Arithmetical rank of Stanley-Reisner ideals of small arithmetic degree

Naoki Terai (Saga University)

1 Introduction

Let $R = k[x_1, ..., x_n]$ be a polynomial ring with n variables over a field k with deg $x_i = 1$ (i = 1, 2, ..., n). In this article we determine the arithmetical rank of squarefree monomial ideals in R with small arithmetic degree. More precisely, we prove the following theorem:

Theorem. Let I be a squarefree monomial ideal. Then we have:

(1)
$$\operatorname{arithdeg} I = \operatorname{reg} I \Rightarrow \operatorname{ara} I = \operatorname{projdim} (R/I).$$

(2)
$$\operatorname{arithdeg} I = \operatorname{indeg} I + 1 \Rightarrow \operatorname{ara} I = \operatorname{projdim} (R/I).$$

First we fix the terminology we use in this article.

Let I be an ideal of R. We define the arithmetical rank ara I of I by

ara
$$I := \min\{r; \exists a_1, a_2, \dots, a_r \in I \text{ such that } \sqrt{(a_1, a_2, \dots, a_r)} = \sqrt{I} \}.$$

In general, $araI \ge ht I$. And I is said to be a set-theoretic complete intersection, if araI = htI.

Let I be a homogeneous ideal in R and

$$0 \to \bigoplus_{j} R(-j)^{\beta_{pj}} \longrightarrow \cdots \longrightarrow \bigoplus_{j} R(-j)^{\beta_{0j}} \longrightarrow I \to 0$$

a graded minimal free resolution of I over R. Here p is called the *projective dimension* of I over R and denote it by projdimI. We have projdim (R/I) = projdimI + 1. Put $\mu(I) := \sum_{i} \beta_{0j}$,

which stands for the minimum number of generators of I. The *initial degree* indeg I of I and the relation type rt(I) of I are defined respectively by

indeg
$$I = \min\{j : \beta_{0j} \neq 0\},\$$

rt $I = \max\{j : \beta_{0j} \neq 0\}.$

And the (Castelnuovo-Mumford) regularity of I is defined by

$$regI = max\{j - i : \beta_{ij} \neq 0\}.$$

We say that I has linear resolution if regI = indegI.

For a simplicial complex Δ on the vertex set $V = \{1, ..., n\}$, we mean that Δ is a collection of subsets of V such that

$$F \in \Delta$$
, $G \subset F \Rightarrow G \in \Delta$.

We call

$$I_{\Delta} = (x_{i_1} \cdots x_{i_p}; i_1 < i_2 < \ldots < i_p, \{i_1, \ldots, i_p\} \notin \Delta)$$

the Stanley-Reisner ideal of Δ .

Put

$$\Delta^* = \{ F \in 2^V : V \setminus F \notin \Delta \},\$$

which is also a simplicial complex, and called the *Alexander dual* of Δ . We call I_{Δ} the Alexander dual ideal of I_{Δ} .

2 Arithmetical rank of squarefree monomial ideals

Let $H_I^i(R)$ be the *i*-th local cohomology module of R with respect to I. The *cohomological dimension* cd I of I is defined to be cd $I := \max\{i; H_I^i(R) \neq 0\}$. It is easy to see ara $I \geq \operatorname{cd} I$.

When I is a squarefree monomial ideal, the following theorem is known:

Theorem 2.1 (Lyubeznik [Ly1] see also [Te2]). Let I be a squarefree monomial ideal. Then we have

projdim
$$(R/I) = \operatorname{cd} I$$
.

Corollary 2.2. Let I be a squarefree monomial ideal. Then we have

ara $I \ge \operatorname{projdim}(R/I)$.

In particular, if I is a set-theoretic complete intersection, then R/I is Cohen-Macaulay.

Problem 2.3. Let I be a squarefree monomial ideal. Under what conditions do we have ara I = projdim (R/I)?

We do not always have ara I = projdim (R/I) as the following example shows.

