SYntactic monoids and languages＊

Teruyuki Mitoma and Kunitaka Shoji
Department of Mathematics，Shimane University
Matsue，Shimane，690－8504 Japan

In this paper，we investigate the structures of syntactic monoids of languages and take up the related problems．

1 Syntactic monoids

Definition 1．X is finite alphabet，X^{*} is the set of words over X, L is a subset of X^{*} ， is called a language．The syntactic congruence σ_{L} on X^{*} is defined by $w \sigma_{L} w^{\prime}$ if and only if the sets $\left\{(x, y) \in X^{*} \times X^{*} \mid x w y \in L\right\},\left\{(x, y) \in X^{*} \times X^{*} \mid x w^{\prime} y \in L\right\}$ are equal to each other．The syntactic monoid of L is defined to be a monoid X^{*} / σ_{L} ．

Definition 2．An finite automaton \mathcal{A} is a quintuple

$$
\mathcal{A}=(A, V, E, I, T)
$$

where X is a finite alphabet，V is a finite set of states，E is a finite set of directed edges each of which is labelled by a letter of X ；edges e are written as $e=\left(v, a, v^{\prime}\right)$ ，where $v, v^{t} \in V$ and $a \in X . I$ is a subset of V ，each of which is called an initial state，and T is a subset of V ，each of which is called a terminal state．

Let L be a language over X ．Then we say that L is a regular language over X if there exists an automaton \mathcal{A} with $L=L(\mathcal{A})$ ．
Result 1．Let L be a language over X ．Then L is regular if and only if $\operatorname{Syn}(L)$ is a finite monoid．
Problem 1．Given a language L ，discribe structure of $\operatorname{Syn}(L)$ ．
Result 2．Let L be a language of X^{*} and L^{c} the complement of the set L in X^{*} ．Then $\operatorname{Syn}(L)=\operatorname{Syn}\left(L^{c}\right)$ ．
Example 1．Let $A=\left\{a_{1}, \cdots, a_{n}\right\}$ ．Let L be a language of A^{*} ．If the syntactic monoid $\operatorname{Syn}(L)$ is a right zero semigroup with 1 ，then $\operatorname{Syn}(L)$ is three－element semigroup．

[^0]Example 2. $A=\left\{a_{1}, \cdots, a_{n}\right\}$. For any $w=b_{1} b_{2} \cdots b_{r}$, let $w^{R}=b_{r} \cdots b_{2} b_{1}$. Let $L=\left\{w w^{R} \mid w \in A^{*}\right\}$. Then $\operatorname{Syn}(L)$ is the free monoid A^{*} on A.

Example 3. Let $A=\{a, b\}$ and $L=\left\{a^{n} b^{n} \mid n \in N\right\}$. Then all of σ_{L}-classes are $\{1\}$, $\{a b\},\left\{a^{n}\right\},\left\{b^{n}\right\}, c_{n}=\left\{a^{p+n} b^{p} \mid p \in N\right\}, d_{n}=\left\{a^{q} b^{q+n} \mid q \in N\right\}, 0=A^{*} b a A^{*}$. Also, $\operatorname{Syn}(L)-\{0,1\}$ is a \mathcal{D}-class.

Example 4 Let $A=\left\{a_{1}, \cdots, a_{n}\right\}$. Give the length and lexicographic ordering on A^{*} with $a_{1}<\cdots<a_{n}$. Let w_{n} be the word obtained by juxtapointing words of length n to x_{1}^{n} from lower to upper in the the length and lexicographic ordering. For instance, $w_{1}=a_{1} \cdots a_{n}$,
$w_{2}=\left(a_{1} a_{1}\right)\left(a_{1} a_{2}\right) \cdots \cdots\left(a_{1} a_{n}\right) \cdots\left(a_{n} a_{n-1}\right)\left(a_{n} a_{n}\right)$ and so on.
and let $L=\left\{w_{n} \mid n \in N\right\}$ be the set of words. The free monoid A^{*} on A is isomorphic to $\operatorname{Syn}(L)$.

Example 5. Let $A=\left\{a_{1}, \cdots, a_{r}\right\}$ and let L be the set of words w_{n} in which each a_{i} occurs exactly n times. Then the free commutative monoid on A is isomorphic to $\operatorname{Syn}(L)$.

Result 3. For every finitely generated group G, there exists a language L of X^{*} such that G is isomorphic to $\operatorname{Syn}(L)$.

