variables of the governing equations maintain the conservative

variables through the preconditioning method to compress the eigenvalues of the system. Since
the conservative form are usually used in the numerical schemes for the compressible flows in order

to get the solutions including shock waves (discontinuities) , our method enables us to change the

code for the compressible case to a unified version.

2 Governing Equations

The starting point of our argum ent is to formulate the governing equations for the fluid phenomena

under consideration. In this section, a complete system of governing equations for fluid flows

involving chemical reactions are first presented.

2.1 Conservative form of equations for reacting flows

Equations describing chemically reactive flows with $\mathrm{N}$ participating species in conservative for-
mulation are stated as follows:. Mass Conservation for Chemical Species:

$\frac{\partial\rho Y_{i}}{\partial t}+\nabla$ . $(\rho Y_{i}v)=-\nabla\cdot$ $j_{i}+w_{i}$ $(\mathrm{i}=1,2, \ldots N)$ (1)

. Mass Conservation for Mixture Gases:

$\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho v)=0$ (2)

. Conservation of Momentum:

$\frac{\partial\rho v}{\partial t}+\nabla$ . ( $\rho v$ C&v)=-\nabla p+\nabla $\cdot\tau+\rho$ $\sum_{i}^{N}Y_{i}f_{i}$ (3)

. Conservation of Energy

$\rho\frac{\partial\rho e_{t}}{\partial t}+\nabla$ . $\{(\rho e_{t}+p)v\}=-\nabla\cdot q+\nabla\cdot(\tau\cdot v)+\rho\sum_{i}^{N}Y_{i}J_{i}\cdot v+\sum_{i}^{N}f_{i}$ . $j_{i}$ (4)

$e_{t}=h- \frac{p}{\rho}+\frac{1}{2}v\cdot v$ (5). Thermodynamic Equation of State:

$p=\rho RTM^{-1}$ , $M=( \sum_{i=1}^{N}Y_{i}/M_{i})-l$ , (6)
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where $\rho$ means the density, $v$ denotes the velocity vector, $p$ stands for thle pressure, $\tau$ represents
the viscous tensor, $f_{i}$ means the body force per unit mass of species $\mathrm{i}$ , $Y_{\iota}$ represents the mass
fraction of chemical species $\mathrm{i}$ , $j_{i}$ denotes the diffusive flux vector of species $\mathrm{i}$ , $w_{i}$ stands for the
mass production rate of species $\mathrm{i}$ , $e_{t}$ is the total energy, $q$ denotes the heat flux vector, $h$ represents
the enthalpy, $R$ is the universal gas constant, $T$ denotes the temperature, $M$ means the mean
molecular mass, and $M_{i}$ stands for the molecular mass of species $\mathrm{i}$ . The viscous stress tensor $\tau$ ,
the diffusive flux vector of species $j_{i}$ , and the heat flux vector $q$ will be given in the section of
” Constitutive equation”.

To be consistent with mass conservation, the species mass fractions, the diffusion velocities
and chemical sources must satisfy

$\sum_{i}^{N}Y_{i}=1$ , $0\leq Y_{f}\leq 1$ , $\sum_{i}^{N}j_{\iota}=0$ , $\sum_{i}^{N}w_{i}=0$ (7)

Note that summation of conservations equations for all species in (1) implies total mass comser-
vation, (2), so that one of those $N+1$ equations is redundant.

2.2 Constitutive equations

The viscous stress tensor diffusive flux vector and heat flux vector are modeled by means of the

following constitution equations:

. Viscous stress tensor

$\tau=\mu\{(\nabla v+(\nabla v)^{T})-\frac{2}{3}(\nabla\cdot v)I\}$ (8)

The viscous coefficient $\mu$ is obtained by semi-empirical formulae due to Wilke[ll] and modified

by Bird, et $\mathrm{a}1[1]$ .

. Diffusive flux vector of species

$j_{i}=\rho V_{i}Y_{i}$ (9)

where $V_{i}$ denotes the diffusion velocity of species $\mathrm{i}$ . In this paper a form of Fick’s law form

is employed to evaluate the diffusion velocities of the species in the associated mass-diffusion

processes by introducing a diffusion coefficient $D_{i}$ .

$V_{i}=-D_{i}Y_{i}^{-1}\nabla Y_{i}$ (10)

The diffusion coefficients $D_{i}$ are modeled in terms of the binary diffusion coefficient matrix $D_{ij}$

[1]. It turns out that the diffusive flux vector may be modeled as

$j_{\mathrm{t}}=-\rho D_{i}\nabla Y_{i}$ , (11)

. Thermal flux vector
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Dufour effect and thermal radiation are neglected in the present discussions. Hence we have

$q=- \lambda\nabla T+\sum_{i}^{N}h_{t}j_{i}$ (12)

where A denotes heat conductivity. The coefficient of heat conductivity of the mixture is obtained

through a combination averaging formula [1].

2,3 A model of Chemical reactions

The parameter $w_{i}$ in the governing equations represents the rate of mass production of species

2. In order to evaluate this, we need an appropriate model of chemical reactions. Elementary

chemical reactions are described as

$\sum_{i=1}^{N}\nu_{i}m_{i}\prime k_{f}\overline{\overline{k_{b}}}\sum_{i}^{N}\nu_{\dot{2}}^{J/}m_{i}$ , (13)

where $u_{i}^{\mathit{1}}\mathrm{s}$ are stoichiometric coefficients of reactions for educts, $\nu_{i}’\mathrm{s}$ are stoichiometric coefficients
of reactions for products, $m_{i}\mathrm{s}$ are the names of the species $\mathrm{i}$ , $kf$ stands for reaction rate of forward
reaction, and $k_{b}$ means a reaction rate for the backward reaction. The mass production rate $w_{i}$

for species $\mathrm{i}$ is computed through the following equation:

$w_{i}=M_{i} \sum_{k=1}^{N\tau}(\iota\nearrow-i,kIJi,k)\prime\prime/\dot{w}_{k}$ , (14)

where $M_{i}$ denotes the molecular mass of species $\mathrm{i}$ , $N_{\Gamma}$ means the total number of elementary

chemical reaction stages. The symbol $\dot{w}k$ denotes the progress rate of the k-th stage of the
elementary chemical reaction, and it is calculated as follows:

$\dot{w}_{k}=k_{f,k}\prod_{i}^{N}C_{i}^{\nu_{\dot{n},k}}’-k_{b,k}\prod_{i}^{N}C_{i}^{\nu_{i,k}}’/$ (15)

where $kf,k$ represents the reaction rate coefficient for forward reaction of the k-th stage of the

elem entary reaction, $k_{b,k}$ is the coefficient of reaction rate for backward reaction of the k-th stage
of the elementary reaction, and $C_{i}$ is the concentration of species $\mathrm{i}$ , that is defined as $C_{i}=Y_{\mathrm{i}}\rho/M_{i}$ .

The reaction rate coefficients $kf,k$ and $k_{b,k}$ for the k-th elementary reaction are given, respectively,
by the Arrhenius-law.

$kf,k$ $=Bf,kT^{a_{f},k}exp(- \frac{E_{f,k}}{RT})$ , (16)

$k_{b}\}k,$ $=Bb,kT^{a_{b},k}exp(- \frac{E_{b,k}}{RT})$ , (17)

where the parameters $Bf,k$ and $B_{b,k}$ are frequency factors, $\alpha f,k$ and $\alpha b,k$ are temperature indices,

and $Ef,k$ and $E_{b,k}$ are activation energies of the forward and backward reactions, respectively.
This law is empirically validated, while the constants are usually determined by experiments
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3 Numerical Simulations with Boussinesq Approximations

A numerical model of fluid motions is derived from the continuous model by applying the Boussi-

nesq approximation to the Navier-Stokes equations, in the form of fully implicit discretization in

time. For discretization of nonlinear convection terms, an upwind difference of the third-order

accuracy or a TVD scheme of the third-order accuracy is used to suppress the dispersion errors
that are caused by finite-difference approximation. The finite-difference schemes obtained as non-

linear algebraic equations are numerically solved by Newton-Raphson’s iteration method. The

results of numerical simulations for the fluid motions around two circular cylinders with ends are

exhibited in terms of environmental flfluid.