Example 2.4 (Yan [Ya]). Let I be the ideal in R = k[u, v, w, x, y, z] generated by uvw, uvy, vwx, uwz, uxy, uxz, vxz, vyz, wxy, wyz. Then I is the Stanley-Reisner ideal of a triangulation of $\mathbf{P}^2(\mathbf{R})$ with six vertices. In this case, ara I = 4, which is proved by Yan, using the étale cohomology. On the other hand projdim (R/I) = 3 if char $(k) \neq 2$.

We pick up some classes for whose members the equality holds.

Proposition 2.5 ([**Te3**]). Let I be a squarefree monomial ideal. If $\mu(I)$ -projdim $(R/I) \le 1$, then we have

ara
$$I = \text{projdim } (R/I)$$
.

For an ideal I in R, we define the deviation d(I) of I by $d(I) = \mu(I) - \text{ht } I$.

Theorem 2.6 ([Te4]). Let I be a squarefree monomial ideal of deviation 2. Then we have ara I = projdim (R/I).

Proposition 2.7. Let Δ be a disconnected simplicial complex. I.e., let I_{Δ} be a squarefree monomial ideal with depth $R/I_{\Delta} = 1$. Then we have

ara
$$I_{\Lambda} = \text{projdim} R/I_{\Lambda}$$
.

(*Proof.*) By [Ei-Ev] we have $n-1=\operatorname{projdim} R/I_{\Delta}\leq \operatorname{ara} I_{\Delta}\leq n-1$.

Proposition 2.8. Let Δ be a non-acyclic simplicial complex such that I_{Δ} has linear resolution. (E.g., I_{Δ} is a non-Cohen-Macaulay Buchsbaum squarefree monomial ideal with linear resolution.) Then we have

ara
$$I_{\Delta} = \operatorname{projdim} R/I_{\Delta}$$
.

(*Proof.*) By [Gr] we have $n - \text{indeg}I_{\Delta} + 1 = \text{projdim}R/I_{\Delta} \le \text{ara }I_{\Delta} \le n - \text{indeg}I_{\Delta} + 1$.

3 Squarefree monomial ideals of small arithmetic degree

We define the $arithmetic\ degree$ arithdeg I of a squarefree monomial ideal I by

arithdeg
$$I = \sharp (Ass R/I)$$
.

For squarefree monomial ideals, we have the following relations:

Theorem 3.1 (Hoa-Trung[Ho-Tr], Stückrad, Frübis-Terai[Fr-Te]). Let I be a square-free monomial ideal. Then we have

indeg
$$I \leq \text{reg}I \leq \text{arithdeg}I$$
.

The arithmetical rank is known when the arithmetic degree agrees with the initial degree:

Theorem 3.2 (Schenzel-Vogel[Sche-Vo], Schmitt-Vogel[Schm-Vo]). If a squarefree monomial ideal I satisfies arithdeg I = indeg I, then after a suitable change of variables, I is of the form

$$I = (x_{11}, x_{12}, \dots, x_{1j_1}) \cap (x_{21}, x_{22}, \dots, x_{2j_2}) \cap \dots \cap (x_{q1}, x_{q2}, \dots, x_{qj_q}),$$

and $\operatorname{projdim}(R/I) = \sum_{i=1}^{q} j_i - q + 1$.

and projection
$$(R/I) = \sum_{i=1}^{q} j_i = q + 1$$
.

Put $a_{\ell} = \sum_{\ell_1 + \ell_2 + \dots + \ell_q = \ell} x_1 \ell_1 x_2 \ell_2 \cdots x_q \ell_q$ for $\ell = q, q + 1, \dots, \sum_{i=1}^{q} j_i$. Then we have
$$\sqrt{(a_{\ell}; \ell = q, q + 1, \dots, \sum_{i=1}^{q} j_i)} = I.$$

Hence ara I = projdim (R/I).

