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SYNTACTIC MONOIDS AND LANGUAGES*

TERUYUKI MITOMA AND KUNITAKA SHOJI
DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY

MATSUE, SHJMANE, 690-8504 JAPAN

In this paper, we investigate the structures of syntactic monoids of languages and take

up the related problems.

1 Syntactic monoids
Definition 1. $X$ is finite alphabet, $X^{*}$ is the set of words over $X$ , $L$ is a subset of $X$ ”,

is called a language. The syntactic congruence $\sigma L$ on $X^{*}$ is defined by $w\sigma_{L}w$
’ if and only

if the sets { ($x$ , $y)\in X^{*}\mathrm{x}$ $X^{*}|$ xwy $\in L$ } $)$

$\{(x,y)\in X^{*}\cross X^{*}|xwy \in L\}$ are equal to each

other. The syntactic monoid of $L$ is defined to be a monoid $X^{*}/\sigma L$ .

Definition 2. An finite automaton $A$ is a quintuple

$A=(A, V, E, I,T)$

where $X$ is a finite alphabet, $V$ is a finite set of states, $E$ is a finite set of directed edges

each of which is labelled by a letter of $X$ ; edges $e$ are written as $e=$ $(v, a, v’)$ where

$v$ , $v’\in V$ and $a\in X$ . I is a subset of $V$ , each of which is called an initial state, and $T$ is

a subset of $V$ , each of which is called a terminal state.

Let $L$ be a language over X. Then we say that $L$ is a regular language over $X$ if there

exists an automaton $A$ with $L=L(A)$ .

Result 1. Let $L$ be a language over X. Then $L$ is regular if and only if $Syn(L)$ is $a$

finite rnonoid.

Problem 1. Given a language $L$ , discribe structure of $Syn(L)$ .

Result 2. Let $L$ be a language of $X^{*}$ and $L^{c}$ the complement of the set $L$ in $X^{*}$ . Then

$Syn(L)=Syn(L^{c})$ .

Example 1. Let $A=\{\mathrm{a}\mathrm{i}, \cdots, a_{n}\}$ . Let $L$ be a language of $A^{*}$ . If the syntactic monoid

$Syn(L)$ is a right zero semigroup with 1, then $Syn(L)$ is three-element semigroup.

$\overline{*\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{s}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{c}\mathrm{t}}$and the paper will appear elsewhere
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Example 2. $A=\{a_{1}, \cdots , a_{n}\}$ . For any $w=b_{1}b_{2}\cdots b_{r}$ , let $w^{R}=b_{r}\cdots$ $b_{2}b_{1}$ . Let
$L=\{ww^{R}|w\in A^{*}\}$ . Then $Syn(L)$ is the free monoid $A^{*}$ on $A$ .

Example 3. Let $A=\{a, b\}$ and $L=\{a^{n}b^{n}|n\in N\}$ . Then all of $\sigma_{L}$-classes are {1},
{ab}, {ab}, $\{b^{n}\}$ , $c_{n}=\{a^{p+n}b^{\mathrm{p}}|p\in N\}$ , $d_{n}=\{a^{q}b^{q+n}|q\in N\}$ , $0=A^{*}baA^{*}$ . Also,
$Syn(L)-\{0, 1\}$ is a $D$-clas $\mathrm{s}$ .

Example 4 Let $A=\{\mathrm{a}, \cdots, a_{n}\}$ . Give the length and lexicographic ordering on $A^{*}$ with
$a_{1}<\cdots<a_{n}$ . Let $w_{n}$ be the word obtained by juxtapointing words of length $n$ to $x_{1}^{n}$ from
lower to upper in the the length and lexicographic ordering. For instance, $w1=a1\cdots$ $a_{n}$ ,

$w_{2}=(a_{1}a_{1})(a_{1}a_{2})\cdots\cdots(a_{1}a_{n})\cdots$ $(a_{n}a_{n-1})(a_{n}a_{n})$ and so on.

and let $L=\{w_{n}|n\in N\}$ be the set of words. The free monoid $A^{*}$ on $A$ is isomorphic
to $Syn(L)$ .