3.1 A mathematical model of environmental fluids

We apply the Boussinesq approximation to the Navier-Stokes system and formulate the following

system of Equations (18-20) as our mathem atical model for describing the motion of environmen-

tal fluid:
$\nabla\cdot v=0$ (18)

$\rho[\frac{\partial v}{\partial t}+(v\cdot\nabla)v]=-\nabla p+\mu\Delta v-\rho\beta(T-T_{0})g$ (19)

$\rho C_{p}[\frac{\partial T}{\partial t}+$ $(v\cdot\nabla)T]=\kappa\Delta T$ $+S_{c}$ (20)

Here the parameters $v$ , $\rho$ . $p$ , $\mu$ , $\beta$ , $g$ , $T$ and $C_{p}$ represent the velocity vector, density, pressure,

viscosity coefficient, rate of volume expansion, the acceleration of gravity, temperature and the

specific heat at constant pressure, respectively. Also, the coefficient $\kappa$ means the therm al con-

ductivity and $S_{c}$ stands for the sum of heat sources in the fluid. In this study, $\rho$ ) $\mu$ , $c_{p}$ , and

$\kappa$ are supposed to be fixed values that are specified at a state of hydrostatic equilibrium. Our

main objective here is to obtain numerical data describing the flow field around bodies in an

environmental fluid under consideration. For this purpose we impose the following boundary

conditions :

(B1) On the inflow boundary $\partial\Omega_{i}$ with outward normal vector $n_{i}=n_{i}(\hat{x})$ , we impose Dirichlet

boundary conditions for $v$ and $T$ and homogeneous Neumann boundary conditions for $p$ :

$v(\hat{x},t)=v_{\partial\Omega_{\mathrm{t}}}(t)$ , $T( \hat{x},t)=T_{\partial\Omega_{i\mathfrak{n}}}(t),\frac{p(\hat{x},t)}{\partial n_{l}}=0,\hat{x}\in\partial\Omega_{i}$ (21)

(B2) On the outflow boundary $\partial\Omega_{o}$ with outward normal vector $n_{o}=n_{o}(\hat{x})$ , we impose ho-

mogeneous Neumann boundary conditions for $v$ , $T$ and Dirichlet boundary conditions for

$p$:
$\frac{v(\hat{x},t)}{\partial n_{o}}=0$ , $\frac{T(\hat{xx},t)}{\partial n_{o}}=0$ , $p(\hat{x}, t)=p\partial\Omega_{o}(t)$ , $\hat{x}\in\partial\Omega_{o}$ (22)
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(B3) On the surface of each body standing in the fluid, $\Omega_{s}$ with outward normal vector $n_{s}=$

$n_{s}(\hat{x})$ , we impose the non-slip condition for $v$ and homogeneous Neumann boundary condi-

tions for $T$ . We also impose an inhomogeneous Neumann boundary conditions for $p$ which

is obtained from Equation (19) in the normal direction to the surface:

$v(\hat{x}, t)=0$ , $\frac{T(\hat{x},t)}{\partial n_{s}}=0$, $\frac{p(\hat{x},t)}{\partial n_{s}}=\mu(n_{s}\cdot\Delta v(\hat{x}, t))-\rho\beta(T(\hat{x}, t)-T_{0})(n_{s}. g)$ , $\hat{x}\in\partial\Omega_{s}$ (23)

It is a characteristic feature of this paper that a new numerical scheme for the continuous model

mentioned above is proposed in such a way that a fully implicit scheme is employed.

3.2 Numerical Methods

Since the governing equations under the Boussinesq approximation are of the forms similar to

the incompressible Navier-Stokes equations, the numerical methods which have been developed

for the incompressible Navier-Stokes equations, e.g. , MAC method (marker and cell method) [5]

may be applicable. In this paper, we apply the iterative method such that the MAC method is

rephrased in terms of fully implicit procedure.

3.2.1 A mathematical model of numerical fluids

Making discretization in time in Equations (18)-(20) by use of the Euler implicit method, we
obtain the following system of equations:

$\nabla$ . $v^{n+1}=0$ (24)

$\frac{v^{n+1}-v^{n}}{\Delta t}=-(v^{n+1}\cdot\nabla)v^{n+1}-\frac{1}{\rho}\nabla p^{n+1}+\frac{\mu}{\rho}\Delta v^{n+1}-\beta(T^{n+1}-T_{0})g$ (25)

$\frac{T^{n+1}-T^{n}}{\Delta t}=-$ $(v^{n+1}. \nabla)T^{n+1}+\frac{1}{\rho C_{p}}\kappa\Delta T^{n+1}+\frac{Sc}{C_{p}\rho}$ (26)

Substituting Equation (25) into Equation (24), Poisson’s equation for pressure is derived:

$\Delta p^{n+1}=-\rho[\nabla\cdot\{(v^{n+1}\cdot\nabla)v^{n+1}\}$ $- \frac{\nabla\cdot v^{n}}{\Delta t}]-\rho\beta\nabla\cdot(T^{n+1}g)$ . (27)

In what follows, we regard Equations (25), (26) and (27) as the governing equations for the motion
of numerical fluids. Our main objective here is to investigate the numerical solvability of this
basic model.

3.3 Iterative implicit scheme

Our mathematical models of the numerical fluid as expressed by Equations (25), (26) and (27)
are fully implicit in time and this implicit form guarantees numerical stability and robustness.
We adopt a procedure of constructing iterative numerical solutions that is not only much more
economical but also remains most of the stability and accuracy properties of the fully implicit
scheme. The iteration procedure employed in the present study is summarized as follows: In the
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(29)

following, the superscript $n$ refers to the value which are known from the previous time step, the
superscript $k$ refers to the iteration cycle between the solutions at time step $n$ and $n+1$ , the
superscript 0 is associated with an initial guess for the first iteration step $k=0$.

Stepl: Choose an in ferred initial data for computing the values $v^{n+1}$ , $p^{n+1}$ , and $T^{n+1}$ at the

next time step. The simplest choice is to use the solutions themselves at the current time step:

$v^{0}=v^{n}$ , $p^{0}=p^{n}$ , $T^{0}=T^{n}$

Step2: Poisson’s equation for the pressure (27) is solved by applying the successive over relaxation

(SOR) method to get the pressure at the current iteration step, say $k$ :

$\Delta p^{k}=-\rho[\nabla\cdot\{$ $(v^{k}. \nabla)v^{k}\}-\frac{\nabla\cdot v^{n}}{\Delta t}]-\rho\beta\nabla$ . $(T^{k}g)$ (28)

Step3: The following equation of the delta-form for $\delta v^{k}(=v^{k+1}-v^{k})$ is solved.

$[1+\Delta t$ ($v^{n}\cdot$
$\nabla-\frac{\mu}{\rho}\Delta$) $]\delta v^{k}=rh\mathrm{s}_{m}^{k}$ ,

where
$rhs_{m}^{k^{\wedge}}=-(v^{k}-v^{n})+ \Delta t[-(v^{k}\cdot\nabla)v^{k}-\frac{1}{\rho}\nabla p^{k}+\frac{\mu}{\rho}\Delta v^{k}-\beta(T^{k}-T_{0})g]$ . (30)

Step4: Compute the velocity at the next iteration step $k+1$ by

$v^{k+1}=v^{k}+\delta v^{k}$ . (31)

Step3: The following equation of the delta-form for $\delta T^{k}(=T^{k+1}-T^{k})$ is solved

$[1+\Delta t$ ($v^{k+1}$ .
$\nabla-\frac{\kappa}{C_{p}\rho}\Delta$) $]\delta T^{k}=rhs_{T}^{k}$ , (32)

where
$rhs_{T}^{k}=-(T^{k}-T^{n})+$ bt $[-(v^{k+1} \cdot\nabla)T^{k}+\frac{\kappa}{C_{p}\rho}\Delta T^{k}+\frac{Sc}{\rho C_{p}}]$ . (33)

Step6: Compute the temperature at the next iteration step $k$ $+1$ by

$T^{k+1}=T^{k}+\delta T^{k}$ . (34)

$\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}7$: Check the convergence of Newton’s iteration for the equations of the delta form for the

velocity and the temperature as follows:

$\sum_{\Omega}|v^{k+1}-v^{k}|<\epsilon_{v}$

and

$\sum_{\Omega}|T^{k+1}-T^{k}|<\epsilon_{T}$
.

where $\sum_{\Omega}$ means the summation over the whole computational domain, $\epsilon_{v}$ and $\epsilon\tau$ are small

values prescribed as admissible error bounds which also stand for radii of convergence for the
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respective inequalities. This completes one cycle of the iterative process. If more iterations are

required, the process should be continued from Step 2. In particular, experiences suggest that

only 2 or 3 iterations are enough to get desired approximate numerical solutions.

We find in this scheme that if $|v^{k+1}-v^{k}|arrow 0$ and $|T^{k+1}-T^{k}|arrow 0$ then $v^{k}=v^{k+1}=v^{n+1}$ ,

$T^{k}=T^{k+1}=T^{n+1}$ and $p^{k}=p^{n+1}$ , because Equations (29) and (32) converge to Equations (25)

and (26), respectively, for $\delta v^{k}=0$ and $\delta T^{k}=0$ ; and then pressure equation (28) converges to

Equation (27).