Now we consider the case that the arithmetic degree is equal to regularity:

Theorem 3.3. Let I be a squarefree monomial ideal with arithdeg I = reg I. Then we have ara I = projdim (R/I).

To prove the above theorem we define the *size* of a monomial ideal I, which is introduced by Lyubeznik. Let $I = \bigcap_{j=1}^r Q_j$ be an irredundant primary decomposition of I, where the Q_i are monomial primary ideals. Let h be the height of $\sum_{j=1}^r Q_j$, and denote by v the minimum

number t such that there exist j_1, \ldots, j_t with $\sqrt{\sum_{i=1}^t Q_{j_i}} = \sqrt{\sum_{j=1}^r Q_j}$. Then size I = v + (n - h) - 1. Then we have:

Lemma 3.4 (Lyubeznik[Ly2]). Let I be a (squarefree) monomial ideal in R. Then ara $I \leq n - \text{size}I$.

The form is determined for a squarefree monomial ideal I with arithdeg I = reg I as follows:

Lemma 3.5 (Hoa-Trung[Ho-Tr]). Let I be a squarefree monomial ideal in R such that arithdeg I = reg I. Then after a suitable change of variables, I is of the form

$$I = (y_1, x_{i_{11}}, x_{i_{12}}, \dots, x_{i_{1j_1}}) \cap (y_2, x_{i_{21}}, x_{i_{22}}, \dots, x_{i_{2j_2}}) \cap \dots \cap (y_q, x_{i_{q1}}, x_{i_{q2}}, \dots, x_{i_{qj_q}}),$$

and

$$\operatorname{projdim}(R/I) = \operatorname{deg} \operatorname{lcm}(x_{i_{11}}, x_{i_{12}}, \dots, x_{i_{1j_1}}, x_{i_{21}}, x_{i_{22}}, \dots, x_{i_{2j_2}}, \dots, x_{i_{q1}}, x_{i_{q2}}, \dots, x_{i_{qj_q}}) + 1.$$

Lemma 3.6. Let I be a squarefree monomial ideal in R such that arithdeg I = reg I. Then we have

projdim
$$(R/I) = n - \text{size}I$$
.

(*Proof.*) We may assume that every variable is zero divisor on R/I. Since size I+1= arithdeg I=reg I by the above lemma, it is enough to prove to

projdim
$$(R/I) + \text{reg}I = n + 1$$
.

Let J be the Alexander daul ideal of I. Then we have

$$J = (y_1 x_{i_{11}} x_{i_{12}} \cdots x_{i_{1j_1}}, y_2 x_{i_{21}} x_{i_{22}} \cdots x_{i_{2j_2}}, \dots, y_q x_{i_{q1}} x_{i_{q2}} \cdots x_{i_{qj_q}}).$$

Since projdim (R/I) = reg J and reg I = projdim (R/J) (see [Te1]), it is enough to prove

projdim
$$(R/J) + \text{reg}J = n + 1$$
.

Because of the form of the ideal J, the Taylor resolution of J gives a minimal free resolution of J. Hence the last syzygy determines the regularity. Since every variable is zero divisor on R/J, regJ=n-projdim(J)=n-projdim(R/J)+1. QED

Now Theorem 3.3 is clear by Lemmas 3.4 and 3.6.

Next we consider a squarefree monomial ideal whose arithmetic degree is one bigger than its initial degree:

Theorem 3.7. Let I be a squarefree monomial ideal with arithdeg I = indeg I + 1. Then we have

ara
$$I = \text{projdim } (R/I)$$
.