Example 5. Let $A=\{a_{1}, \cdots, ar\}$ and let $L$ be the set of words $w_{n}$ in which each $ai$

occurs exactly $n$ times. Then the free commutative monoid on A is isomorphic to $Syn(L)$ .

Result 3. For every finitely generated group G, there exists a language L of $X^{*}$ such
that G is isomorphic to $Syn(L)$ .

2 $A$-Graphs, Automata, and embedding of monoids
in Syntactic monoids

Definition 3. Let $A$ be a finite set. Then $G=(A, V, E)$ is a {directed) $A$ -graph, where $V$

is a set of vertices, $E$ is a set of directed edges with a letter as label and so edges $e$ from
a vertex $v$ to a vertex $v’$ are written as $e=(v, a, v’)$ or 6 ; $v\supset^{a}v^{t}$ .

A $A$-graph $G=(A, V, E)$ is said to be dete rministic if $\forall v\in V$, $\forall a\in A$ , there exists
at most one vertex $v’\in V$ such that $(v, a, v’)\in E$ .

Assume that a $A$-graph $G=(A, V, E)$ is deterministic. For any $a\in A$ , define a partial
map $\varphi_{a}$ : $Varrow V$ by $\varphi_{a}(u)=v$ if there exsists $(u, a, v)\in E$ . We obtain the submonoid
$M(G)$ of $\mathcal{P}\mathcal{T}(V)$ generated by the set $\{\varphi_{a}\}_{a\in A}$ , where $P\mathcal{T}(V)$ is the monoid of all partial
maps $Varrow V$ . $M(G)$ is called the monoid of $G$ .

Fix a deterministic $A$-graph $G=(A, V, E)$ . Let $\mathrm{i}$ be an element of $V$ , called an initial
vertex of $G$ . Let $T$ be a subset of $V$ , whose elements are called terminal vertices of $G$. We
obtain a (unnecessarily finite) deterministic automaton $A(G)$ in which $V$ is a set of states,
$E$ is a set of edges, $\mathrm{i}$ is an initial state, and $T$ is a set of terminal states.

Given edges $e_{i}=(u_{i}, a_{i}, u_{\iota+1})(1\leq \mathrm{i}\leq n)$ , the sequence eie2 $\ldots e_{n}$ is called path from
a state $u_{1}$ to a state $u_{n+1}$ . the word $a_{1}a_{2}\cdots a_{n}$ is a label of the path $p=\mathrm{e}\mathrm{i}\mathrm{e}2\cdots$ $e_{n}$ , the
length of $p$ is $n$ , and then we write it as $|p|=n$ .
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If $u_{1}$ is an initial state and $v_{n}$ is a terminal state, then $e1$ e2 $\ldots$ $e_{n}$ is called a successful
path.

A deterministic automaton $A(G)$ is called accessible if for any vertex $v$ of $G$ , there
exists a path from a initial vertex to $v$ .

A deterministic automaton $A(G)$ is called $co$ accessible if for any vertex $v$ of $G$ , there
exists a path from $v$ to a terminal vertex.

Lemma 1. For any deterministic automaton A, there exists an accessible and co-
accessible automaton B such that $L(A)$ $=L(B)$ .

There is an action of $A^{*}$ on $V$ , that is, we write as $vw=u$ if there exists a path fiiom
$u$ to $v$ with a label $w$ .

Fix an automaton $A=(A, V, E, I,T)$ . Define a relation $\equiv \mathrm{o}\mathrm{n}$ $V$ defined by $v\equiv u$

$(u, v\in V)$ if and only if

$\{w\in A^{*}|vw\in T\}$ $=\{w\in A^{*}|uw\in T\}$ .

We get anew automaton $\overline{A}=$ $(A, \overline{V},\overline{E},\overline{I},\overline{T})$ , where $\overline{V}=V/\equiv$ , $\overline{E}=\{(\overline{u},a,\overline{v})|(u, a, v)\in$

$E\}$ (for $u\in V$), $\overline{u}=\{v\in V|u\equiv v\})$ , $\overline{I}=I/\equiv$ , $\overline{T}=T/\equiv$ .
Lemma 2. Let A $=(A,$V, E, I, T) 6e an deterministic accessible $co$ -accessible automaton.
Then $\overline{A}=(A,\overline{V},\overline{E},\overline{I},\overline{T})$ is a minimal automaton recognizing $L(A)$ .