3.4 Spatial discretization

For simplicity, we consider the following time-dependent Cauchy problem in one space dimension

$\frac{\partial\phi}{\partial t}+v\frac{\partial\phi}{\partial x}=0$, $-\infty<x<\infty$ , t $\geq 0$ , (35)

$\phi(x,0)=\phi_{0}(x)$ .

Here $\phi$ : $\mathbb{R}\mathrm{x}$ $\mathbb{R}arrow \mathbb{R}$ means velocity. We find that the solution of this equation has a TVD
property because the solution of $\phi$ of Equation (36) is constant along curve $dx/dt=v$ , which is

known as the characteristics equation. This can be confirmed by differentiating $\phi(x, t)$ along the

curve to find the rate of change of $\phi$ along the characteristics:

$\frac{d}{dt}\phi(x(t), f)$ $= \frac{\partial}{\partial t}\phi(x(t), t)+\frac{\partial}{\partial x}\phi(x(t), t)x’(t)$

$=\phi_{t}+v\phi_{x}$

$=0$ . (36)

Therefore, it is possible to construct a $\mathrm{T}\mathrm{V}\mathrm{D}$ scheme by starting with Equation (36) Thus, we
consider the following equation similar to Equation (36).

$\frac{\partial\phi}{\partial t}+\frac{\partial(v\phi)}{\partial x}-\phi\frac{\partial_{lJ}}{\partial x}=0$. (37)

Since the form of the second term in the above equation is of the form of derivative of flux, we
incorporate a discretization with TVD property, that will be introduced next.

We discretize the x-t plane by choosing a mesh width $h\equiv\Delta x$ and a time step $k\equiv\Delta t$ , and
define the discrete mesh points $(x_{i}, t_{n})$ by

$xi=\mathrm{i}\Delta x$ , $\mathrm{i}=\ldots,$ -1, 0, 1, 2, $\ldots$

$t_{n}=\mathrm{n}\mathrm{A}\mathrm{t}$ , $n=0,1,2$ , ... (38)

It will also be useful to define

$xi+1/2=xi+ \frac{1}{2}\Delta x=(\mathrm{i}+\frac{1}{2})$ A$x$ . (38)
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For simplicity we take a uniform mesh, with $h$ and $k$ being constant. The finite difference methods

we here discuss provide approximations $u_{7}^{n}\in \mathrm{R}$ to solution $u(x_{i}\dot, t_{n})$ at the discrete grid points.

Here we discretize Equation (35) as follows:

$\frac{\phi_{i}^{n+1}-\phi_{i}^{n}}{\Delta t}=-\frac{1}{\Delta x}(\tilde{f_{i+\frac{1}{2}}}-\tilde{f_{i-\frac{1}{2}}})$ (40)

$\tilde{f}_{1\pm\frac{1}{2}}$ denotes a numerical flux function on the cell interface $x_{i+\frac{1}{2}}$
. This can be evaluated as the

sum of discretizations of the last term of Equation (37) and the discretized flux of the second

term by the Monotone Upstream Centered Schemes for Conservation Laws (MUSCL) method [9]

with minmod limiter function (see [3]). Since the last term can be discretized as,

$\phi\frac{\partial v}{\partial x}\Rightarrow[(a_{i+\frac{1}{2}}-a_{i-\frac{1}{2}})/\Delta x]\phi$ , (41)

with $a=\mathrm{t})^{n}$ , the total numerical flux can be evaluated as follows:

$\tilde{f_{i+\frac{1}{2}}}=-a_{i+\frac{1}{2}}\phi_{\iota}+f_{i\dashv\frac{1}{2}}^{(upw)}$

$+a_{i+\frac{1}{2}}^{+} \cdot\frac{1}{4}[(1+\kappa)\Phi^{+C}+(1i+\frac{1}{2}-\kappa)$ (Ij $?.+ \frac{1}{2}]+U$

$-a_{i+\frac{1}{2}}^{-}$
. $\frac{1}{4}[(1+\kappa 1_{l+\frac{1}{2}}^{\Phi^{-C}}+(]-\kappa)\Phi_{i+\frac{1}{2}}^{-U}]$

(42)

The first term of Equation (42) corresponds to the last term of Equation (37). The second term

of Equation (47), $f_{i+\frac{1}{2}}^{(upw)}$ corresponds to the first-order accurate upwind difference of the second

term of Equation (37) and the other terms are corrections to make the scheme of higher order

accuracy. These can be written as follows:

$f_{x+\frac{1}{2}}^{(upw)}=a_{f+\frac{1}{2}}^{+}\phi_{i}+a_{\mathrm{i}+\frac{1}{2}}^{-}\phi_{\iota+1}$ . $(43_{J}^{\backslash }$

Here

$a=v^{n}$ , $a^{\pm}=v^{\pm}= \frac{1}{2}(v^{n}\pm|v^{n}|)$ , (44)

and 4 is defined as follows:

$\Phi_{\mathrm{z}+\frac{1}{2}}^{+C}=m\mathrm{i}nmod[\phi_{i+1}-\phi_{i}, \beta(\phi_{i}-\phi_{i-1})]$

$\Phi^{+U}i+\frac{1}{2}=$ minmod $[\phi_{i}-\phi_{i-1}, \beta(\phi_{i+1}-\phi_{i})]$

$\Phi_{i+\frac{1}{2}}^{-C}=m\mathrm{i}nmod[\phi_{i+1}-\phi_{i_{1}}\beta(\phi_{i+2}-\phi_{i+1})]$

$\Phi^{-U}i+\frac{1}{2}=m\mathrm{i}nmod[\phi_{i+2}-\phi_{i+1}, \beta(\phi_{\mathrm{z}+1}-\phi_{i})]$ , (45)

here

minmod(x, $y$ ) $= \frac{1}{2}[sgn(x)+sgn(y)]$ $\min(|x|, |y|)$ , (46)
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and the parameter $\beta$ is called a compression parameter in the paper of Chakravarthy [3] and

must satisfy $\beta\geq 1$ , and its upper bound is determined by the $\mathrm{T}\mathrm{V}\mathrm{D}$ condition. The parameter

$\kappa$ is one for discretization accuracy, e.g., the second-order accuracy for $\kappa$ $=-1$ and $\kappa=1/3$ for

the third-order accuracy, we have $-1\leq\kappa$ $\leq 1$ . The numerical flux $\tilde{f}_{i-\frac{1}{2}}$ is obtained by replacing

subscript $i+ \frac{1}{2}$ by $\mathrm{i}-\frac{1}{2}$ . In this replacement of subscripts, we should note that the first term with

the replaced subscript is not $-a_{i-\frac{1}{2}}\phi_{i-1}$ but $-a_{i-\frac{1}{2}}\phi_{i}$ . Using $a=a^{-\vdash}+a^{-}$ , Equation (47) can be

rewritten as follows:

$\overline{f}_{i+\frac{1}{2}}=a_{i+\frac{1}{2}}^{-}(\phi_{i+1}-\phi_{i})$

$+a_{i+\frac{1}{2}}^{+} \cdot\frac{1}{4}[(1+\kappa)\Phi^{+C}i+\frac{1}{2}$ I $(1-\kappa)\Phi_{i+\frac{1}{2}}^{+U}]$

$-a_{i+\frac{1}{2}}^{-}$

. $\frac{1}{4}[(1+\kappa)\Phi_{i+\frac{1}{2}}^{-C}+(1-\kappa)\Phi_{i+\frac{1}{2}}^{-U}]$

(47)

When this schem $\mathrm{e}$ is written as

$u_{\dot{\mathrm{z}}}^{n+1}=u_{i}^{n}-C_{i-\frac{1}{2}}(u_{i}-u_{i-1})+D_{i+\frac{1}{2}}(u_{i+1}-u_{i})$ , (48)

the conditions for this scheme to be a Total Variation Diminishing (TVD) axe:

$c_{i+_{\overline{1}}2}\geq 0$ , $D_{x+\frac{1}{2}}\geq 0$ , $C_{i+\frac{1}{2}}+D_{i+\frac{1}{2}}\leq 1$ . (48)

From the conditions $C_{i+_{\overline{1}}2}\geq 0$ and $D_{i+\frac{1}{2}}\geq 0$ , we obtain

$(1 \leq)\beta\leq\frac{3-\kappa}{1-\kappa}$ . (50)

From the conditions $C_{i+\frac{1}{2}}+D_{i+\frac{1}{2}}\leq 1$ , we obtain

$\Delta t\leq\frac{\Delta x}{|a_{i+\frac{1}{2}}|+\frac{1}{4}(a_{i+\frac{3}{2}}^{+}-a_{i-\frac{1}{2}}^{+})(\beta(1+\kappa)+1-\kappa)}$
(51)

Under these conditions, the scheme becomes a Total Variation Diminishing (TVD) scheme [6] for
the discretization of Equation(40). When the advection speed is constant ($a=$ const) $)$ , it becom es

$\Delta t\leq\frac{4}{5-\kappa+\beta(1+\kappa)}$ . $\frac{\Delta x}{|a|}$ . (52)

This schem $\mathrm{e}$ is of the third-order accuracy for the values $\kappa=\frac{1}{3}$ and $\beta=4$ .

