The complex Ginzburg-Landau equation on general domain

東京理科大・理 岡沢 登 (Noboru Okazawa) 東京理科大・理 横田 智巳 (Tomomi Yokota)

(Department of Mathematics, Science University of Tokyo)

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ $(N \in \mathbb{N})$ be a bounded or "unbounded" domain with boundary $\partial\Omega$. This paper is concerned with the *smoothing effect* (i.e., the existence of unique global strong solutions for L^2 -initial data) of the following initial-boundary value problem for the complex Ginzburg-Landau equation:

(CGL)
$$\begin{cases} \frac{\partial u}{\partial t} - (\lambda + i\alpha)\Delta u + (\kappa + i\beta)|u|^{q-2}u - \gamma u = 0 & \text{in } \Omega \times \mathbb{R}_+, \\ u = 0 & \text{on } \partial\Omega \times \mathbb{R}_+, \\ u(x, 0) = u_0(x), & x \in \Omega. \end{cases}$$

Here $\lambda, \kappa \in \mathbb{R}_+ := (0, \infty)$, $\alpha, \beta, \gamma \in \mathbb{R}$ and $q \geq 2$ are constants, and u is a complex-valued unknown function. We assume for simplicity that Ω is of class C^2 and $\partial\Omega$ is bounded (or $\Omega = \mathbb{R}_+^N$) to characterize the domain of the Dirichlet Laplacian. There are many mathematical studies on the problem (CGL) (for the existence and uniqueness of solutions see, e.g., Temam [9], Yang [10] and Ginibre-Velo [1], [2]; for the large time behavior of solutions see, e.g., Hayashi-Kaikina-Naumkin [3]; for the inviscid limiting problem as $\lambda \downarrow 0$ and $\kappa \downarrow 0$ see, e.g., Machihara-Nakamura [4] and Ogawa-Yokota [5]).

In a previous paper [6, Theorem 1.3 with p=2] we established the smoothing effect of (CGL) on the initial data without any restriction on $q \ge 2$ under the condition

$$(1.1) \frac{|\beta|}{\kappa} \le \frac{2\sqrt{q-1}}{q-2}.$$

This condition implies that the mapping $u \mapsto (\kappa + i\beta)|u|^{q-2}u$ is accretive (see [6, Lemma 2.1]). Recently, we reported in [7, Theorem 1.1] that under the condition

$$(1.2) 2 \le q \le 2 + \frac{4}{N},$$

the smoothing effect of (CGL) on the initial data can be obtained even if condition (1.1) breaks down. However, it was additionally assumed in [7] that Ω is a "bounded" domain.

The purpose of this paper is to remove the boundedness assumption on Ω . For that purpose we develop an abstract theory formulated in terms of subdifferential operators in the same way as in [6] and [7]. However, we should remove the compactness condition which was effectively used in [7]. To this end we introduce a new type of condition using the Yosida approximation (see condition (A5) in Section 2).

Before stating our result, we define a strong solution to (CGL) as follows:

Definition 1.1. A function $u(\cdot) \in C([0,\infty); L^2(\Omega))$ is said to be a *strong solution* to (CGL) if $u(\cdot)$ has the following properties:

- (a) $u(t) \in H^2(\Omega) \cap H^1_0(\Omega) \cap L^{2(q-1)}(\Omega)$ a.a. t > 0;
- (b) $u(\cdot)$ is locally absolutely continuous (so that strongly differentiable a.e.) on \mathbb{R}_+ ;
- (c) $u(\cdot)$ satisfies the equation in (CGL) a.e. on \mathbb{R}_+ as well as the initial condition.

Now we state the main theorem in this paper.

Theorem 1.1. Let Ω be a bounded or "unbounded" domain in \mathbb{R}^N $(N \in \mathbb{N})$. Assume that Ω is of class C^2 and $\partial\Omega$ is bounded (or $\Omega = \mathbb{R}^N_+$). Let $N \in \mathbb{N}$, $\lambda, \kappa \in \mathbb{R}_+$, $\alpha, \beta, \gamma \in \mathbb{R}$ and $2 \le q \le 2 + 4/N$. Then for any $u_0 \in L^2(\Omega)$ there exists a unique global strong solution $u(\cdot) \in C([0,\infty); L^2(\Omega))$ to (CGL) such that