Fix a deterministic $A$-graph $G=$ $(A, V=\{v_{1},v_{2}, \ldots\}, E)$ . We get an minimal
automaton $Ac$ $=$ $(A’, V’, E’, \{\mathrm{i}\}, \{t\})$ where $A’=A\cup\{\alpha,\beta\}$ , $V’=V\cup\{\mathrm{i}, t\}$ and
$E^{t}=\{(\mathrm{i}, \alpha,v_{1}), (v_{j}, \alpha, v_{j+1}), (v_{j+1}, \beta,v_{j}), (v_{1}, \beta, t)|j=1,2, \ldots\}$.

Theorem 1. Let G $=(A,$V, E) be a deterministic $A$-graph. For the automaton $A_{G}$

constructed above, $M(G)$ is embedded in $Syn(L(A_{G}))$ .

Consequently, any monoid is a submonoid of a syntactic monoid.

3 Embedding of inverse monoids in syntactic monoids

Definition 4. A monoid $M$ is called an inverse monoid if for any $s\in M$ , there exsists

uniquely an element $m\in M$ with $msrn=m$, $srns=s$ .

Let $G=(A, V, E)$ be a deterministic $A$-graph. Then $G$ is called injective if there is no
pair of two edges of form $(u, a, v)$ and $(u’, a,v)$ , where $a\in A$ , $u$ , $u’$ , $v\in V$ .

By choosing initial vertices and terminal vertices from $V$ , we obtain an injective de-

terministic automaton $A(G)$ .

Then the monoid $M(G)$ of $G$ is a submonoid of the symmetric inverse monoid $S(V)$

on the set of $V$ .
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Now we have the following results which are an inverse monoid-version of Lemma 2
and Theorem 1.

Lemma 3. Let A $=(A,$V, E, I, T) be an deterministic accessible $co$ -accessible injective
automaton.

Then $\overline{A}=(A,\overline{V},\overline{E}, \overline{I}, \overline{T})$ is a minimal automaton decognizing $L(A)$ .

Fix a deterministic injective $A$-graph $G=$ $(A, V=\{v_{1},v_{2}, \ldots\},E)$ . We get an injec-
tive automaton $A_{G}=$ $(A’, V’, E’, \{\mathrm{i}\}, \{t\})$ where $A’=A\cup\{\alpha, \beta\}$ , $V’=V\cup\{\mathrm{i},t\}$ , $E^{l}=$

$4\mathrm{I}(\mathrm{i}, \alpha, v_{1})$ , $(vj, \alpha, vj+1)$ , $(\mathrm{V}, \alpha’, \mathrm{i})$ , $(v_{j+1,j}\alpha’, v)$ , $(vj+1, \beta, v_{j})$ , $(v_{1}, \beta, t)$ , $(\mathrm{V}, \beta’, v_{j+1})$ , $(t, \beta’, v_{1})$

$|_{\mathrm{J}}=1$ , 2, $\ldots$ }.

Theorem 2. Let G $=(A,$V, E) be a deterministic injectiveA-graph. For the automaton
$A_{G}$ constructed above, $M(G)$ is embedded in an inverse monoid $Syn(L(A_{G}))$ .

Consequently, any inverse monoid is a submonoid of an inverse syntactic monoid.

4 Word problems for Syntactic monoids of context-
free languages

Definition 5, Context-free languages are defined as languages consisting of words ac-
cepted by pushdown automata. Equivalently, context-free languages are defined languages
accepted by formal grammars as follow $\mathrm{s}$ :

A formal gramm ar $\Gamma$ consists of a finite set $V$ of symbols and a special symbol $\sigma$ , a
finite set of alphabets $A$ and a subset $P$ of $V^{+}\cross$ $(V\cup A)’$ , which is called product. Then
the formal grammar $\Gamma$ is denoted by $(V, A, P, \sigma)$ .