We can directly incorporate this formula with the convective terms on the right-hand side
of Equations (30) and (33). Thus, we can easily employ the TVD discretization in our iterative
implicit scheme
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3.5 Application to an Environmental Fluid

3.5.1 Settings of numerical simulation

We here discuss flow analysis around cylinders with bottom ends standing in an environmental
fluid. In the numerical simulations we have performed, flow analysis was made for a typical fluid
flow. Our setting may be outlined as follows: We consider a parallelepiped region $\mathrm{R}$ in $\mathbb{R}^{3}$ and

assume that one side is the inflow boundary and the opposite side is the outflow boundary. We

then insert two circular cylinders with radius IR and length $20\mathrm{R}$ both of which have bottom
ends in the region $\mathrm{R}$ in such a way that they are arranged in a row at an interval of 1OR and

perpendicular to the top side of $\mathrm{R}$ , as illustrated in Fig. 1. For convenience, we call the cylinder

facing the inflow boundary the front cylinder and the cylinder facing the outflow boundary the

rear cylinder. In this setting we performed numerical simulations and made detailed analysis

around the two cylinders parallel to each other. Numerical conditions are put in the following

(a) Settings of computational domain (b) $3\mathrm{D}$ view of computational domain

Figure 1: Setting of numerical simulations

way: The Reynolds number $(=\rho|v|2R/\mu)$ in accordance with the main flow velocity is assumed

to be $Re$ $=2500$ and the temperature distribution is assumed to follow a linear distribution such

that $T=300\mathrm{A}$: on the top of the front cylinder and $T=290K$ under the bottom end.

3.5.2 Results of numerical simulations

Computation is started with a uniform initial data artd qualitative features are investigated by

analyzing the numerical results of the simulation at a time step at which the flow field is well

developed and reaches a quasi-stationary state. Figure 2 depicts the velocity vector field and

contours of the pressure on the cross section containing the axes of the two cylinders. In the

velocity vector field upward flows along the back of the front cylinder are observed. These upward

flows take place when the horizontal uniform flow runs around the bottom end and are remarkable

in a neighborhood of the bottom end and even reach the top part of the cylinder. Similar upward

flows are also observed behind the rear cylinder. These flows are formed in such a way that they

seem to roll the bottom part up and go up towards the top part. Moreover, such upward flows

are observed in a wide range behind the rear cylinder since there are no obstacles. In the figur
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(a) Velocity vector (b) Pressure contour

Figure 2: Com putational results on the x-z plane across circular cylinders

of contours of the pressure it is observed that a vertical sequence of separate regions like cells of

negative pressure are form ed. This is due to the presence of nonstationary vortices of Karman-

type. On the other hand, a vertical sequence of regions of positive pressure are observed in the

front of the rear cylinder. This phenomenon suggests that the nonstationary vortices generated

by thle front cylinder interact the regions of stagnation existing in the front of the rear cylinder

and deteriorate the stagnation pressure. In Fig. 3 the stream lines and trajectories of particles

‘

$l\ddagger$

$\mathrm{t}$

$j\mathrm{t}$

:

(a) streamlines (b) Particle trajectories

Figure 3: Upward flow motions observed behind two circular cylinders

in the fluid are depicted. ’bajectories of particles are drawn in the following way: We release the
particles from the back of each cylinder and $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the trajectories forward and backward in tim $\mathrm{e}$

until the particles reach the boundaries of the computational domain and those of the bodies
in the fluid. It is seen from Fig. $3(\mathrm{a})$ that upward flows behind the cylinders are rolling up
towards the top. Furthermore, the motion of longitudinal vortices around the bottom sides can
be observed as inferred from the $\mathrm{i}\mathrm{s}\mathrm{o}$-surfaces of vorticity. Figure $3(\mathrm{b})$ is obtained by arranging
particles on the same trajectories as in Fig. $3(\mathrm{a})$ at regular time intervals. From this it is seen
that the particle distribution represents how long a particle stay in the flow, and that particles
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are concentrated in the back of the front cylinder. These results of numerical simulations nlay

1 ave applications to various environmental problems. It is then expected that new environmental

restoration $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{o}1o\mathrm{g}\}’$ will be developed by $\mathrm{a}\mathrm{p}\mathrm{p}1\}’\mathrm{i}\mathrm{n}\mathrm{g}$ the results of numerical simulations for

environmental fluids.

4 Numerical Simulations with Low Mach Number Approxima-

tions

A mathematical model of environmental fluid is presented to describe fluid flow motions with large

density variations. Moremover the associated numerical methods are discussed. The model of

environmental fluid is formulated as a unsteady low-Mach number flow based on the compressible

Navier-Stokes equations For low-Mach number flows, the acoustic effects are assumed to be

weak relative to the advection effects. Under this assumption, detailed acoustic effects can be

removed from governing equations. The low-Mach number formulation thus enables numerical

flow analysis with a projection methodology that uses high-order accurate upwind difference of

the convection terms with a $\mathrm{t}\mathrm{i}_{\mathrm{I}\mathrm{I}1}\mathrm{e}$ step restricted solely by an advection $\mathrm{C}_{011}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}- \mathrm{F}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{s}$-Lewy

(CFL) condition. The algorithm presented here is based on an iterative implicit time evolution

of second order accuracy and a higll-accruate spatial discretization with TVD properties for

unsteady low-Mach number flow It is seen fro $\mathrm{m}$ the results on the verification for test cases of

flows with a wide ran ge of density variations that our numerical method is validated.

4.1 Navier-Stokes equations for low Mach numbers

For the Navier-Stokes equations for reactive flows such that density varies $\mathrm{i}_{11}$ space due to spatial

gradients of temperature and mean molecular mass, a similar low-Mach-mimber approximation

can be employed in order to obtain a well-conditioned system. According to Majda [7], the

pressure $p$ is split into two parts,

$p(x. t)=P_{th}(\mathrm{f})$ $+Phyd(X_{\backslash }t)$ , (53)

where the thermodynamic part $P_{th}$ is constant in space and does not appear in the momentum

equation, and the hydrodynamic part Phyd is neglected in the gas law. In the low-Mac,h-nll1rlber

approximation, the terms describing work due to viscous stress, $\tau$ : $\nabla v$ , and hydrodynamic

pressure in the equation for temperature can be neglected. In this study, only gravitation is

considered as the external force $f$ . Since hydrodynamic pressure Phyd take several magnitudes

smaller than $P_{th}$ , the assumption that the hydrodynamic pressure can be neglected in both

equation for temperature and the gas law is in fact appropriate. As a $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}1\mathrm{t}_{\dot{\mathit{1}}}$ the Navier-Stokes

equations for reacting flow are formulated for low-Mach-number approximation in the following

way:. Mass conservation of specie$\mathrm{s}$
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$\frac{\partial\rho Y_{i}}{\partial t}+\nabla\cdot$ $(\rho Y_{i}v)=\nabla$ . $(\rho D_{i}\nabla Y_{\mathrm{z}}.)+w_{i}$ $(\mathrm{i}=1,2\ldots, N)$ (54)

. Mass conservation

$\frac{\partial\rho}{\partial t}+\nabla$ . $(pv)=0$ (55)

. Momentum conservation

$\frac{\partial\rho v}{\partial t}+\nabla\cdot(\rho v\otimes v)$ $=-\nabla p_{hyd}+\nabla$ . $\tau+\rho g$ (56)

. Energy equation

$\rho Cp$ ( $\frac{\partial T}{\partial t}+v\cdot$ $\nabla T)=\frac{\partial P_{th}}{\partial t}+\nabla\cdot$ $(\lambda\nabla T)$ $+ \rho(\sum_{i}^{N}CpiDi\nabla Y_{l})\cdot$ $\nabla T-\sum_{i}^{N}h_{l}wi$ (57)

. The rmal state of equation

$P_{th}= \rho\frac{RT}{\Lambda I}=\rho RT\sum_{i=1}^{N}\frac{Y_{i}}{M_{i}}$ (58)

Here we consider the case where $\Omega$ is an open domain, The thermodynamic pressure remains
constant in both time and space, independently of the assumptions imposed,

$P_{th}\equiv$ const. (59)

We then can use the iterative implict scheme to solve numerically the system of these equations
in the similar way described as tlle numerical method for the Boussinesq approximation in the
previous section.