$$\begin{split} u(\cdot) &\in C^{0,1/2}_{\mathrm{loc}}(\mathbb{R}_+; L^2(\Omega)) \cap C(\mathbb{R}_+; H^1_0(\Omega)), \\ &\frac{du}{dt}(\cdot), \Delta u(\cdot), |u|^{q-2}u \in L^2_{\mathrm{loc}}(\mathbb{R}_+; L^2(\Omega)), \\ & \|u(t)\|_{L^2} \leq e^{\gamma t} \|u_0\|_{L^2} \ \ \forall \, t \geq 0, \\ & \|u(t) - v(t)\|_{L^2} \leq e^{K_1 t + K_2 e^{2\gamma + t} (\|u_0\|_{L^2} \vee \|v_0\|_{L^2})^2} \|u_0 - v_0\|_{L^2} \ \ \forall \, t \geq 0, \end{split}$$

where $v(\cdot)$ is a unique strong solution to (CGL) with $v(0) = v_0 \in L^2(\Omega)$, $\gamma_+ := \max\{\gamma, 0\}$, and K_1 and K_2 are positive constants depending only on $\lambda, \kappa, \beta, \gamma, q, N$.

Remark 1.1. In this paper we ignore the accretivity of the nonlinear term under condition (1.1) effectively used in [6]. However, taking account of the usefulness of the accretivity, we can unify [6, Theorem 1.3 with p = 2] and Theorem 1.1 (see [8]).

2. Abstract theory

Let X be a complex Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let S be a nonnegative selfadjoint operator with domain D(S) in X. Let $\psi: X \to (-\infty, \infty]$ be a proper lower semi-continuous convex function, where "proper" means that $D(\psi) := \{u \in X; \ \psi(u) < \infty\} \neq \emptyset$. Then the subdifferential $\partial \psi(u)$ of ψ at $u \in D(\psi)$ is defined as the set $\{f \in X; \ \operatorname{Re}(f, v - u) \leq \psi(v) - \psi(u) \ \text{for every } v \in X\}$. Here we assume for simplicity that $\psi \geq 0$ and $\partial \psi$ is single-valued. As is well-known, S is also represented by a subdifferential: $S = \partial \varphi$, where φ is given by

$$\varphi(u) := \begin{cases} \frac{1}{2} ||S^{1/2}u||^2 & \text{if } u \in D(\varphi) := D(S^{1/2}), \\ \infty & \text{otherwise.} \end{cases}$$

Then we consider the following abstract Cauchy problem in X:

(ACP)
$$\begin{cases} \frac{du}{dt} + (\lambda + i\alpha)Su + (\kappa + i\beta)\partial\psi(u) - \gamma u = 0, \\ u(0) = u_0, \end{cases}$$

where $\lambda, \kappa \in \mathbb{R}_+$ and $\alpha, \beta, \gamma \in \mathbb{R}$ are constants. To solve (ACP) we use the Moreau-Yosida approximation ψ_{ε} of ψ defined as

$$\psi_{\varepsilon}(v) := \min_{w \in X} \left\{ \psi(w) + \frac{1}{2\varepsilon} ||w - v||^2 \right\}, \quad v \in X, \ \varepsilon > 0.$$

It is well-known that ψ_{ε} is Fréchet differentiable on X and the derivative $\psi'_{\varepsilon} = \partial(\psi_{\varepsilon})$ coincides with the Yosida approximation $(\partial \psi)_{\varepsilon}$ of $\partial \psi$:

$$(\partial \psi)_{\varepsilon} := \frac{1}{\varepsilon} (1 - J_{\varepsilon}), \quad J_{\varepsilon} := (1 + \varepsilon \partial \psi)^{-1}, \quad \varepsilon > 0$$

(see Showalter [11, Proposition IV.1.8]), and so we can use the simplified notation $\partial \psi_{\varepsilon}$:

$$\partial \psi_{\varepsilon} := \partial (\psi_{\varepsilon}) = (\partial \psi)_{\varepsilon}.$$

We introduce the following five conditions on S and ψ ; note that the compactness condition used in [7] is replaced with a new type of condition (A5).

- (A1) $\exists q \in [2, \infty)$ such that $\psi(\zeta u) = |\zeta|^q \psi(u)$ for $u \in D(\psi)$ and $\zeta \in \mathbb{C}$ with $\operatorname{Re} \zeta > 0$.
- (A2) $D(S) \subset D(\partial \psi)$ and $\exists C_1 > 0$ such that $\|\partial \psi(u)\| \leq C_1(\|u\| + \|Su\|)$ for $u \in D(S)$.
- (A3) $\forall \eta > 0 \ \exists C_2 = C_2(\eta) > 0 \text{ such that for } u \in D(S) \text{ and } \varepsilon > 0,$

$$|(Su, \partial \psi_{\varepsilon}(u))| \leq \eta ||Su||^2 + C_2 \psi(J_{\varepsilon}u)^{\theta} \varphi(u),$$

where $\theta \in [0, 1]$ is a constant.

