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The complex Ginzburg-Landau equation
on general domain
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1. Introduction

Let O ¢ R¥ (N € N) be a bounded or “unbounded” domain with boundary 952.
This paper is concerned with the smoothing effect (i.e., the existence of unique global
strong solutions for L%-initial data) of the following initial-boundary value problem for
the complex Ginzburg-Landau equation:

0
—a—% — (A +ia)Au+ (k+if)|u|T?u —yu =0 in Q x Ry,
(CGL) u=0 on J{1 x Ry,

u(z,0) = uo(z), z € Q.

Here A,k € R, := (0,0), o, 8,7 € R and ¢ > 2 are constants, and v is a complex-
valued unknown function. We assume for simplicity that Q is of class C* and 0 is
bounded (or 2 = RY) to characterize the domain of the Dirichlet Laplacian. There are
many mathematical studies on the problem (CGL) (for the existence and uniqueness of
solutions see, e.g., Temam [9], Yang [10] and Ginibre-Velo [1], [2]; for the large time
behavior of solutions see, e.g., Hayashi-Kaikina-Naumkin [3]; for the inviscid limiting
problem as A } 0 and & | O see, e.g., Machihara-Nakamura [4] and Ogawa-Yokota [5]).

In a previous paper [6, Theorem 1.3 with p = 2] we established the smoothing effect
of (CGL) on the initial data without any restriction on g > 2 under the condition

Bl 2va-1

(1.1) S <

This condition implies that the mapping u — (x +48)|u|?"%u is accretive (see [6, Lemma
2.1]). Recently, we reported in {7, Theorem 1.1] that under the condition

. 4
. < g< —
(1.2) 2_q_2+N,

the smoothing effect of (CGL) on the initial data can be obtained even if condition (1.1)
breaks down. However, it was additionally assumed in [7] that Q is a “bounded” domain.
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The purpose of this paper is to remove the boundedness assumption on 2. For that
purpose we develop an abstract theory formulated in terms of subdifferential operators
in the same way as in [6] and [7]. However, we should remove the compactness condition
which was effectively used in [7]. To this end we introduce a new type of condition using
the Yosida approximation (see condition (A5) in Section 2).

Before stating our result, we define a strong solution to (CGL) as follows:

Definition 1.1. A function u(-) € C([0,00); L*()) is said to be a strong solution to
(CGL) if u(-) has the following properties:
(a) u(t) € H*(Q) N HY(Q) N LH~I(Q) a.a. t > 0;
(b) u(-) is locally absolutely continuous (so that strongly differentiable a.e.) on Ry;
(¢) u(-) satisfies the equation in (CGL) a.e. on R, as well as the initial condition.

Now we state the main theorem in this paper.

Theorem 1.1. Let Q be a bounded or “unbounded” domain in RY (N € N). Assume that
Q is of class C? and 9) is bounded (or Q= Rf) Let NeN, ks € Ry, o, B,y € R and
2 < q<2+4/N. Then for any ug € L%(Q) there exists a unique global strong solution
u(-) € C([0,00); L?(2)) to (CGL) such that

u(-) € Cpa*(Ry; L3(S) N C(Ry; HY (),
du

00, Au(), ulu € I (Rys ),

lu(®)llze < €"fluollzz V220,
llw(t) = v(®)||z2 < eK1t+K2e2‘f+*(|luolleVIIvoHLg)2“uo — wllzz V>0,

where v(-) is a unique strong solution to (CGL) with v(0) = vy € L*(2), v4+ := max{y, 0},
and Ky and K, are positive constants depending only on A\, k,3,7,q, N.

Remark 1.1. In this paper we ignore the accretivity of the nonlinear term under con-
dition (1.1) effectively used in [6]. However, taking account of the usefulness of the
accretivity, we can unify [6, Theorem 1.3 with p = 2] and Theorem 1.1 (see [8]).