4.2 Numerical results

In order to verify the codes, computation of the prem ixed combustion of hydrogen and bromine
was performed. This problem $1_{1}\mathrm{a}\mathrm{s}$ been investigated by Spalding and Stephenson [8] in which the
following four-stage elementary reactions are taken into account:

(1) $Br2+Mrightarrow 2Br+M$

(2) $H_{2}+M\infty 2H+M$

(3) $Br+H_{2}rightarrow HBr+H$

(4) $H+Br2rightarrow HBr+Br$

The schematic of the computational model is shown 1n Fig. 4.
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Figure 4: Schematic model of laminar fla me propagation of combustion of hydrogen and brom ime

4.2.1 Calculation condition

Tl$\mathrm{z}\mathrm{e}$ reaction rate constant for the i-th stage, $k_{i}$ . is computed by means of Arrhenius’ law, as

follows:
$k_{i}=B_{i}T’\prime exp$ $( \frac{-E_{i}}{RT})$ $[(mol/m^{3})^{1-n}s^{-1}]$ , (60)

where $B_{i}$ is the frequency factor $[(mol/m^{3})^{1-n}K^{-\alpha}’ s^{-1}]$ , $E_{i}$ means the activation energy $[J/mol]$

$\alpha_{i}$ denotes the temperature dependent parameter. $T$ stands for the absolute temperature $[K]$ , $R$

represents the universal gas constant $[J/mol. K]=8.314[J/(molK)]$ . and $7l$ denotes the reaction

index $n=a+b$. The Arrhenius paran eters used in this study are shown in Table 1 below.

The material properties for chemical species are calculated through the following temperature

Table 1: Chemical reaction parameters

dependent formula.

Diffusion coefficient D:
$D=D_{0}( \frac{T}{T_{ref}})^{167}$ (61)

Thermal conductivity $\lambda$ :
$\lambda=\lambda_{0}(\frac{T}{T_{ref}})^{1167}$ (62)
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where $T_{rcf}=323[K]$ , the parameter Do in the equation of the diffusion coeffiffifficient and parameter
$\lambda \mathrm{c}$ in the equation of the thermal conductivity are listed in Table 2 below. The same value of $c_{p}$ is

used for all species as in the paper by Spalding and Stephenson [8], $\mathrm{i}.\mathrm{e}.$ , $C_{p}=530.86[J/(k^{\wedge}gK)]$ .

Species Molecular Mass[kg/mol] $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{y}|J/\tau n\mathrm{o}l]$ $D_{0}$ $[7\gamma t^{2}/s]$ $\lambda_{0}$ $[ll’/mK]$

$H_{2}$ $2.016\cross 10^{-3}$ 0.0 1.01 $\mathrm{x}$
$10^{-5}$ 3.34 $\mathrm{x}$

$10^{-2}$

$Br2$ 159.8 $\mathrm{x}$
$10^{-3}$ 3.09 $\mathrm{x}$

$10^{4}$ 1.01 $\cross 10^{-5}$ 334 $\mathrm{x}$
$10^{-2}$

$HBr$ 80 $908\cross 10^{-3}$ -366 $\mathrm{x}$
$10^{4}$ 1.01 $\mathrm{X}$

$10^{-5}$ 3.34 $\mathrm{x}$ $10$
$2$

$H$ 1.008 $\mathrm{x}$
$10^{- 3}$ 2.18 $\mathrm{x}$

$10^{\mathrm{S}}$ $1.01\cross 10^{-5}$ 3 $34\cross 10^{-2}$

$Br$ $79.90$ $\mathrm{x}$
$10^{-3}$ 1.12 $\mathrm{x}$

$10^{5}$ $1.01\cross 10^{-5}$ $3.34\cross 10^{-2}$

Table 2: Properties of species

4.2.2 Initial and boundary conditions

As initial conditions, the velocity is set to be zero $(u=0[rn/s])$ , the temperature is set to be

49.85 $C_{\backslash }$ the pressure is set to be 1 $\mathrm{x}$ $10^{r_{\mathrm{J}}}\backslash [Pa]$ , the mole fraction of bromine is set to be 0.4
$(X_{B\tau_{2}}=0.4)$ , and the mole fraction of hydrogen is set to be 0.6 $(XH_{2}=0.6)$ in the whole

computational domain. More precisely, the following boundary conditions are used:

On the inlet boundary:

$u=$ 0.244 $[m/s]$ , $T=49.85$ $[^{\mathrm{o}}C]$ , $p_{n}=0$ ,

$X_{Br_{2}}=0.4$ , $X_{H_{2}}=0.6$ , $X_{HBrn}=0$ , $X_{Hn}=0$ , $X_{Brn}=0$ .

On the outlet boundary:

$u_{n}=0$ , $T_{n}=0$ , $p=1\mathrm{x}$ $10^{5}[Pa]$ ,

$X_{Br_{2n}}=0$ , $X_{H_{2n}}=0$ , $X_{HBrn}=0$ , $X_{Hn}=0$ , $X_{Brn}=0$ .

Here subscript ”
$n\backslash$

’ denotes the derivative in the normal direction to the boundary.

4.2.3 Computational results

At the beginning of computation, heat source is given nearby outlet as follows.

$S(x, 0)=2.5$ $\}(10^{10}[W/m^{3}]$ $x\in[0.75 \rangle\langle 10_{2}^{-4}1\mathrm{x}10^{-4}][m]$ (63)

As time goes by, the flame surface has propagated tow ard the center of the computational domain.
When the flame reached to the center, the heat source has been removed. After then, the
flame propagation has stopped and kept the position. The computation has been made until
the temperature and species concentrations reached the steady state. The computed species
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concentrations and temperature are shown in Fig. 5. From the right boundary, unburnt gases

come into the computational dom $\mathrm{a}\mathrm{i}\mathrm{n}$ , and the flame front is formed around the center of domain.

In order that gases come from the inlet boundary with the velocity of 0.244 $[m/s]$ . the flflame front

moves with the relative velocity to the co ming gases. Since the mainstream velocity of 0.244 $[m/s]$

is equal to the laminar fla me propagation speed on this combustion, the flame propagation stops

around center of the domain after the removem ent of the heat source. It is seen that the radical

species, $H$ and $Br$ have the peak values just behind flame front surface. The results taken from

Spalding and Stephenson [8] is also shown in Fig. 6. Our result is in good agreem ent with that of

Spalding and Stephenson. Thus, it is confirmed that the results obtained through our numerical

scheme are reasonable.

$\mathrm{F}\mathrm{i}\mathrm{g}\iota \mathrm{l}\mathrm{r}\mathrm{e}5$ :Profiles of C0l1lI)utati01lal re- Figure 6: Results cited from Spalding
suits of concentration and temperature and Stephenson [8]
of the species

5 Numerical Simulations with The Aid ofPreconditioning Method

It is known that the application of a known numerical method for the compressible Navier-Stokes

equations such as Beaxn-Warm ing method [2] to low-speed $\mathrm{f}\mathrm{l}\mathrm{f}\mathrm{l}0\iota \mathrm{v}\mathrm{s}$ does not necessarily provide us

with satisfactory results regarding the convergence. This fact implies that numerical simulations

become insufficient and the associated computational results turn out to be inaccurate. The

numerical difficulties are caused by the circumstances that there are two types of characteristic

velocities in the compressible Navier-Stokes system, the convective and sound speeds. Their

ratios become large and the so-called stiffness of the system may occur due to the disparity of

eigenvalues of the system. In order to overcom $\mathrm{e}$ this difficulty a preconditioning method is applied

to a conventional numerical computation scheme for the compressible Navier-Stoeks equations.

The implementation process proposed here have a feature that the dependent variables remain

to be unknown conservation variables. Our simulation code is examined through computation of
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lid-driven cavity flows at low-Mach numbers, and supersonic channel flows. For Mach $\mathrm{n}$ umbers
below 0.2, the rate of convergence and accuracy of the solver are significantly improved compared

to the original compressible-flow solvers. Thus the present approach is useful for the computation

of fluid flows for a wide range of Mach numbers.