 $(\mathbf{A4}) \ \forall \, \eta > 0 \ \exists \, C_3 = C_3(\eta) > 0 \text{ such that for } u,v \in D(\varphi) \cap D(\psi) \text{ and } \varepsilon > 0,$

$$|(\partial \psi_\varepsilon(u) - \partial \psi_\varepsilon(v), u - v)| \leq \eta \varphi(u - v) + C_3 \left(\frac{\psi(J_\varepsilon u) + \psi(J_\varepsilon v)}{2}\right)^\theta \|u - v\|^2,$$

where $\theta \in [0, 1]$ is the same constant as in (A3).

(A5) $\exists C_4 > 0$ such that for $u, v \in D(\partial \psi)$ and $\nu, \mu > 0$,

$$|(\partial \psi_{\nu}(u) - \partial \psi_{\mu}(u), v)| \le C_4 |\nu - \mu| (\sigma ||\partial \psi(u)||^2 + \tau ||\partial \psi(v)||^2),$$

where $\sigma, \tau > 0$ are constants satisfying $\sigma + \tau = 1$.

To state our abstract result we define a strong solution to (ACP) as follows:

Definition 2.1. A function $u(\cdot) \in C([0,\infty);X)$ is said to be a strong solution to (ACP) if $u(\cdot)$ has the following properties:

- (a) $u(t) \in D(S) \cap D(\partial \psi)$ a.a. t > 0;
- (b) $u(\cdot)$ is locally absolutely continuous (so that strongly differentiable a.e.) on \mathbb{R}_+ ;
- (c) $u(\cdot)$ satisfies the equation in (ACP) a.e. on \mathbb{R}_+ as well as the initial condition.

Now we state the main result in this section.

Theorem 2.1. Let $\lambda, \kappa \in \mathbb{R}_+$ and $\alpha, \beta, \gamma \in \mathbb{R}$. Assume that conditions (A1)-(A5) are satisfied. Then for any $u_0 \in X$ there exists a unique strong solution $u(\cdot) \in C([0,\infty);X)$ to (ACP). Also, $u(\cdot)$ has the following properties:

- (a) $u(\cdot) \in C^{0,1/2}_{loc}(\mathbb{R}_+; X)$, with $||u(t)|| \le e^{\gamma t} ||u_0|| \quad \forall t \ge 0$; (b) $Su(\cdot)$, $\partial \psi(u(\cdot))$, $(du/dt)(\cdot) \in L^2_{loc}(\mathbb{R}_+; X)$;
- (c) $\varphi(u(\cdot))$ and $\psi(u(\cdot))$ are locally absolutely continuous on \mathbb{R}_+ .

Furthermore, let $v(\cdot)$ be a unique strong solution to (ACP) with $v(0) = v_0 \in X$. Then

$$(2.1) ||u(t) - v(t)|| \le e^{K_1 t + K_2 e^{2\gamma_+ t} (||u_0|| \lor ||v_0||)^2} ||u_0 - v_0|| \ \forall \ t \ge 0,$$

where
$$K_1 := \gamma + (1-\theta)C_3\sqrt{\kappa^2 + \beta^2}$$
 and $K_2 := \theta C_3\sqrt{\kappa^2 + \beta^2}/(2q\kappa)$.

Now we shall prove Theorem 2.1. To this end we first take $u_0 \in D(\varphi) \cap D(\psi)$. In what follows we assume that $\lambda, \kappa \in \mathbb{R}_+, \alpha, \beta, \gamma \in \mathbb{R}$ and conditions (A1) - (A5) are satisfied. Given $\varepsilon > 0$, we consider the following problem approximate to (ACP):

(ACP)_{\varepsilon}
$$\begin{cases} \frac{du_{\varepsilon}}{dt} + (\lambda + i\alpha)Su_{\varepsilon} + (\kappa + i\beta)\partial\psi_{\varepsilon}(u_{\varepsilon}) - \gamma u_{\varepsilon} = 0, & t > 0, \\ u_{\varepsilon}(0) = u_{0}. \end{cases}$$

Since $\partial \psi_{\varepsilon}$ is Lipschitz continuous on X, it follows from [6, Proposition 3.1 (i)] that (ACP) $_{\varepsilon}$ has a unique strong solution $u_{\varepsilon}(\cdot) \in C([0,\infty);X)$ such that $u_{\varepsilon}(\cdot) \in C^{0,1/2}([0,T];X)$ and $(du_{\varepsilon}/dt)(\cdot)$, $Su_{\varepsilon}(\cdot) \in L^{2}(0,T;X)$ for every T>0.

The following lemma was obtained in [7, Lemma 2.3] by using conditions (A1) and (A3) with $\eta := \lambda/(2\sqrt{\kappa^2 + \beta^2})$.