2 A-Graphs, Automata, and embedding of monoids in Syntactic monoids

Definition 3. Let A be a finite set. Then $G=(A, V, E)$ is a (directed) A-graph, where V is a set of vertices, E is a set of directed edges with a letter as label and so edges e from a vertex v to a vertex v^{\prime} are written as $e=\left(v, a, v^{\prime}\right)$ or $e: v \stackrel{a}{\Longrightarrow} v^{\prime}$.

A A-graph $G=(A, V, E)$ is said to be deterministic if $\forall v \in V, \forall a \in A$, there exists at most one vertex $v^{\prime} \in V$ such that $\left(v, a, v^{\prime}\right) \in E$.

Assume that a A-graph $G=(A, V, E)$ is deterministic. For any $a \in A$, define a partial $\operatorname{map} \varphi_{a}: V \rightarrow V$ by $\varphi_{a}(u)=v$ if there exsists $(u, a, v) \in E$. We obtain the submonoid $M(G)$ of $\mathcal{P T}(V)$ generated by the set $\left\{\varphi_{a}\right\}_{a \in A}$, where $\mathcal{P} \mathcal{T}(V)$ is the monoid of all partial maps $V \rightarrow V . M(G)$ is called the monoid of G.

Fix a deterministic A-graph $G=(A, V, E)$. Let i be an element of V, called an initial vertex of G. Let T be a subset of V, whose elements are called terminal vertices of G. We obtain a (unnecessarily finite) deterministic automaton $\mathcal{A}(G)$ in which V is a set of states, E is a set of edges, i is an initial state, and T is a set of terminal states.

Given edges $e_{i}=\left(u_{i}, a_{i}, u_{i+1}\right)(1 \leq i \leq n)$, the sequence $e_{1} e_{2} \cdots e_{n}$ is called path from a state u_{1} to a state u_{n+1}. the word $a_{1} a_{2} \cdots a_{n}$ is a label of the path $p=e_{1} e_{2} \cdots e_{n}$, the length of p is n, and then we write it as $|p|=n$.

If u_{1} is an initial state and v_{n} is a terminal state, then $e_{1} e_{2} \cdots e_{n}$ is called a successful path.

A deterministic automaton $\mathcal{A}(G)$ is called accessible if for any vertex v of G, there exists a path from a initial vertex to v.

A deterministic automaton $\mathcal{A}(G)$ is called co-accessible if for any vertex v of G, there exists a path from v to a terminal vertex.

Lemma 1. For any deterministic automaton \mathcal{A}, there exists an accessible and coaccessible automaton \mathcal{B} such that $L(\mathcal{A})=L(\mathcal{B})$.

There is an action of A^{*} on V, that is, we write as $v w=u$ if there exists a path from u to v with a label w.

Fix an automaton $\mathcal{A}=(A, V, E, I, T)$. Define a relation \equiv on V defined by $v \equiv u$ $(u, v \in V)$ if and only if

$$
\left\{w \in A^{*} \mid v w \in T\right\}=\left\{w \in A^{*} \mid u w \in T\right\}
$$

We get a new automaton $\overline{\mathcal{A}}=(A, \bar{V}, \bar{E}, \bar{I}, \bar{T})$, where $\bar{V}=V / \equiv \bar{E}=\{(\bar{u}, a, \bar{v}) \mid(u, a, v) \in$ $E\}($ for $u \in V), \bar{u}=\{v \in V \mid u \equiv v\}), \bar{I}=I / \equiv, \bar{T}=T / \equiv$.
Lemma 2. Let $\mathcal{A}=(A, V, E, I, T)$ be an deterministic accessible co-accessible automaton. Then $\overline{\mathcal{A}}=(A, \bar{V}, \bar{E}, \bar{I}, \bar{T})$ is a minimal automaton recognizing $L(\mathcal{A})$.

Fix a deterministic A-graph $G=\left(A, V=\left\{v_{1}, v_{2}, \ldots\right\}, E\right)$. We get an minimal automaton $\mathcal{A}_{G}=\left(A^{\prime}, V^{\prime}, E^{\prime},\{i\},\{t\}\right)$ where $A^{\prime}=A \cup\{\alpha, \beta\}, V^{\prime}=V \cup\{i, t\}$ and $E^{\prime}=\left\{\left(i, \alpha, v_{1}\right),\left(v_{j}, \alpha, v_{j+1}\right),\left(v_{j+1}, \beta, v_{j}\right),\left(v_{1}, \beta, t\right) \mid j=1,2, \ldots\right\}$.
Theorem 1. Let $G=(A, V, E)$ be a deterministic A-graph. For the automaton \mathcal{A}_{G} constructed above, $M(G)$ is embedded in $\operatorname{Syn}\left(L\left(\mathcal{A}_{G}\right)\right)$.