5.1 Governing Equations

As the governing equations in this study, we employ the two-dimensional Navier-Stokes equa-

tions which is written by means of the conservative quantities as the dependent variables in a
conservation form. Using a domain $\mathrm{G}\subseteq \mathbb{R}^{2}$ . we may present a normalized form in a generalized

curvilinear coordinate system in the following way:

$\frac{\partial \mathrm{Q}}{\partial t}+\frac{\partial \mathrm{E}}{\partial\xi}+\frac{\partial \mathrm{F}}{\partial\eta}=\frac{1}{Re},$ $[ \frac{\partial \mathrm{R}}{\partial\xi}+\frac{\partial \mathrm{S}}{\partial\eta}]$ in Gx $\mathbb{R}_{0}^{+}$ . (64)

Here $t\in \mathbb{R}_{0}^{+}$ means time, $\mathrm{Q}$ stands for the vector of conservative dependent variables, and $\mathrm{E}$ and
$\mathrm{F}$ represent the convective flux vectors, respectively. $\mathrm{R}$ and $\mathrm{S}$ are the viscous flux vectors, and 4
and $\eta$ are the streamwise and normal generalized coordinates, respectively. The constant $Re$ is
the reference Reynolds number, that is specified later. The vectors Q. $\mathrm{E}$ , $\mathrm{F}$ , R. and $\mathrm{S}$ are defined
as follows:

$\mathrm{Q}=\frac{1}{J}[\rho, \rho u.\rho v, e]^{t}$ . (65)

$\mathrm{E}=\frac{1}{J}\{$

$\rho U_{\xi}$

$\rho uU_{\xi}+\xi_{x}p$

$\rho vU_{\xi}+\xi_{y}p$

$(e +p)-\xi_{t}p$

’
$\mathrm{F}=\frac{1}{J}\ovalbox{\tt\small REJECT}_{(e+p)-\eta_{t}p}\rho uU_{\eta}+\eta_{x}p\ovalbox{\tt\small REJECT}\rho vU_{\eta}+\eta_{y}p\rho U_{\eta}$

) (66)

$\mathrm{R}=\frac{1}{J}\{$

0
$\xi_{x}\tau_{xx}+\xi_{y}\tau_{xy}$

$\xi_{x}\tau_{xy}+\xi_{y}\tau_{yy}$

$\xi_{x}\beta_{x}+\xi_{y}\beta_{y}$

, $\mathrm{S}=\frac{1}{J}\{$

0
$\eta_{x}\tau_{xx}+\eta_{y}\tau_{x_{2/}}$

$\eta_{x}\tau_{x}+\int\eta_{y}?\tau_{yy}$

$\eta_{x}\beta_{x}+\eta_{y}\beta_{y}$

(67)

Here $J$ represents the Jacobian of coordinate transform ation, $\rho$ means the density, $u$ and $v$ are
the x- and $\mathrm{y}$-component of the velocity vector, respectively. The parameter $e$ is the total energy
per unit volume, $U_{\xi}$ and $U_{\eta}$ are the components of the contravariant velocity vector with respect
to $\xi$ and $\eta$ directions, respectively, which are written as

$U\xi=u\xi x+v\xi_{y}$ , $U_{\eta}=u\eta_{x}+v\eta_{y}$ . (68)

The parameter $p$ is the pressure written as

$p=( \gamma-1)\{e-\frac{1}{2}\rho(u^{2}+v^{2})\}$ (69)
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for perfect gases and $\tau_{xx}$ , $\mathrm{r}\mathrm{x}\mathrm{y}$ , $\tau_{yy}$ are components of the viscous stress tensor expressed by Eqs.
(70)-(72). The parameters $\beta_{x}$ and $\beta_{y}$ are defined by Eqs. (73) and (74), respectively.

$\tau_{xx}$ $=$ $2 \mu\frac{\partial u}{\partial y}-\frac{2}{3}\mu(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y})$ (70)

$\tau_{xy}$ $=$ $\mu(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y})$ (71)

$\tau_{yy}$ $=$ $2 \mu\frac{\partial v}{\partial y}-\frac{2}{3}\mu(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial\tau/})$ (72)

$\beta_{x}$ $=$ $u \tau_{xx}+v\tau_{xy}+\frac{\mu/Pr}{\gamma-1}\frac{\partial c^{2}}{\partial x}$ (73)

$\beta_{y}$ $=$ $u \tau_{xy}+v\tau_{yy}+\frac{\mu/Pr}{\gamma-1}\frac{\partial c^{2}}{\partial y}$ (74)

Moreover, $\gamma$ denotes the ratio of specific heat, $c$ means the speed of sound, and $Pr$ is the Prandtl

number. For perfect gases, $\gamma=1.4$ , $c^{2}=\gamma p/\rho$ and $Pr=0.71$ . Since the equations are nondimen-
sionalized using values for the freestream conditions, i.e., the reference pressure $p_{\infty}$ , the reference

density $\rho_{\infty}$ . the reference ternperature $T_{\infty}$ , the reference velocity $c_{x}/\sqrt{\gamma}$, the reference viscosity

$\mu_{\infty}$ , and the reference Reynolds number $Re$ is defined as

$Re$ $= \frac{\rho_{\infty}c_{\infty}L}{\mu\sqrt{\gamma}}$ . (75)

It should be noted that the relationship between the frees tream Reynolds number $Re_{\infty}$ and the

reference Reynolds number $Re$ is given by

$Re_{\infty}= \frac{\rho_{\infty}u_{\infty}L}{\mu_{\infty}}=Re\Lambda I_{\infty}\sqrt{\gamma}$, (76)

where $M_{\infty}$ is the freestream Mach number which is defined by $\Lambda f_{\infty}$ $=\uparrow l\infty/c_{\infty}$ .

5.2 Baseline Method without Preconditioning

Before introducing a preconditioning method. a numerical method for compressible flows in terms

of implicit approxim ate factorization schemle [2] are briefly reviewed. We hereafter call this

conventional numerical scheme a baseline method. Applying the implicit Euler time-m arching

method to Eq. (64) gives

$\mathrm{Q}^{n+1}-\mathrm{Q}^{n}=-\Delta t[\frac{\partial \mathrm{E}(\mathrm{Q}^{n+1})}{\partial\xi}+\frac{\partial \mathrm{F}(\mathrm{Q}^{n+1})}{\partial\eta}-Re^{-1}\{\frac{\partial \mathrm{R}(\mathrm{Q}^{n+1})}{\partial\xi}+\frac{\partial \mathrm{S}(\mathrm{Q}^{n+1})}{\partial\eta}\}]$ . (77)

where $\Delta t$ represents a time step. The flux vectors are linearized using truncated Taylor-series

expansions:

$\mathrm{E}(\mathrm{Q}^{n+1})=\mathrm{E}(\mathrm{Q}^{n})+\mathrm{A}^{n}(\mathrm{Q}^{n+1}-\mathrm{Q}^{n})+O[(\Delta t)^{2}]$,

$\mathrm{F}(\mathrm{Q}^{n+1})=\mathrm{F}(\mathrm{Q}^{n})+\mathrm{B}^{n}(\mathrm{Q}^{n+1}-\mathrm{Q}^{n})+O[(\Delta t)^{2}]$,

$\mathrm{R}(\mathrm{Q}^{n+1})=\mathrm{E}(\mathrm{Q}^{n})+\mathrm{K}_{\xi}^{n}(\mathrm{Q}^{n+1}-\mathrm{Q}^{n})+O[(\Delta t)^{2}]$ ,

$\mathrm{S}(\mathrm{Q}^{n+1})=\mathrm{F}(\mathrm{Q}^{n})+\mathrm{K}_{\eta}^{n}(\mathrm{Q}^{n\dashv 1}-\mathrm{Q}^{n})+O[(\Delta t)^{2}]$ , (78)
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(83)

where A and $\mathrm{B}$ are inviscid Jacobian matrices in the 4 and $\eta$ directions which are given by

$\mathrm{A}^{n}=(\frac{\partial \mathrm{E}(\mathrm{Q}^{n})}{\partial \mathrm{Q}^{\mathrm{n}}})$ , $\mathrm{B}^{n}=(\frac{\partial \mathrm{F}(\mathrm{Q}^{n})}{\partial \mathrm{Q}^{\mathrm{n}}})$ . (79)

respectively. Also, $\mathrm{K}\xi$ and $\mathrm{K}_{\eta}$ are viscous Jacobian matrices in the 4 and $\eta$ directions which are

given by

$\mathrm{K}_{\xi}^{n}=(\frac{\partial \mathrm{R}(\mathrm{Q}^{\eta})}{\partial \mathrm{Q}^{\mathrm{n}}})\}$ $\mathrm{K}_{\eta}^{n}=(\frac{\partial \mathrm{S}(\mathrm{Q}^{n})}{\partial \mathrm{Q}^{\mathrm{n}}})$ , (S0)

respectively. Substituting Eq. (78) and into Eq. (77), we obtain

$[ \mathrm{I}+\Delta t\frac{\partial \mathrm{A}^{n}}{\partial\xi}+\triangle t\frac{\partial \mathrm{B}^{n}}{\partial\eta}-\triangle t\frac{1}{Re}\frac{\partial \mathrm{K}_{\xi}^{n}}{\partial\xi}-lISt\frac{1}{Re}\frac{\partial \mathrm{K}_{\eta}^{n}}{\partial\eta}]\triangle \mathrm{Q}^{n}=\mathrm{R}\mathrm{H}\mathrm{S}^{n}$. (81)

where
$\triangle \mathrm{Q}^{n}=\mathrm{Q}^{n+1}-\mathrm{Q}^{n}$ . (S2)

and
RHS $=- \Delta t[\frac{\partial \mathrm{E}(\mathrm{Q}^{n})}{\partial\xi}+\frac{\partial \mathrm{F}(\mathrm{Q}^{n})}{\partial\eta}-Re^{-1}\{\frac{\partial \mathrm{R}(\mathrm{Q}^{n})}{\partial\xi}+\frac{\partial \mathrm{S}(\mathrm{Q}^{n})}{\partial_{7f}}\}]$ .