Lemma 2.2. Let $\{u_{\varepsilon}(\cdot)\}_{{\varepsilon}>0}$ be the family of unique strong solutions to $(ACP)_{\varepsilon}$ with $u_0 \in$ $D(\varphi) \cap D(\psi)$ as stated above. Then

$$(2.2) ||u_{\varepsilon}(t)|| \le e^{\gamma t} ||u_0|| \quad \forall t \ge 0,$$

$$(2.3) 2\lambda \int_0^t \varphi(u_{\varepsilon}(s)) \, ds + q\kappa \int_0^t \psi(J_{\varepsilon}u_{\varepsilon}(s)) \, ds \leq \frac{1}{2} e^{2\gamma_+ t} ||u_0||^2 \ \forall \, t \geq 0,$$

(2.4)
$$\varphi(u_{\varepsilon}(t)) \leq e^{K(t,||u_0||)}\varphi(u_0) \ \forall t \geq 0,$$

(2.5)
$$\int_0^t ||Su_{\varepsilon}(s)||^2 ds \leq \frac{2}{\lambda} e^{K(t,||u_0||)} \varphi(u_0) \ \forall t \geq 0,$$

 $\textit{where} \ \underline{K(t,\|u_0\|)} \ := \ k_1t + k_2e^{2\gamma_+t}\|u_0\|^2 \ \textit{and} \ k_1 \ := \ 2\gamma_+ + (1-\theta)C_2\sqrt{\kappa^2+\beta^2}, \ k_2 \ := \ k_1t + k_2e^{2\gamma_+t}\|u_0\|^2$ $\theta C_2 \sqrt{\kappa^2 + \beta^2}/(2q\kappa)$.

Next we shall state the following key lemma, in which a new type of condition (A5) plays an important role. For a proof see [8, Lemma 2.5].

Lemma 2.3. Let $\{u_{\varepsilon}(\cdot)\}_{\varepsilon>0}$ be the family of unique strong solutions to $(ACP)_{\varepsilon}$ with $u_0 \in D(\varphi) \cap D(\psi)$ as stated above. Then there exists a function $u(\cdot) \in C([0,\infty);X)$ such that $u(0) = u_0$ and

(2.6)
$$u_{\varepsilon}(\cdot) \to u(\cdot) \ (\varepsilon \downarrow 0) \ in \ C([0,T];X) \ \forall T > 0,$$

(2.7)
$$J_{\varepsilon}u_{\varepsilon}(\cdot) \to u(\cdot) \quad (\varepsilon \downarrow 0) \quad in \quad L^{2}(0,T;X) \quad \forall T > 0.$$

Now we can prove the existence of strong solutions to (ACP) with " $u_0 \in D(\varphi) \cap D(\psi)$ ".

Lemma 2.4. Let $\lambda, \kappa \in \mathbb{R}_+$ and $\alpha, \beta, \gamma \in \mathbb{R}$. Assume that conditions $(\mathbf{A1}) - (\mathbf{A5})$ are satisfied. Then for any $u_0 \in D(\varphi) \cap D(\psi)$ there exists a unique strong solution $u(\cdot) \in C([0,\infty); X)$ to (ACP) such that

- (a) $u(\cdot) \in C^{0,1/2}([0,T];X) \ \forall T > 0$, with $||u(t)|| \le e^{\gamma t}||u_0|| \ \forall t \ge 0$;
- (b) $Su(\cdot)$, $\partial \psi(u(\cdot))$, $(du/dt)(\cdot) \in L^2(0,T;X) \ \forall T > 0$;
- (c) $\varphi(u(\cdot))$ and $\psi(u(\cdot))$ are absolutely continuous on $[0,T] \ \forall T>0$, with

(2.8)
$$2\lambda \int_0^t \varphi(u(s)) \, ds + q\kappa \int_0^t \psi(u(s)) \, ds \le \frac{1}{2} e^{2\gamma_+ t} ||u_0||^2 \ \forall t \ge 0.$$

Furthermore, let $v(\cdot)$ be a unique strong solution to (ACP) with $v(0) = v_0 \in D(\varphi) \cap D(\psi)$. Then

$$||u(t) - v(t)|| \le e^{K_1 t + K_2 e^{2\gamma_+ t} (||u_0|| \lor ||v_0||)^2} ||u_0 - v_0|| \quad \forall \ t \ge 0,$$

where K_1 and K_2 are the same constants as in Theorem 2.1.