2. Abstract theory

Let X be a complex Hilbert space with inner product (-,-) and norm || - ||. Let S
be a nonnegative selfadjoint operator with domain D(S) in X. Let ¢ : X — (—o0, o0]
be a proper lower semi-continuous convex function, where “proper” means that D(y)) :=
{u € X; ¢(u) < oo} # 0. Then the subdifferential vy (u) of 1 at u € D(¢)) is defined
as the set {f € X; Re(f,v — u) < ¢(v) — 9(u) for every v € X}. Here we assume for
simplicity that 1 > 0 and 0 is single-valued. As is well-known, S is also represented by
a subdifferential: S = 0y, where ¢ is given by

(p(u) .= {%“S]-/QQJ,IP if ue D(gp) e D(Sl/?)’

o0 otherwise.
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Then we consider the following abstract Cauchy problem in X:

(ACP) { Z_T: + (A +ia)Su+ (k+ zﬁ)(’?i/)(u) —yu =0,
w(0) = uo,

where )\, k € R, and «, 8,7 € R are constants. To solve (ACP) we use the Moreau-Yosida
approximation 1. of ¢ defined as

0elw) =min{v(w) + 5w — |}, veX, e>0.

It is well-known that i, is Fréchet differentiable on X and the derivative ¢, = 0(3)
coincides with the Yosida approximation (9v). of 0v:

@)= (1= 1), Jo=(1+e0)), e>0

(see Showalter [11, Proposition IV.1.8}), and so we can use the simplified notation d.:

Ie := O(the) = (F)e.

We introduce the following five conditions on S and ¥; note that the compactness
condition used in [7] is replaced with a new type of condition (A5).

(A1) 3q € [2,00) such that ¥(Cu) = [¢|%)(u) for u € D(3) and ¢ € C with Re( > 0.
(A2) D(S) € D(9%) and ¢, > 0 such that |0y (u)l] < Ci(||ull + ||Sul]) for u € D(S).
(A3) V7 > 0 3C, = C3(n) > 0 such that for v € D(S) and £ > 0,
|(Su, O ()] < i Sull® + Cap(Jou) (u),
where # € [0,1] is a constant.

(A4) V7 > 03Cs = Cs(n) > 0 such that for u,v € D(p) N D(¢) and € > 0,

4
(B0~ 0001~ )] S i 0) + O LTI

where 8 € [0, 1] is the same constant as in (A3).
(A5) 3C4 > 0 such that for u,v € D(0¢) and v, u > 0,
(3% (u) — B9, (w), v)| < Culv — pl(olldv (W) + TBY()I),
where o, 7 > 0 are constants satisfying o + 7 = 1.

To state our abstract result we define a strong solution to (ACP) as follows:
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Definition 2.1. A function u{-) € C([0,00); X) is said to be a strong solution to (ACP)
if u(-) has the following properties:
(a) u(t) € D(S)N D(0Y) a.a.t>0;
(b) u(-) is locally absolutely continuous (so that strongly differentiable a.e.) on Ry;
(c) u(-) satisfies the equation in (ACP) a.e. on R, as well as the initial condition.

Now we state the main result in this section.

Theorem 2.1. Let A, & € Ry and o, 8,7 € R. Assume that conditions (A1)—(AB) are
satisfied. Then for any ug € X there exists a unique strong solution u(-) € C([0,00); X)
to (ACP). Also, u(-) has the following properties:

(a) u(") € Cpe*(Ry; X), with [|u(t)]| < e"uol| ¥t > 0;

(b) Su(*), Op(u()), (du/dt)(-) € Li(Ry; X);

(¢) p(u()) and ¥(u(-)) are locally absolutely continuous on R..

Furthermore, let v(+) be a unique strong solution to (ACP) with v(0) = vy € X. Then
(2.1) llut) — v(t)]| < 6lf’(1t+.lf<ze“+t(Huoll\/ilﬂoil)2HUO —wl| VE>0,

where Ky == v + (1 — 8)Ca/K? + B? and K, := 0C5+/k? + 5%/(2gx).

Now we shall prove Theorem 2.1. To this end we first take ug € D(¢)ND(y). In what
follows we assume that A\,x € R, o, 8,7 € R and conditions (A1) —(A5) are satisfied.
Given £ > 0, we consider the following problem approximate to (ACP):

dt
u:(0) = ug.