Here, I means the unit matrix in the space $\mathbb{R}^{4}\mathrm{x}\mathbb{R}^{4}$ . This difference formula is of the so-called

delta form, This form has an advantage of yielding steady-state solutions (independent of the

time step) for problems that possess steady-state solutions. APPlying an implicit approximate

factored (IAF) scheme due to Beam and Warming [2] and appropriate spatial discretization to
Eq. (81), we obtain

$[\mathrm{I}+\triangle t\delta\xi \mathrm{A}^{n}-\triangle tRe^{-1}\delta\xi \mathrm{K}\xi^{n}][\mathrm{I}+\triangle t\delta_{\eta}\mathrm{B}^{n}-\triangle tRe^{-1}\delta_{\eta}\mathrm{K}_{\eta}^{r1}]\triangle \mathrm{Q}^{71}=\mathrm{r}\mathrm{h}\mathrm{s}^{7\mathit{1}}$, (84)

where

rhsn $=-\triangle t[\delta\xi \mathrm{E}(\mathrm{Q}^{n})+\delta_{\eta}\mathrm{F}(\mathrm{Q}^{n})-Re^{-1}\{\delta\xi \mathrm{R}(_{\backslash }\mathrm{Q}^{n})+\delta_{\eta}\mathrm{S}(\mathrm{Q}^{n})\}]$ . (85)

Here, the symbol $\delta$ denotes the operator for spatial discretization. The application of the three-
point finite difference scheme to the operator for spatial discretization of Eq. (84) gives a4 $\rangle\langle 4$

bock tridiagonal matrix for each factor on the left-hand side of the equatiort Therefore, we can
solve $\triangle \mathrm{Q}^{n}$ by applying the inverse matrices of the 4 $\mathrm{x}$ $4$-block tridiagonal matrix in the 4 and $\eta$

directions. Thus, the solution $\mathrm{Q}^{n+1}$ is obtained from $\mathrm{Q}^{n+1}=\mathrm{Q}^{r1}+\triangle \mathrm{Q}^{n}$ .

5.3 Local Preconditioning

The eigenvalues of the inviscid Jacobian matrices A and $\mathrm{B}$ are $U_{\xi}$ , $U_{\xi}$ , $U\xi\pm_{\mathrm{C}}\sqrt{\xi_{x^{2}}+\xi_{y}^{2}}$ and $U_{\eta}$ ,

$U_{\eta}$ , $U_{\eta}\pm c\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}$ . respectively. Since the flow asymptotically approaches an incom pressible
flow as $carrow\infty$ , these eigenvalues are of widely differing magnitudes and then the system becomes
stiff. Hence the local preconditioning matrix $\Gamma$ is introduced as follows:

$\Gamma\frac{\partial \mathrm{Q}}{\partial t}+\frac{\partial \mathrm{E}}{\partial\xi}+\frac{\partial \mathrm{F}}{\partial\eta}=\frac{1}{Re}[\frac{\partial \mathrm{R}}{\partial\xi}+\frac{\partial \mathrm{S}}{\partial\eta}]$ . (86)
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Although the destruction of the time derivative is made in the above equation by multiplying the

preconditioning matrix $\Gamma$ , it seems that this does not affect the steady-state solution. Multiplying

Eq. (86) by the matrix $\Gamma^{-1}$ from the left gives

$\frac{\partial \mathrm{Q}}{\partial t}+\Gamma^{- 1}\mathrm{A}\frac{\partial \mathrm{Q}}{\partial\xi}+\Gamma^{-1}\mathrm{B}\frac{\partial \mathrm{Q}}{\partial\eta}=\frac{1}{Re}\Gamma^{-1}[\frac{\partial \mathrm{R}}{\partial\xi}+\frac{\partial \mathrm{S}}{\partial\eta}]$ . (87)

It is seen that the preconditioned inviscid Jacobian matrices become $\Gamma^{-1}$ A and $\Gamma^{-1}$ B. An

appropriate choice of the preconditioning matrix $\Gamma$ can make the quotient of the maximum and

minimum eigenvalues close to one.

5.3.1 Preconditioning for Euler equations

Before introducing the preconditioning matrix $\Gamma$ for the Navier-Stokes equations, we consider a

new form of the Euler equations with respect to the so-called symmetry variables for the sake of

convenience. For symmetry variables, we have

$\partial\hat{\mathrm{Q}}=J^{-1}[\frac{1}{\rho c}\partial p,$
$\partial u_{1}\partial v_{\mathrm{Y}}\partial.\mathrm{s}]^{t}$ (88)

and tl $\iota \mathrm{e}$ Euler $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}o_{\wedge}’ \mathrm{u}\mathrm{s}$ can be written as

$\frac{\partial\hat{\mathrm{Q}}}{\partial t}+\hat{\mathrm{A}}\frac{\partial\hat{\mathrm{Q}}}{\partial\xi}+\hat{\mathrm{B}}\frac{\partial\hat{\mathrm{Q}}}{\partial\eta}=0$ . (S9)

where $\mathrm{s}$ means the entropy defined by $\partial s=\partial p-\mathrm{r}^{2}\partial\rho$ . The matrices A and $\hat{\mathrm{B}}$ are the flux

Jacobian matrices in the 4 and $\eta$ directions, respectively, which are defined by

$\hat{\mathrm{A}}=\ovalbox{\tt\small REJECT}^{U_{\xi}}\xi_{x}c\xi_{y}\mathrm{r}0$ $\xi_{x}cU_{\xi}00$ $\xi_{y}cU_{\xi}00$ $U_{\xi}000\ovalbox{\tt\small REJECT}$ . $\hat{\mathrm{B}}=\ovalbox{\tt\small REJECT}$

$U_{\eta}$ $\eta_{x}c$ $\eta_{y}c$
$()$

$\eta_{x^{(}}$
.

$U_{\eta}$ 0 0

$\eta_{y}c$ 0 $U_{\gamma\}}$ 0

000 $U_{\eta}$

(90)

We then introduce a preconditioning matrix to the Euler equations.

$\hat{\Gamma}\frac{\partial\hat{\mathrm{Q}}}{\partial t}+\hat{\mathrm{A}}\frac{\partial\hat{\mathrm{Q}}}{\partial\xi}+\hat{\mathrm{B}}\frac{\partial\hat{\mathrm{Q}}}{\partial\eta}=0$ . (91)

Then we have
$\frac{\partial\hat{\mathrm{Q}}}{\partial t}+\hat{\Gamma}^{-1}\hat{\mathrm{A}}\frac{\partial\hat{\mathrm{Q}}}{\partial\xi}+\hat{\Gamma}^{-1}\hat{\mathrm{B}}\frac{\partial\hat{\mathrm{Q}}}{\partial\eta}=0$. (92)

The preconditioning matrix in terms of the symm etry variables proposed by Weiss and Sm $\mathrm{i}\mathrm{t}\mathrm{h}$

[10] is of a simple form such as

$\hat{\Gamma}=\{$

$\frac{1}{\epsilon}$ 0 0 0
010 0
00 1 0

0001

$\hat{\Gamma}^{-1}=\{$

$\epsilon$ 0 0 0
01 0 0
001 0

0001

(93)
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where the element $\epsilon$ may be taken as

$\epsilon=\min[1, \max(\lambda I^{2}.\phi l\mathfrak{l}\prime f_{\infty}^{2})]$ . (94)

Here, $f\downarrow f$ is the local Mach number specified by means of local variables, and $\Lambda f_{\infty}$ is the freestream
Mach number. The parameter $\phi$ is the coefficient which is multiplied the freestream Mach number
$M_{\infty}$ to designate the lower limit of $\epsilon$ to avoid the case where $\epsilon=0$ at $\lambda l$ $=0$ , and thus $\epsilon$ must

satisfy $0<\epsilon<1$ .

5.4 Eigenvalues of $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ and $\hat{\Gamma}^{-1}\hat{\mathrm{B}}$

We see that the eigenvalues of the preconditioned flux Jacobian matrices $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ and $\hat{\Gamma}^{-1}\hat{\mathrm{B}}$ are
the same as the original ones, as $\epsilonarrow 1$ .