Proof. Let $\{u_{\varepsilon}(\cdot)\}_{\varepsilon>0}$ be the family as stated above. Let T>0. Then it follows from (2.5) that $\{Su_{\varepsilon}(\cdot)\}_{\varepsilon>0}$ is bounded in $L^2(0,T;X)$. As noted in the proof of Lemma 2.3, $\{\partial\psi_{\varepsilon}(u_{\varepsilon}(\cdot))\}_{\varepsilon>0}$ is bounded in $L^2(0,T;X)$ and so is $\{(du_{\varepsilon}/dt)(\cdot))\}_{\varepsilon>0}$ in view of the equation in $(ACP)_{\varepsilon}$. Since S, $\partial\psi$ and d/dt are demiclosed as operators in $L^2(0,T;X)$, we see from Lemma 2.3 that

$$Su_{\varepsilon}(\cdot) \to Su(\cdot), \quad \partial \psi_{\varepsilon}(u_{\varepsilon}(\cdot)) = \partial \psi(J_{\varepsilon}u_{\varepsilon}(\cdot)) \to \partial \psi(u(\cdot))$$

and $(du_{\varepsilon}/dt)(\cdot) \to (du/dt)(\cdot)$ $(n \to \infty)$ weakly in $L^2(0,T;X)$ and $u(\cdot)$ satisfies properties (a) and (b). Therefore we can conclude that $u(\cdot)$ is a strong solution to (ACP). Property (c) is derived from (a) and (b). Letting $\varepsilon \downarrow 0$ in (2.3) and using (2.6), we obtain (2.8).

To prove (2.9) we use the limiting case of condition (A5): $\forall \eta > 0 \ \exists C_3 = C_3(\eta) > 0$ such that for $u, v \in D(\partial \varphi) \cap D(\partial \psi)$,

$$(2.10) |(\partial \psi(u) - \partial \psi(v), u - v)| \leq \eta \varphi(u - v) + C_3 \left(\frac{\psi(u) + \psi(v)}{2}\right)^{\theta} ||u - v||^2;$$

note that for $u \in D(\partial \psi)$, $\partial \psi_{\varepsilon}(u) \to \partial \psi(u)$ ($\varepsilon \downarrow 0$) in X. Now let $u(\cdot)$ and $v(\cdot)$ be strong solutions to (ACP) with $u(0) = u_0$ and $v(0) = v_0$, respectively. As in the proof of Lemma 2.3, it follows from (2.10) that

(2.11)
$$\frac{1}{2} \frac{d}{dt} \|u - v\|^{2}$$

$$\leq \gamma \|u - v\|^{2} - 2\lambda \varphi(u - v) + \sqrt{\kappa^{2} + \beta^{2}} |(\partial \psi(u) - \partial \psi(v), u - v)|$$

$$\leq \left\{ \gamma + \tilde{C}_{3} \left(\frac{\psi(u) + \psi(v)}{2} \right)^{\theta} \right\} \|u - v\|^{2}$$

$$\leq \Psi(u, v) \|u - v\|^{2},$$

where $\tilde{C}_3 := C_3 \sqrt{\kappa^2 + \beta^2}$ and $\Psi(u, v)$ is given by

$$\Psi(u,v) := \gamma + \tilde{C}_3 \left\{ (1-\theta) + \theta \left(\frac{\psi(u) + \psi(v)}{2} \right) \right\} = K_1 + K_2 q \kappa \left(\psi(u) + \psi(v) \right)$$

 $(K_1 \text{ and } K_2 \text{ are the same constants as in Theorem 2.1}).$ Here (2.8) implies that

$$\int_0^t \Psi(u(s), v(s)) \, ds \le K_1 t + K_2 e^{2\gamma_+ t} (\|u_0\| \vee \|v_0\|)^2.$$

Therefore we can obtain (2.9) by integration of (2.11).

To prove Theorem 2.1 we need the following lemma (cf. [7, Lemma 2.4]).

Lemma 2.5. Let $u(\cdot)$ be a strong solution to (ACP) with $u(0) = u_0 \in D(\varphi) \cap D(\psi)$ as in Lemma 2.4 constructed under conditions (A1)-(A5). Then

$$(2.12) t\varphi(u(t)) + \frac{\lambda}{2} \int_0^t s ||Su(s)||^2 ds \le \frac{1}{4\lambda} e^{K(t,||u_0||) + 2\gamma_+ t} ||u_0||^2 \quad \forall t \ge 0,$$

where $K(t, ||u_0||)$ is the same as in Lemma 2.2.