Definition 6. Let L be a language over a finite alphabet A. Then a word problem for
the syntactic monoid $Syn(L)$ is the following question:

For any pair of two words $w,w^{J}\in A^{*}$ , does there exists an algorithm deciding whether
$(w, w’)\in\sigma_{L}$ or $(w, w’)\not\in\sigma_{L}$ ?

Let I be a non-empty set of a semigroup $S$ . Then I is called an ideal of $S$ . An ideal
I of $S$ is called completely prime if for any $x$ , $y\in S$ , $xy\in I$ implies that either $x\in I$ or
$y\in I$ .

The following follows immediately.

Lemma 4. Let L be a language over A and sub(L)) the set of subwords of words in L.

Then the complement of sub(L) in $L$ is completely prime.

Corollary 1. Let L be a language over A and sub(Ll the set of subwords of words in L.
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Then the syntactic monoid $Syn(L)$ has a zero element if and only if either $A^{*}\neq$ sub(L)
or $A^{*}\neq sub(L^{\mathrm{c}})$ .

Theorem 3. Let $L$ be a language over A. The syntactic monoid Syn(L) has a zero
element if and only if there exists $a$ word $w$ over A such that either $A^{*}wA^{*}\subseteq L$ or
$A^{*}wA^{*}\underline{\subseteq}L^{c}$ .

Problem 2 Let L be a deterministic context-free language over a finite alphabet A. Then
is word problem for the syntactic monoid $Syn(L)$ undecidable ?

Problem 3 Let L be a deterministic context-free language over a finite alphabet A. Then
is it decidable whether the syntactic monoid $Syn(L\mathrm{I}$

, has a zero element or not ?

5 Presentation of monoids with regular congru-
ence classes

Result 4. Let G be a finitely generated group and $\varphi$ : $A^{*}arrow G$ an onto homornorphism

with L $=\varphi^{-1}(1)(\subseteq A^{*})$ . Then

(1) ([6]) $G$ is finite if and only if $L$ is a regular language.

(2) ([7], [8], [9]) $G$ is veriually free (a finite extension of free group) if and only if $L$ is

a dete rministic context-free language.

Lemma 5. Let L be a language of $A^{*}$ . Then L is a union of $\sigma_{L}$ classes in $A^{*}$ .

Theorem 4. Let L be a language of $A^{*}$ . Then the following are equivalent :

(1) $L$ is a $\sigma_{L}$ -class in $A^{*}$ .

(2) $xLy\cap L\neq\emptyset$ $(x, y\in A^{*})\Rightarrow xLy\subseteq L$ .

(3) $L$ is an inverse image $\phi^{-1}(m)$ of a homomorphism $\phi$ of $A^{*}$ to a monoid $M$ .

Theorem 5. For every finitely generated monoid M, there exist languages $\{L_{m}\}_{m\in M}$ of
$A^{*}$ such that M is embedded in the direct product of syntactic semigroups.

Definition 7. Let $M$ be a monoid and $A$ a finite alphabet. $M$ has the presentation with

regular congruence classes if there exists a onto homomorphism of $\varphi$ : $A^{*}arrow M$ is such

that if for any $m\in M$ , $\varphi^{-1}(m)$ is a regular language.

Definition 8. A monoid M is residually finite if for each pair of elements $m,m’\in M$ ,

there exists a conguence $\mu$ on M such that the factor monoid $M/\mu$ is finite and (m,$m’)\not\in\mu$ .

Theorem 6. Let M be a finitely generated monoid and $\phi$ : $A^{*}arrow M$ a onto homomor-

phism.

Then for each $m\in M$ , the following are equivalen
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(1) $\phi^{-1}(m)$ is a regular language

(2) $|M/\sigma_{m}|<\infty$ .

Let $M$ be a monoid and $m$ an element of M. Define a relation $\sigma_{m}$ by $a\sigma_{m}b(a, b\in M)$

if and only if
$\{(x, y)\in M\mathrm{x} M|xay=m\}=\{(x, y)\in M\mathrm{x} M|xby=m\}$ .

Then $\sigma_{m}$ is a congruence on $M$ .

Theorem 7. Let M be a finitely generated monoid and $\varphi$ : $A^{*}arrow M$ be a presentation
of M with regular congruence classes. Then M is residually finite.
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