AcP), {dus + (A +ia)Su. + (k +i8)0. (ue) — yue =0, ¢t >0,

Since A, is Lipschitz continuous on X, it follows from [6, Proposition 3.1 (i)] that (ACP),
has a unique strong solution u.(-) € C([0,00); X) such that u.(-) € C*¥2([0,T]; X) and
(du./dt)(-), Su(-) € L*(0,T; X) for every T > 0.

The following lemma was obtained in [7, Lemma 2.3] by using conditions (A1) and
(A3) with 5 := A/(24/K% + 5?).

Lemma 2.2. Let {u.(-)}s>0 be the family of unique strong solutions to (ACP), with ug €
D{p) N D(%) as stated above. Then

(2.2) e ()] < e™fluol] ¥t 20,
t t )
(2.3) 2 / o(ue(s)) ds + gr / PJoue(s)) ds < 5ol V220,
(24) o(u(t)) < eFBlmellp(ug) Vi > 0,
t
2
(2.5) / 1Sus)|?ds < ZeXClolpu) Vi >0,

where K(t, |lugll) = kit + kee®+||uol|? and ky = 2y, + (1 — 8)Cor/K2+ B2, ko :=

8C,\/k2 + B2/ (2qk).
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Next we shall state the following key lemma, in which a new type of condition (A5)
plays an important role. For a proof see [8, Lemma 2.5].

Lemma 2.3. Let {u.(-)}exo be the family of unique strong solutions to (ACP), with ue €
D{(p) N D(%) as stated above. Then there ezists a function u(-) € C([0,00); X) such that
u(0) = uo and

(2.6) ue(-) = u(-) (40) in C([0,T;X) VT >0,
(2.7) Joue () = u() (€4 0) in L*0,T;X) VT >0.

Now we can prove the existence of strong solutions to (ACP) with “uq € D{¢)ND(¥)”.

Lemma 2.4. Let \,k € Ry and o, 3,7 € R. Assume that conditions (A1) — (A5)
are satisfied. Then for any ug € D(yp) N D(3) there ezists a unique strong solution
u(-) € C([0,00); X) to (ACP) such that

(a) u(+) € C™2([0,T); X) VT > 0, with [[u(t)|| < e*||uo|| Vi 2> 0;

(b) Su(:), 9p(u(-)), (du/dt)(-) € L*(0,T;X) VT > 0;

(c) w(u(-)) and ¥(u()) are absolutely continuous on [0,T] VT >0, with

t t
1
(2.8) ZA/ o(u(s)) ds + qn/ P(u(s)) ds < §eg7+t[|u0[[2 V> 0.
0 0 :
Furthermore, let v() be a unique strong solution to (ACP) with v(0) = v € D{p)ND(%).
Then

(2.9) lu(t) — v(®)|| < 6K1t+K2e2“/+‘(nuonvnvotf)z“uo — || V>0,
where K, and K, are the same constants as in Theorem 2.1.

Proof. Let {uc(-)}e>0 be the family as stated above. Let 7' > 0. Then it follows from
(2.5) that {Su.(*)}e>o0 is bounded in L*(0,T; X). As noted in the proof of Lemma 2.3,
{8%. (e () }eo is bounded in L2(0,T; X) and so is {(due/dt)())}e>0 in view of the equa-
tion in (ACP),. Since S, 0 and d/dt are demiclosed as operators in L%(0,T; X), we see
from Lemma 2.3 that

Suc() = Sul-),  0e(ue() = 09p(Jeue (")) = Fp(ul’))

and (du./dt)(-) = (du/dt)(-) (n — oo) weakly in L?(0,7’; X) and u(-) satisfies properties
(a) and (b). Therefore we can conclude that u(-) is a strong solution to (ACP). Property
(c) is derived from (a) and (b). Letting ¢ | 0 in (2.3) and using (2.6), we obtain (2.8).