Consequently, any monoid is a submonoid of a syntactic monoid.

3 Embedding of inverse monoids in syntactic monoids

Definition 4. A monoid M is called an inverse monoid if for any $s \in M$, there exsists uniquely an element $m \in M$ with $m s m=m, s m s=s$.

Let $G=(A, V, E)$ be a deterministic A-graph. Then G is called injective if there is no pair of two edges of form (u, a, v) and $\left(u^{\prime}, a, v\right)$, where $a \in A, u, u^{\prime}, v \in V$.

By choosing initial vertices and terminal vertices from V, we obtain an injective deterministic automaton $\mathcal{A}(G)$.

Then the monoid $M(G)$ of G is a submonoid of the symmetric inverse monoid $S(V)$ on the set of V.

Now we have the following results which are an inverse monoid-version of Lemma 2 and Theorem 1.

Lemma 3. Let $\mathcal{A}=(A, V, E, I, T)$ be an deterministic accessible co-accessible injective automaton.

Then $\overline{\mathcal{A}}=(A, \bar{V}, \bar{E}, \bar{I}, \bar{T})$ is a minimal automaton decognizing $L(\mathcal{A})$.
Fix a deterministic injective A-graph $G=\left(A, V=\left\{v_{1}, v_{2}, \ldots\right\}, E\right)$. We get an injective automaton $\mathcal{A}_{G}=\left(A^{\prime}, V^{\prime}, E^{\prime},\{i\},\{t\}\right)$ where $A^{\prime}=A \cup\{\alpha, \beta\}, V^{\prime}=V \cup\{i, t\}, E^{\prime}=$ $\left\{\left(i, \alpha, v_{1}\right),\left(v_{j}, \alpha, v_{j+1}\right),\left(v_{1}, \alpha^{\prime}, i\right),\left(v_{j+1}, \alpha^{\prime}, v_{j}\right),\left(v_{j+1}, \beta, v_{j}\right),\left(v_{1}, \beta, t\right),\left(v_{j}, \beta^{\prime}, v_{j+1}\right),\left(t, \beta^{\prime}, v_{1}\right)\right.$ $\left.{ }_{\mathrm{J}}^{\mathrm{J}}=1,2, \ldots\right\}$.

Theorem 2. Let $G=(A, V, E)$ be a deterministic injectiveA-graph. For the automaton \mathcal{A}_{G} constructed above, $M(G)$ is embedded in an inverse monoid Syn $\left(L\left(\mathcal{A}_{G}\right)\right)$.

Consequently, any inverse monoid is a submonoid of an inverse syntactic monoid.

4 Word problems for Syntactic monoids of contextfree languages

Definition 5. Context-free languages are defined as languages consisting of words accepted by pushdown automata. Equivalently, context-free languages are defined languages accepted by formal grammars as follows :

A formal grammar Γ consists of a finite set V of symbols and a special symbol σ, a finite set of alphabets A and a subset P of $V^{+} \times(V \cup A)^{*}$, which is called product. Then the formal grammar Γ is denoted by (V, A, P, σ).

Definition 6. Let L be a language over a finite alphabet A. Then a word problem for the syntactic monoid $\operatorname{Syn}(L)$ is the following question:

For any pair of two words $w, w^{\prime} \in A^{*}$, does there exists an algorithm deciding whether $\left(w, w^{\prime}\right) \in \sigma_{L}$ or $\left(w, w^{\prime}\right) \notin \sigma_{L} ?$

Let I be a non-empty set of a semigroup S. Then I is called an ideal of S. An ideal I of S is called completely prime if for any $x, y \in S, x y \in I$ implies that either $x \in I$ or $y \in I$.

The following follows immediately.
Lemma 4. Let L be a language over A and $s u b(L)$ the set of subwords of words in L.
Then the complement of $\operatorname{sub}(L)$ in L is completely prime.
Corollary 1. Let L be a language over A and $\operatorname{sub}(L)$ the set of subwords of words in L.