Proof. We use the limiting case of condition (A3): $\forall \eta > 0 \ \exists C_2 = C_2(\eta) > 0$ such that for $u \in D(S) \cap D(\partial \psi)$,

$$|(Su, \partial \psi(u))| \le \eta ||Su||^2 + C_2 \psi(u)^{\theta} \varphi(u),$$

where $\theta \in [0, 1]$ is the same constant as before; note that for $u \in D(\partial \psi)$, $\partial \psi_{\varepsilon}(u) \to \partial \psi(u)$ $(\varepsilon \downarrow 0)$ in X and $\psi(J_{\varepsilon}u) \leq \psi_{\varepsilon}(u) \leq \psi(u)$. As in the proof of [7, Lemma 2.3], we see from (2.13) that

$$(2.14) \qquad \frac{d}{ds} \left[\exp\left(-\int_0^s k(r) \, dr\right) \varphi(u(s)) \right] + \frac{\lambda}{2} \exp\left(-\int_0^s k(r) \, dr\right) \|Su(s)\|^2 \le 0,$$

where $k(r) := k_1 + 2k_2q\kappa\psi(u(r)) \ge 0$, and

(2.15)
$$0 \le \int_{s}^{t} k(r) dr \le \int_{0}^{t} k(r) dr \le K(t, ||u_{0}||) \quad \forall s \in [0, t].$$

Multiplying the both sides of (2.14) by $s \in [0, t]$ and integrating it on [0, t] yield

$$t\varphi(u(t)) + \frac{\lambda}{2} \int_0^t s \cdot \exp\left(\int_s^t k(r) \, dr\right) ||Su(s)||^2 \, ds \le \int_0^t \exp\left(\int_s^t k(r) \, dr\right) \varphi(u(s)) \, ds$$

$$\le \exp\left(\int_0^t k(r) \, dr\right) \int_0^t \varphi(u(s)) \, ds.$$

Therefore (2.12) follows from (2.8) and (2.15).

Once Lemmas 2.4 and 2.5 are established, we can prove Theorem 2.1 in the same way as in the proof of [6, Theorem 5.2] (see also [7]).

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying Theorem 2.1 to (CGL). Let $X := L^2(\Omega)$ with inner product $(\cdot, \cdot)_{L^2}$ and norm $\|\cdot\|_{L^2}$. Let $2 \le q \le 2 + 4/N$. Then we define the nonnegative selfadjoint operator S in X and the proper lower semi-continuous convex function ψ on X as follows:

$$Su := -\Delta u \text{ for } u \in D(S) := H^2(\Omega) \cap H^1_0(\Omega),$$

$$\psi(u) := \begin{cases} \frac{1}{q} ||u||_{L^q}^q & \text{if } u \in D(\psi) := L^2(\Omega) \cap L^q(\Omega), \\ \infty & \text{otherwise.} \end{cases}$$

As is well-known, the subdifferential of ψ is given by

$$\partial \psi(u) = |u|^{q-2}u$$
 for $u \in D(\partial \psi) = L^2(\Omega) \cap L^{2(q-1)}(\Omega)$.

Therefore we can regard (CGL) as one of (ACP)s.

To apply Theorem 2.1 it suffices to show that all the conditions $(\mathbf{A1}) - (\mathbf{A5})$ introduced in Section 2 are satisfied. Here we consider only the new type of condition $(\mathbf{A5})$. For the verification of other conditions $(\mathbf{A1}) - (\mathbf{A4})$ see [7]. We begin with the strong differentiability of the resolvent with respect to approximating parameter ε .

Lemma 3.1. Let $f \in D(\partial \psi)$. For $\varepsilon \in [0, \infty)$ and $x \in \Omega$ put

(3.1)
$$u_{\varepsilon}(x) := \begin{cases} (1 + \varepsilon \partial \psi)^{-1} f(x) & (\varepsilon > 0), \\ f(x) & (\varepsilon = 0). \end{cases}$$

Then $u_{\varepsilon} \in C^1([0, E]; L^2(\Omega)) \ \forall E > 0 \ (as \ a \ function \ of \ \varepsilon), \ with$

(3.2)
$$\frac{\partial u_{\varepsilon}}{\partial \varepsilon} = \begin{cases} -\frac{1}{1 + \varepsilon(q-1)|u_{\varepsilon}|^{q-2}} \partial \psi_{\varepsilon}(f) & (\varepsilon > 0), \\ -\partial \psi(f) & (\varepsilon = 0). \end{cases}$$

Proof. Using the inverse function theorem, we can show that $u_{\varepsilon} \in C^1([0, E]; L^2(\Omega))$ for every E > 0 (for the proof see [8, Proposition 3.4]). Here we derive only (3.2). To this end let $f \in D(\partial \psi)$ and $\varepsilon > 0$. Then it follows from (3.1) that

(3.3)
$$u_{\varepsilon}(x) + \varepsilon |u_{\varepsilon}(x)|^{q-2} u_{\varepsilon}(x) = f(x).$$