To prove (2.9) we use the limiting case of condition (A5): Vi >03C; = Cs(n) >0
such that for u,v € D(dy) N D{0Y),

210)  [(00w) — (e),u— )| < mplu—0) + O(M—Q—M) = ol
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note that for u € D(8¢), 0. (u) — 0P (u) (¢ 4 0) in X. Now let u(-) and v(-) be strong
solutions to (ACP) with u(0) = up and v(0) = vp, respectively. As in the proof of Lemma
2.3, it follows from (2.10) that

(2.11) ——Jlu — vl|?
< llu = v||? = 2X@(u — v) + /K2 + B2 (8¢ () — OY(v), u — v)|

< {6 (REEON Ny, o

< U(u,v)flu— vl

where Cs := Ca+/k2 + 52 and W¥(u, ) is given by

Wlu,v) =7+ 6‘3{(1 —0)+8 (w) } = K1 + Kyqr(v(u) + ¢(v))

(K, and K, are the same constants as in Theorem 2.1). Here (2.8) implies that
t
/ U (u(s),v(s)) ds < Kt + Kae?([uol| V [Jvol)*.
0

Therefore we can obtain (2.9) by integration of (2.11). O
To prove Theorem 2.1 we need the following lemma (cf. [7, Lemma 2.4]).

Lemma 2.5. Let u(-) be a strong solution to (ACP) with u(0) = ue € D(¢) N D(¢) as
in Lemma 2.4 constructed under conditions (A1)—(A5). Then

At 1
(2.12) to(ult)) + ,—‘Z_fg s||Su(s)||>ds < ﬁelf(i,!luo!l)ﬁwtnmH2 vVt >0,

where K(t,||ugl]) is the same as in Lemma 2.2.

Proof. We use the limiting case of condition (A3): V7 > 0 3Cy = C2(n) > 0 such that
for u € D(S) N D(dY),

(2.13) |(Su, 09 (w))] < il Sull® + Catp(u)’ o (w),

where 6 € [0, 1] is the same constant as before; note that for u € D(8v¢), dv.(u) = 0 (u)
(¢ 1 0) in X and ¥(Jeu) < ¢e(u) < 9¥(u). Asin the proof of [7, Lemma 2.3], we see from
(2.13) that

(2.14) %[exp (— /0 k() dr) ga(u(s))} + %exp(— /0 k) d’r) ISu(s)|2 <0,
where k(r) := k; + 2kagrtp(u(r)) > 0, and |

(2.15) 0< /:k(r) dr < /Otk:(r) dr < K(2,{|luell) Vs €]0,t.
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Multiplying the both sides of (2.14) by s € [0,¢] and integrating it on [0, ¢] yield

to(u(t)) + %/Ots : exp(/:k(r) dr) 1Su(s)||* ds < /: exp (/Stk(r) d,r) (u(s))ds

<ep( [ ko) ar) [ oluten s

Therefore (2.12) follows from (2.8) and (2.15). O

Once Lemmas 2.4 and 2.5 are established, we can prove Theorem 2.1 in the same way
as in the proof of [6, Theorem 5.2] (see also [7]).

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying Theorem 2.1 to (CGL). Let X :=
L?(Q) with inner product (,-)z2 and norm || - [|z2. Let 2 < ¢ < 2+4/N. Then we define
the nonnegative selfadjoint operator S in X and the proper lower semi-continuous convex
function 7 on X as follows:

Su:= —Au for u € D(S) := H{(Q) N Hy(Q),
1
“llul|d, if we D) := L¥ Q)N LIQ),
w4 g1 () = @) N L)
00 otherwise.
As is well-known, the subdifferential of ¢ is given by
Op(u) = |ul?%u  for u € D(BY) = L*(Q) N LHY(Q).

Therefore we can regard (CGL) as one of (ACP)s.

To apply Theorem 2.1 it suffices to show that all the conditions (A1) —(AS5) intro-
duced in Section 2 are satisfied. Here we consider only the new type of condition (A5).
For the verification of other conditions (A1) —(A4) see [7]. We begin with the strong
differentiability of the resolvent with respect to approximating parameter €.