Then the syntactic monoid $\operatorname{Syn}(L)$ has a zero element if and only if either $A^{*} \neq \operatorname{sub}(L)$ or $A^{*} \neq \operatorname{sub}\left(L^{c}\right)$.

Theorem 3. Let L be a language over A. The syntactic monoid $\operatorname{Syn}(L)$ has a zero element if and only if there exists a word w over A such that either $A^{*} w A^{*} \subseteq L$ or $A^{*} w A^{*} \subseteq L^{c}$.
Problem 2 Let L be a deterministic context-free language over a finite alphabet A. Then is word problem for the syntactic monoid $\operatorname{Syn}(L)$ undecidable?
Problem 3 Let L be a deterministic context-free language over a finite alphabet A. Then is it decidable whether the syntactic monoid $\operatorname{Syn}(L)$ has a zero element or not?

5 Presentation of monoids with regular congruence classes

Result 4. Let G be a finitely generated group and $\varphi: A^{*} \rightarrow G$ an onto homomorphism with $L=\varphi^{-1}(1)\left(\subseteq A^{*}\right)$. Then
(1) ([6]) G is finite if and only if L is a regular language.
(2) ([7], [8], [9]) G is vertually free (a finite extension of free group) if and only if L is a deterministic context-free language.
Lemma 5. Let L be a language of A^{*}. Then L is a union of σ_{L}-classes in A^{*}.
Theorem 4. Let L be a language of A^{*}. Then the following are equivalent:
(1) L is a σ_{L}-class in A^{*}.
(2) $x L y \cap L \neq \emptyset\left(x, y \in A^{*}\right) \Rightarrow x L y \subseteq L$.
(3) L is an inverse image $\phi^{-1}(m)$ of a homomorphism ϕ of A^{*} to a monoid M.

Theorem 5. For every finitely generated monoid M, there exist languages $\left\{L_{m}\right\}_{m \in M}$ of A^{*} such that M is embedded in the direct product of syntactic semigroups.
Definition 7. Let M be a monoid and A a finite alphabet. M has the presentation with regular congruence classes if there exists a onto homomorphism of $\varphi: A^{*} \longrightarrow M$ is such that if for any $m \in M, \varphi^{-1}(m)$ is a regular language.
Definition 8. A monoid M is residually finite if for each pair of elements $m, m^{\prime} \in M$, there exists a conguence μ on M such that the factor monoid M / μ is finite and $\left(m, m^{\prime}\right) \notin \mu$.
Theorem 6. Let M be a finitely generated monoid and $\phi: A^{*} \longrightarrow M$ a onto homomorphism.

Then for each $m \in M$, the following are equivalent.
(1) $\phi^{-1}(m)$ is a regular language
(2) $\left|M / \sigma_{m}\right|<\infty$.

Let M be a monoid and m an element of M. Define a relation σ_{m} by $a \sigma_{m} b(a, b \in M)$ if and only if

$$
\{(x, y) \in M \times M \mid x a y=m\}=\{(x, y) \in M \times M \mid x b y=m\}
$$

Then σ_{m} is a congruence on M.
Theorem 7. Let M be a finitely generated monoid and $\varphi: A^{*} \longrightarrow M$ be a presentation of M with regular congruence classes. Then M is residually finite.

References

[1] A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Amer. Math. Soc., Math. Survey, No.7, Providence, R.I., Vol.I(1961); Vol.II(1967).
[2] S. Eilenberg, Automata, Languages, and Machines, Vol. B Academic Press, 1974.
[3] J. E. Hopcroft and J. D. Ullman Introduction to Automata theory, Languages, and Computation, Addison-Wesly Publishing, 1979.
[4] G. Lallemant, Semigroups and combinatorial applications, Jhon Wiley \& Sons, 1979.
[5] J. E. Pin, Varieties of Formal Languages, North Oxford Academic Publishers, 1984.
[6] M. J. Dunwoody, The accessiblity of finitely presentesd groups, Invnt. Math., 81(1985), 449-457.
[7] V. A. Anisimov, Groups languages, Kibernetika, 4(1971), 18-24.
[8] D. C. Muller and P. E. Shupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci., 67(1983), 295-310.
[9] D. C. Muller and P. E. Shupp, The theory of ends, pushdown automata, and secondorder logic, Thoeritical Comput. Sci., 37(1985), 51-75.

[^0]: ＊This is an absrtact and the paper will appear elsewhere．