Writing as

$$u_{\varepsilon}(x) = v_{\varepsilon}(x) + iw_{\varepsilon}(x), \quad f(x) = g(x) + ih(x),$$

we see that (3.3) is equivalent to

$$\begin{cases} v_{\varepsilon}(x) + \varepsilon (v_{\varepsilon}(x)^2 + w_{\varepsilon}(x)^2)^{(q-2)/2} v_{\varepsilon}(x) = g(x), \\ w_{\varepsilon}(x) + \varepsilon (v_{\varepsilon}(x)^2 + w_{\varepsilon}(x)^2)^{(q-2)/2} w_{\varepsilon}(x) = h(x). \end{cases}$$

Differentiating the both sides with respect to ε yields

$$\begin{cases} \frac{\partial v_{\varepsilon}}{\partial \varepsilon} + |u_{\varepsilon}|^{q-2}v_{\varepsilon} + \varepsilon(q-2)|u_{\varepsilon}|^{q-4} \Big(v_{\varepsilon}\frac{\partial v_{\varepsilon}}{\partial \varepsilon} + w_{\varepsilon}\frac{\partial w_{\varepsilon}}{\partial \varepsilon}\Big)v_{\varepsilon} + \varepsilon|u_{\varepsilon}|^{q-2}\frac{\partial v_{\varepsilon}}{\partial \varepsilon} = 0, \\ \frac{\partial w_{\varepsilon}}{\partial \varepsilon} + |u_{\varepsilon}|^{q-2}w_{\varepsilon} + \varepsilon(q-2)|u_{\varepsilon}|^{q-4} \Big(v_{\varepsilon}\frac{\partial v_{\varepsilon}}{\partial \varepsilon} + w_{\varepsilon}\frac{\partial w_{\varepsilon}}{\partial \varepsilon}\Big)w_{\varepsilon} + \varepsilon|u_{\varepsilon}|^{q-2}\frac{\partial w_{\varepsilon}}{\partial \varepsilon} = 0. \end{cases}$$

Solving this system of equations with respect to $\partial v_{\varepsilon}/\partial \varepsilon$ and $\partial w_{\varepsilon}/\partial \varepsilon$, we have

$$\begin{cases} \frac{\partial v_{\varepsilon}}{\partial \varepsilon} = -\frac{1}{1 + \varepsilon (q - 1)|u_{\varepsilon}|^{q - 2}} |u_{\varepsilon}|^{q - 2} v_{\varepsilon}, \\ \frac{\partial w_{\varepsilon}}{\partial \varepsilon} = -\frac{1}{1 + \varepsilon (q - 1)|u_{\varepsilon}|^{q - 2}} |u_{\varepsilon}|^{q - 2} w_{\varepsilon}. \end{cases}$$

This implies that

$$\frac{\partial u_{\varepsilon}}{\partial \varepsilon} = -\frac{1}{1 + \varepsilon (q-1)|u_{\varepsilon}|^{q-2}} \partial \psi(u_{\varepsilon}), \quad \varepsilon > 0.$$

Since $\partial \psi(u_{\varepsilon}) = \partial \psi_{\varepsilon}(f)$, we obtain (3.2) with $\varepsilon > 0$. In addition, it follows that

$$\|\varepsilon^{-1}(u_{\varepsilon} - f) + \partial \psi(f)\|_{L^{2}} = \|\partial \psi_{\varepsilon}(f) - \partial \psi(f)\|_{L^{2}} \to 0 \quad (\varepsilon \downarrow 0).$$

This shows that $(\partial u_{\varepsilon}/\partial \varepsilon)|_{\varepsilon=0} = -\partial \psi(f)$ and hence (3.2) is true at $\varepsilon = 0$.

As a consequence of Lemma 3.1 we have

Lemma 3.2. Let $q \geq 2$. Then for $u, v \in D(\partial \psi)$ and $v, \mu > 0$,

$$|(\partial \psi_{\nu}(u) - \partial \psi_{\mu}(u), v)_{L^{2}}| \leq (q-1)|\nu - \mu| \left[\frac{2q-3}{2(q-1)} ||\partial \psi(u)||_{L^{2}}^{2} + \frac{1}{2(q-1)} ||\partial \psi(v)||_{L^{2}}^{2} \right].$$

Proof. The computation is almost the same as in [8, Lemma 3.7]. Let $u \in D(\partial \psi) = L^2(\Omega) \cap L^{2(q-1)}(\Omega)$. For $\varepsilon \in [0, \infty)$ and $x \in \Omega$ put

$$u_{\varepsilon}(x) := \begin{cases} (1 + \varepsilon \partial \psi)^{-1} u(x) & (\varepsilon > 0), \\ u(x) & (\varepsilon = 0). \end{cases}$$