Lemma 3.1. Let f € D(3¢). Fore € [0,00) and z € (1 put

(3.1) ua(3) = {(1 +edp) 1 f(@) (e > 0),
(=) (e =0).
Then u, € C([0, E); L*(Q)) Y E > 0 (as a function of ), with
1
(3.2) Pue — 1 +e(q— 1)luslq“26¢6(f) (5 > 0),

R 1) (e =0).
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Proof. Using the inverse function theorem, we can show that u. € C*([0, E]; L*(Q2)) for
every E > 0 (for the proof see [8, Proposition 3.4]). Here we derive only (3.2). To this
end let f € D(8¢) and £ > 0. Then it follows from (3.1) that

(33) @)+ elu) (@) = f(@).
Writing as

Ue(z) = va(o) + i (2),  F(@) = gle) + ih(a),
we see that (3.3) is equivalent to

{”E(”) T e(va(2)? + we(2)) 40, () = g(a),
we(2) + £(ve(2)? 4+ we (7)) D 2, (z) = h(z).

Differentiating the both sides with respect to € yields

v ov ow ov

£ q-2 —_— q—4 £ £ -2 _
5 [ue| T *ve + €(q — 2)|ue| (ve 5 T Ve )ve + elu,| o ,
ow v ow dw

£ 9—2 ' _ Q—4 &€ &€ xq_g £ — 0
o + |ue |9 %w, + (g — 2)|u] (vg-——as +w5'_as )w + &|u, | =

Solving this system of equations with respect to dv./d¢ and dw. /¢, we have

de  14e(g—Dueje2™ 7%
ow 1
€ _ _ 9-2,
R R TR
This implies that
Qe _ ! o(u:), €>0.

Be  1+e(g—1)[ue?
Since dvY(u:) = d.(f), we obtain (3.2) with ¢ > 0. In addition, it follows that
e (ue — f) + 0%(f)ll 22 = (0% (f) = O()llzs = 0 (e L 0).
This shows that (Gu./d¢)|.—o = —F%(f) and hence (3.2) is true at £ = 0. O
As a consequence of Lemma 3.1 we have
Lemma 3.2. Let ¢ > 2. Then for u,v € D(0%) and v, > 0,

1
2(g - 1)

(@ ()~ DW(0), )] < (g = Dl = | 5= O s +

o vl |
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Proof. The computation is almost the same as in [8, Lemma 3.7). Let v € D(0¢) =
L2(Q) N LA~1(Q). For ¢ € [0,00) and z €  put

wlo) = {(1 +edp)tulz) (e > 0),
u(z) (e =0).

Then Lemma 3.1 implies that u, € CY{[0, E]; L?(Q)) for every E > 0. Since dy.(u) =
e Hu — u,) for £ > 0, it follows from (3.2) that
0 1 1 Ou,
5e VW] = 5w = -
1 ou,
- _E{ad)s(u) * 5 ]
=Dl
1+ (g = Delu|?
_(g—=Du
1+ (g — Delufe-?’

e (u)

> 0.

Since |u.| < |ul, we obtain
[%{Bws(u)]‘ < (¢ - Dluf® < (g — D3, e>0.

Therefore we see that for v, u > 0,

v a .
0,(0) = 0, ) = | [ [0 (W] de| < (¢~ Dl - TP,
7
and hence
(3.4) (0 () — Ovu(u), v)2| < (g — 1)|v — pf fn u*~*v| da.
It follows from Holder’s inequality and Young’s inequality that
2¢g -3 _ 1 _
2¢-3 2¢-3 g 2(q-1) 2(g—1)
/Qlul lujdz < H“Hqu(qnx)HUHLQ(‘r—U < (2(q —) ”u”mq(q—n + 20g—1) “U”L;(q—n)'
Applying this inequality to the right-hand side of (3.4), we can obtain the desired in-
equality because of [lu}@(&ﬁz} = ||0¢(u)|[3.. : O

Lemma 3.2 shows that condition (A5) is satisfied with

_2q-3 - 1
20¢-1)  2(¢-1)

Therefore Theorem 2.1 applies to give the assertion of Theorem 1.1.
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