Since the following discussions on $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ and $\hat{\Gamma}^{-1}\hat{\mathrm{B}}$ can be made in the similar scenario, we
consider $\hat{\Gamma}^{-1}$ A only. The diagonalized matrix $\mathrm{A}_{\xi},\mathrm{p}$ with the eigenvalues of the Jacobian matrix
of $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ is given by

$\mathrm{A}_{\xi,\Gamma}=\ovalbox{\tt\small REJECT}^{U_{\xi}}000$ $U_{\xi}000$ $\lambda_{\xi,+}000$ $\lambda_{\xi,-}000\ovalbox{\tt\small REJECT}$ . (95)

where $U\xi$ is the component of the contravariant velocity vector in the $\xi$ direction and $\lambda\xi\pm$ are
easily found as

$\lambda_{\xi,\pm}=\frac{1}{2}(1+\epsilon)U_{\xi}\pm\frac{1}{2}\sqrt{(\epsilon-1)^{2}U_{\xi}^{2}+4\epsilon(\xi_{x}^{2}+\xi_{y}^{2})c^{2}}$ . (96)

We see that as $\epsilonarrow 0$ , all eigenvalues of the preconditioned flux Jacobian matrices $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ becom $\mathrm{e}$

$U_{\xi}$ .

6 Preconditioning Method for the Navier-Stokes Equations

The symmetry variables and the conservative variables can be related with the follow ing transfer
matrices,

$\mathrm{M}=\frac{\partial \mathrm{Q}}{\partial\hat{\mathrm{Q}}}$ , $\mathrm{M}1=\frac{\partial\hat{Q}}{\partial Q}$ . (97)

The following important relations allow us to aPPly thle preconditioning for the symmetry variables
to the Navier-Stokes equations in terms of conservative variables as follows.

$\Gamma$ $=$
$\mathrm{M}\hat{\Gamma}\mathrm{M}^{-1}$ (98)

A $=$ $\mathrm{M}$
$\hat{\mathrm{A}}\mathrm{M}^{-1}$ (99)

$\mathrm{B}$ $=$
$\mathrm{M}\hat{\mathrm{B}}\mathrm{M}^{-1}$ . (100)

Thus,

$\mathrm{M}\hat{\Gamma}\mathrm{M}^{-1}\frac{\partial \mathrm{Q}}{\partial t}+\frac{\partial \mathrm{E}}{\partial\xi}+\frac{\partial \mathrm{F}}{\partial\eta}=\frac{1}{Re}[\frac{\partial \mathrm{R}}{\partial\xi}+\frac{\partial \mathrm{S}}{\partial\eta}]$ (101)
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Equations.(98), (99)
$)$ and (100) together imply

$\mathrm{M}\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ $\lambda I^{-1}$
$=$

$\Gamma^{-1}\mathrm{A}$

$\mathrm{M}\hat{\Gamma}^{-1}\hat{\mathrm{B}}\Lambda f^{-1}$

$=$
$\Gamma^{-1}\mathrm{B}$ . (102)

It is seen from Eq. (102) that $\hat{\Gamma}^{-1}\hat{\mathrm{A}}$ and $\Gamma^{-1}$ A have the same eigenvalues, and that $\hat{\Gamma}^{-1}\hat{\mathrm{B}}$ and
$\Gamma^{-1}\mathrm{B}$ have the same eigenvalues as well.

7Validation of Codes

For the validation of low speed flow condition, the lid-driven flow in square cavity shown in Figs.
$7(\mathrm{a})$ has been simulated for $Re=10,000$ . For all walls, an adiabatic condition is imposed on
the temperature. The non-slip velocity condition is applied to the bottom, right and left walls.

The top wall is assumed to move with the uniform velocity of $M=0.01$ . The size of cavity

is set so that the Reynolds number is equal to the given conditions. As initial conditions, the

pressure is set to be O.lMPa. and the temperature is set to be $300/\mathrm{C}$ The numerical results

are compared with Ghia’s numerical results [4] and Nallasa my’s experimental data [4]. These

results have been cited for validation of manv CFD codes. For the validation of high speed flow

conditions, the supersonic channel flow has been computed as shown in Fig. $7(\mathrm{b})$ . A channel with

a compression corner and an expan sion corner located at the lower and upper straight surfaces are

considered. The obtained results have been compared with the exact solutions of one-dimensional

Euler equations. Supersonic flow with Mach number 2.0 enters the channel from the left side.

$\underline{\mathrm{H}m}_{1}\mathrm{v}\backslash$

(a) Lid-driven square cavity flow (b) Super-sonic channel flflow

Figure 7: Schematics of test case problems

Figure 8 shows thle numerical results of flows in square cavity for the Reynolds numbers

$Re=10,000$ . The numerical contours of stream function are depicted in Fig. $8(\mathrm{a})$ , and the

numerical velocity profiles for vertical and horizontal lines passing through the geom etric center

of the cavity are shown in Fig. $8(\mathrm{b})$ . In this figure, the numerical $u$-velocity along vertical line and

$v$-velocity along horizontal line through geometric center are shown with the numerical results of



210

$\mathrm{r}\cdot=\prime 0000$ c-o $7\mathrm{V}\emptyset\nu 11\hslash$ $r’\epsilon\omega\alpha:u\mathrm{r}n_{1}$

$\mathrm{L}^{\mathrm{J}}-\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{x}\mathrm{i}!\mathrm{y}$

$\overline{\mathrm{t}}^{\{}$
0 $7_{\{}$

${\rm Re}=10000$

$-.\cdot \mathrm{c}n\cdot\cdot \mathrm{r}_{9\delta 2|}\in\psi\{\mathrm{N}\delta \mathrm{b}u\mathrm{m}\mathrm{y}\prime \mathrm{h}6\mathrm{t}\prime 97’$

,

0
$\frac{\cong[mathring]_{\mathrm{o}}}{\Phi,>}$

$\forall 05$ . $>^{1}$

$0_{0}$

$\mathrm{o}_{\mathrm{X}}\mathrm{s}$

1-1

(a) streamline (b) velocity profile

Figure 8: Cavity flows, $Re$ $=10.000$ . $\Lambda f_{L\mathrm{i}d}=0.01$

Ghia et al. and the experimental data of Nallasamy [4]. Our results agree well with the results

of Ghia et al. and Nallasamy.

In Fig. 9, the numerical density contours of the supersonic channel flow is shown. The

density contours illustrate the formation of oblique shock, expansion wave, and their reflection

and interaction. In Fig. 10, the numerical density and pressure along bottom line are com pared

with the analytical solutions of the one-dim ensional Euler equations. It is seen that the numerical

results are in good agreement with the data used for comparisons.

Figure 9: $\mathrm{D}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}_{\backslash }\gamma$ contours in supersonic $\mathrm{c}\mathrm{I}_{1}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}1$ at $\Lambda f_{in}=2.0$

$1^{\mathrm{x}} 0_{3}^{\mathrm{s}_{\rfloor}}$

.

$\circ z\subset\varpi\otimes\cdot$

$\ovalbox{\tt\small REJECT}\frac{v}{\infty}2cdot\alpha^{\mathrm{E}\mathrm{x}\mathrm{f}\mathrm{f}1}\mathrm{M}=20-\mathrm{C}\mathrm{a}\mathfrak{l}w\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{o}n$$.w^{\mathrm{M}=20}-$

Calw1\S U0RExffl

– –

0 20 40 60
$\mathrm{x}$

(a) density (a) pressure

Figure 10: comparison with exact solutio$\mathrm{n}$
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8Conclusions

The mathematical model describing the fluid flow motions is the Navier-Stokes equations. How-
ever, it is difficult to solve in a consistent way the equations of this system through the state-of-
the art numerical methods in a wide range of variation of density. Furthermore, the environmental
fluid dynamics necessitates to dealing with multidisciplinary phenomena such as thermochemical
science, chemical reactions, phase transitions, and so on. Obviously, it is necessary to formu-
late adequate mathematical models $\mathrm{w}\}_{1}\mathrm{i}\mathrm{c}\mathrm{h}$ specifically describe important phenomena based on
a complete mathematical model as well as appropriate constitutive equations for such physical

phenomena. In this paper, numerical methods for environmental fluid dynamics are classified
into three types of mathematical models in terms of rate of the density variation and new numer-
ical methods for the approximate equations are discussed. Prorn the point of view of practical
numerical computation, implicit time marching schemes are particularly of importance because
of its stability and robustness. We focus our attention on tl$\iota \mathrm{e}$ implicit iterative $\mathrm{s}\mathrm{c}1_{1}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{s}$ that is

much more economical in computation than known schemes but also retains most of the stability

and accuracy of the fully implicit scheme.
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