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SYNTACTIC MONOIDS AND LANGUAGES”

TERUYUKI MITOMA AND KUNITAKA SHOJI
DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY
MATSUE, SHIMANE, 690-8504 JAPAN

In this paper, we investigate the structures of syntactic monoids of languages and take
up the related problems.

1 Syntactic monoids

Definition 1. X is finite alphabet, X™ is the set of words over X, L is a subset of X *
is called a language. The syntactic congruence o, on X™ is defined by wopw' if and only
if the sets {(z,y) € X* x X* | zwy € L}, {(z,y) € X" x X~ | zw'y € L} are equal to each
other. The syntactic monoid of L is defined to be a monoid X*/or.

Definition 2. An finite automaton A is a quintuple
A: (A7‘/—’E1[7T)

where X is a finite alphabet, V is a finite set of states, F is 2 finite set of directed edges
each of which is labelled by a letter of X ; edges e are written as e = {(v,a,v"), where
v, € Vanda€ X. Iisasubset of V', each of which is called an initial state, and T' is
a subset of V, each of which is called a terminal state.

Let L be a language over X. Then we say that Lis a regular language over X if there
exists an automaton A with L = L{A4).

Result 1. Let L be a language over X. Then L is regular if and only if Syn(L) is a
finite monoid.

Problem 1. Given a language L, discribe structure of Syn(L).

Result 2. Let L be o language of X* and L° the complement of the set L in X*. Then
Syn(L) = Syn(L®).

Example 1. Let A= {a,--- ,an}. Let L be a language of A*. If the syntactic monoid
Syn(L) is a right zero semigroup with 1, then Syn{L) is three-element semigroup.

*This is an absrtact and the paper will appear elsewhere.
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Example 2. A = {a;,---,a,}. For any w = biby-- by, let wF = b, ---baby. Let
L = {ww®|w € A*}. Then Syn(L) is the free monoid A* on A.

Example 3. Let A = {a,b} and L = {a™"|n € N}. Then all of or-classes are {1},
{ab}, {a"}, {b"}, ¢, = {aPT"Plp € N}, dp = {a%9"]g € N}, 0 = A*baA*. Also,
Syn(L) — {0,1} is a D-class. ’

Example 4 Let A = {a1,--,a,}. Give the length and lexicographic ordering on A* with
a1 < -+ < ay. Let wy, be the word obtained by juxtapointing words of length n to 7 from
lower to upper in the the length and lexicographic ordering. For instance, wy = ay - an,

wy = {a1a1){a1ag) -+~ (@1n) - - - {anan-1){anan) and so on.

and let L = {wy|n € N} be the set of words. The free monoid A* on A is isomorphic
to Syn(L).

Example 5. Let A = {aj,+--,a,} and let L be the set of words w, in which each a;
occurs exactly n times. Then the free commutative monoid on A is isomorphic to Syn{L).

Result 3. For every finitely generated group G, there exists a language L of X* such
that G is isomorphic to Syn(L).

2 A-Graphs, Automata, and embedding of monoids
in Syntactic monoids

Definition 3. Let A be a finite set. Then G = (A, V, E) is a (directed) A-graph, where V
is a set of vertices, F is a set of directed edges with a letter as label and so edges e from
a vertex v to a vertex v’ are written as e = (v,a,v') or e : v == ¢/,

A A-graph G = (4,V, E) is said to be deterministic if Yu € V, Va € A, there exists
at most one vertex v’ € V such that (v,q,v') € E.

Assume that a A-graph G = (4,V, E) is deterministic. For any a € A, define a partial
map g : V — V by p,(u) = v if there exsists (u,a,v) € E. We obtain the submonoid
M(QG) of PT(V) generated by the set {¢g}aea, where PT (V) is the monoid of all partial
maps V — V. M(G) is called the monoid of G.

Fix a deterministic A-graph G = (A,V, E). Let 7 be an element of V, called an initial
vertex of G. Let T be a subset of V, whose elements are called terminal vertices of G. We
obtain a (unnecessarily finite) deterministic automaton A(G) in which V is a set of states,
E is a set of edges, ¢ is an initial state, and T is a set of terminal states.

Given edges e; = (us, 64, ui+1) (1 <1< n), the sequence eje; - - - ey is called path from
a state u; to a state upy1. the word ajag - a, is a label of the path p = ejez--- €, , the
length of p is n, and then we write it as |p| = n.
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If u; is an initial state and v, is a terminal state, then eqes - - - €, is called a successful
path.

A deterministic automaton A(G) is called accessible if for any vertex v of G, there
exists a path from a initial vertex to v.

A deterministic automaton A(G) is called co-accessible if for any vertex v of G, there
exists a path from v to a terminal vertex.

Lemma 1. For any deterministic automaton A, there erists an accessible and co-
accessible automaton B such that L{A) = L(B).

There is an action of A* on V, that is, we write as vw = u if there exists a path from
1 to v with a label w.

Fix an automaton 4 = (A4,V,E,I,T). Define a relation = on V defined by v = u
(u,v € V) if and only if

{we A*vw € T} = {w € A*luw € T}.
We get a new automaton A = (4,V,E,I,T), where V = V/ =, F = {(%,0,7) | (u,0,v) €
E}forueV),a={eViu=}),I=1/=T=T/=

Lemma 2. Let A= {A,V,E,I,T) be an deterministic accessible co-accessible automaton.
Then A = (A, V,E,1,T) is a minimal automaton recognizing L{A).