Then Lemma 3.1 implies that $u_{\varepsilon} \in C^1([0, E]; L^2(\Omega))$ for every E > 0. Since $\partial \psi_{\varepsilon}(u) = \varepsilon^{-1}(u - u_{\varepsilon})$ for $\varepsilon > 0$, it follows from (3.2) that

$$\begin{split} \frac{\partial}{\partial \varepsilon} \left[\partial \psi_{\varepsilon}(u) \right] &= -\frac{1}{\varepsilon^{2}} (u - u_{\varepsilon}) - \frac{1}{\varepsilon} \cdot \frac{\partial u_{\varepsilon}}{\partial \varepsilon} \\ &= -\frac{1}{\varepsilon} \left[\partial \psi_{\varepsilon}(u) + \frac{\partial u_{\varepsilon}}{\partial \varepsilon} \right] \\ &= -\frac{(q - 1)|u_{\varepsilon}|^{q - 2}}{1 + (q - 1)\varepsilon|u_{\varepsilon}|^{q - 2}} \partial \psi_{\varepsilon}(u) \\ &= -\frac{(q - 1)|u_{\varepsilon}|^{2(q - 2)}u_{\varepsilon}}{1 + (q - 1)\varepsilon|u_{\varepsilon}|^{q - 2}}, \quad \varepsilon > 0. \end{split}$$

Since $|u_{\varepsilon}| \leq |u|$, we obtain

$$\left|\frac{\partial}{\partial \varepsilon} \left[\partial \psi_{\varepsilon}(u) \right] \right| \le (q-1)|u_{\varepsilon}|^{2q-3} \le (q-1)|u|^{2q-3}, \ \varepsilon > 0.$$

Therefore we see that for $\nu, \mu > 0$,

$$|\partial \psi_{\nu}(u) - \partial \psi_{\mu}(u)| = \left| \int_{u}^{\nu} \frac{\partial}{\partial \varepsilon} \left[\partial \psi_{\varepsilon}(u) \right] d\varepsilon \right| \leq (q-1)|\nu - \mu| \cdot |u|^{2q-3},$$

and hence

$$|(\partial \psi_{\nu}(u) - \partial \psi_{\mu}(u), v)_{L^{2}}| \leq (q-1)|\nu - \mu| \int_{\Omega} |u|^{2q-3} |v| \, dx.$$

It follows from Hölder's inequality and Young's inequality that

$$\int_{\Omega} |u|^{2q-3} |v| \, dx \le ||u||_{L^{2(q-1)}}^{2q-3} ||v||_{L^{2(q-1)}} \le \left(\frac{2q-3}{2(q-1)} ||u||_{L^{2(q-1)}}^{2(q-1)} + \frac{1}{2(q-1)} ||v||_{L^{2(q-1)}}^{2(q-1)} \right).$$

Applying this inequality to the right-hand side of (3.4), we can obtain the desired inequality because of $||u||_{L^{2(q-1)}}^{2(q-1)} = ||\partial \psi(u)||_{L^2}^2$.

Lemma 3.2 shows that condition (A5) is satisfied with

$$\sigma := \frac{2q-3}{2(q-1)}, \quad \tau := \frac{1}{2(q-1)}.$$

Therefore Theorem 2.1 applies to give the assertion of Theorem 1.1.

References

- [1] J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, *Physica D* **95** (1996), 191–228.
- [2] J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys. 187 (1997), 45-79.
- [3] N. Hayashi, E. I. Kaikina and P. I. Naumkin, Global existence and time decay of small solutions to the Landau-Ginzburg type equations, J. Anal. Math. 90 (2003), 141–173.
- [4] S. Machihara and Y. Nakamura, The inviscid limit for the complex Ginzburg-Landau equation, J. Math. Anal. Appl. 281 (2003), 552–564.
- [5] T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain, *Comm. Math. Phys.* **245** (2004), 105–121.
- [6] N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-Laplacian, J. Differential Equations 182 (2002), 541–576.
- [7] N. Okazawa and T. Yokota, Non-contraction semigroups generated by the complex Ginzburg-Landau equation, Nonlinear Partial Differential Equations and Their Applications (Shanghai, 2003), 490–504, GAKUTO Internat. Ser. Math. Sci. Appl. vol. 20, Gakkōtosho, Tokyo, 2004.
- [8] N. Okazawa and T. Yokota, General nonlinear semigroup approach to the complex Ginzburg-Landau equation, preprint (2004).
- [9] R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics", Applied Math. Sci., vol. 68, Springer-Verlag, Berlin and New York, 1988; 2nd ed., 1997.
- [10] Y. Yang, On the Ginzburg-Landau wave equation, Bull. London Math. Soc. 22 (1990), 167–170.
- [11] R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," Math. Surv. Mono. vol. 49, Amer. Math. Soc., Providence, RI, 1997.