Fix a deterministic A-graph G = (4,V = {v1,vg,...},E). We get an minimal
automaton Ag = (A, V', E', {i},{t}) where A’ = AU {q,8}, V' = V U {i,t} and
E' = {(?;,Ot, Ul)? (?)j,a, vj+1)a (’Uj+11/6?vj)a (01763 t) l .7 = 1127 . }

Theorem 1. Let G = (A,V,E) be a deterministic A-graph. For the automaton Ag
constructed above, M(Q) is embedded in Syn(L(Ag)).

Consequently, any monoid is a submonoid of a syntactic monoid.

3 Embedding of inverse monoids in syntactic monoids

Definition 4. A monoid M is called an inverse monoid if for any s € M, there exsists
uniquely an element m € M with msm = m, sms = s.

Let G = (A, V, E) be a deterministic A-graph. Then G is called injective if there is no
pair of two edges of form (u,a,v) and (v/,a,v), where a € 4, u, v, v € V.

By choosing initial vertices and terminal vertices from V, we obtain an injective de-
terministic automaton A(G).

Then the monoid M(G) of G is a submonoid of the symmetric inverse monoid S(V)
on the set of V.
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Now we have the following results which are an inverse monoid-version of Lemma 2
and Theorem 1.

Lemma 3. Let A = (A, V,E,I,T) be an deterministic accessible co-accessible injective
automaton.

Then A= (A,V,E,1,T) is a minimal automaton decognizing L(A).

Fix a deterministic injective A-graph G = (A4,V = {v1,ve,...}, E). We get an injec-
tive automaton Ag = (A, V', E', {i}, {t}) where A’ = AU {a, 8}, V! =V U{it}, B =
{(Zv Q, Ul)) ('Uj) &, 'Uj+1), (Ula al, 2)7 (Uj-i-l) Gf', Uj)f (Uj-!-l: ﬂv Uj)) ('U]_, /8: t)) (,Ujv /611 'Uj-i-l)a (t’ ﬁlf 'Ul)
bh=12,...}

Theorem 2. Let G = (A,V,E) be a deterministic injectiveA-graph. For the automaton
Ag constructed above, M(G) is embedded in an inverse monoid Syn(L(Ag)).

Conseguently, any inverse monoid is a submonoid of an inverse syntactic monoid.

4 Word problems for Syntactic monoids of context-
free languages |

Definition 5. Context-free languages are defined as languages consisting of words ac-
cepted by pushdown automata. Equivalently, context-free languages are defined languages
accepted by formal grammars as follows :

A formal grammar I" consists of a finite set V' of symbols and a special symbol o, a
finite set of alphabets A and a subset P of V't x (V U A)*, which is called product. Then
the formal grammar I is denoted by (V, 4, P, o).

Definition 6. Let L be a language over a finite alphabet A. Then a word problem for
the syntactic monoid Syn(L) is the following question:

For any pair of two words w,w’ € A*, does there exists an algorithm deciding whether
(w,w') € o or (w,w') ¢ o ?

Let I be a non-empty set of a semigroup S. Then I is called an ideal of S. An ideal
I of S is called completely prime if for any z,y € S, zy € I implies that either z € I or
y el

The following follows immediately.
Lemma 4. Let L be a language over A and sub(L) the set of subwords of words in L.
Then the complement of sub(L) in L is completely prime.

Corollary 1. Let L be a language over A and sub(L) the set of subwords of words in L.



Then the syntactic monoid Syn(L) has a zero element if and only if either A* # sub(L)
or A* # sub(L°).

Theorem 3. Let L be a language over A. The syntactic monoid Syn{L) has a zero
element if and only if there ezists o word w over A such that either A*wA* C L or
A*wA* C L°,

Problem 2 Let L be a deterministic context-free language over a finite alphabet A. Then
is word problem for the syntactic monoid Syn(L) undecidable ?

Problem 3 Let L be a deterministic context-free language over a finite alphabet A. Then
is it decidable whether the syntactic monoid Syn(L) has a zerc element or not ?

5 Presentation of monoids with regular congru-
ence classes

Result 4. Let G be a finitely generated group and ¢ : A* — G an onto homomorphism
with L = o~ (1) (C A*). Then

(1) ([6]) G is finite if and only if L is a regular language.

(2) (17],[81,19]) G is vertually free (a finite eztension of free group) if and only if L is
a deterministic context-free language.

Lemma 5. Let L be a language of A*. Then L is o union of o -classes in A*.
Theorem 4. Let L be a language of A*. Then the following are equivalent :

(1) L is a op-class in A*.

(2) zLy NL#0 (z,y € A*) = zLy C L.

(3) L is an inverse image ¢~1(m) of a homomorphism ¢ of A* to a monoid M.

Theorem 5. For every finitely generated monoid M, there ezist languages {Lm}mem of
A* such that M is embedded in the direct product of syntactic semigroups.

Definition 7. Let M be a monoid and A a finite alphabet. M has the presentation with
regular congruence classes if there exists a onto homomorphism of ¢ : A* — M is such
that if for any m € M, ¢~ 1(m) is a regular language.

Definition 8. A monoid M is residually finite if for each pair of elements m, m € M,
there exists a conguence p on M such that the factor monoid M/p is finite and (m,m') ¢ u.

Theorem 6. Let M be a finitely generated monoid and ¢ : A* — M a onto homomor-
phism.

Then for each m € M, the following are equivalent.

15
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(1) ¢=Y(m) is a regular language

(2) | M/om| < .

Let M be a monoid and m an element of M. Define a relation o, by aomb (a,b € M)
if and only if

{(z,y) € M x M | zay =m} = {(z,y) € M x M | zby = m}.
Then op, i8 a congruence on M.

Theorem 7. Let M be a finitely generated monoid and ¢ : A* — M be a presentation
of M with regular congruence classes. Then M is residually finite.
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