To prove the above theorem we use:

Lemma 3.8. Let I be a squarefree monomial ideal with arithdeg I = indeg I + 1. Then I is one of the following forms after a suitable change of the variables:

(1)

$$I = (x_{11}, x_{12}, \dots, x_{1j_1}) \cap (x_{21}, x_{22}, \dots, x_{2j_2}) \cap \dots \cap (x_{q1}, x_{q2}, \dots, x_{qj_q})$$
$$\cap (x_{11}, x_{12}, \dots, x_{1i_1}, x_{21}, x_{22}, \dots, x_{2i_2}, \dots, x_{p1}, x_{p2}, \dots, x_{pi_p}),$$

where $q \ge p \ge 2$, $1 \le i_{\ell} < j_{\ell}$ ($\ell = 1, 2, ..., p$), $j_{p+1}, ..., j_q \ge 1$.

(2)

$$I = (x_{11}, x_{12}, \dots, x_{1j_1}) \cap (x_{21}, x_{22}, \dots, x_{2j_2}) \cap \dots \cap (x_{q1}, x_{q2}, \dots, x_{qj_q})$$
$$\cap (x_{q+1,1}, x_{q+1,2}, \dots, x_{q+1,j_{q+1}}, x_{11}, x_{12}, \dots, x_{1i_1}, x_{21}, x_{22}, \dots, x_{2i_2}, \dots, x_{p1}, x_{p2}, \dots, x_{pi_p}),$$

where $q \ge p \ge 1$, $1 \le i_{\ell} < j_{\ell}$ ($\ell = 1, 2, ..., p$), $j_{p+1}, ..., j_q, j_{q+1} \ge 1$.

(3)

$$I = (x_{11}, x_{12}, \dots, x_{1j_1}, y_1, \dots, y_p) \cap (x_{21}, x_{22}, \dots, x_{2j_2}, y_1, \dots, y_p) \cap (x_{31}, x_{32}, \dots, x_{3j_3}) \cap \dots$$
$$\cap (x_{q1}, x_{q2}, \dots, x_{qj_q}) \cap (x_{q+1,1}, x_{q+1,2}, \dots, x_{q+1,j_{q+1}}, x_{11}, x_{12}, \dots, x_{1i_1}, x_{21}, x_{22}, \dots, x_{2i_2}),$$

where
$$q \ge 2$$
, $p \ge 1$, $1 \le i_{\ell} \le j_{\ell}$ ($\ell = 1, 2$), $j_3, \ldots, j_q \ge 1$, $j_{q+1} \ge 0$.

(*Proof.*) Let I be a squarefree monomial ideal with arithdeg I = indeg I + 1, and J its Alexander dual ideal. Then J satisfies that $\mu(J) = \text{ht } J + 1$, that is J is an almost complete intersection. Such J are classified in [Te3].

(Proof of Theorem 3.7.) We check the equality for all the cases in the above lemma. Let J be the Alexander dual ideal of I.

(1)We may assume that
$$j_1 - i_1 = \min\{j_\ell - i_\ell; \ \ell = 1, 2, \dots, p\}$$
. Then projdim $(R/I) = \text{reg}J = i_1 + j_2 + \dots + j_q - q + 1$.

Put
$$a_{\ell} = \sum_{\substack{\ell_1 \leq l_1 \text{ or } \ell_2 \leq i_2 \text{ or ...or } \ell_p \leq i_p}} \underbrace{x_{1\ell_1} x_{2\ell_2} \cdots x_{q\ell_q}} \text{ for } \ell = q, q+1, \ldots, i_1 + \sum_{t=2}^q j_t$$
. Then we have $\sqrt{(a_{\ell}; \ \ell = q, q+1, \ldots, i_1 + \sum_{t=2}^q j_t)} = I$ by [Schm-Vo, Lemma]. Hence ara $I = \text{projdim}$ (R/I).

- (2) By Theorem 3.3 the equality holds in this case.
- (3) (i) The case of $j_{q+1} > 0$. By Theorem 3.3 the equality holds.
- (ii) The case of $j_{q+1} = 0$ and $i_{\ell} < j_{\ell}$ ($\ell = 1, 2$). We may assume that $j_1 i_1 \le j_2 i_2$. Then projdim $(R/I) = \text{reg}J = i_1 + j_2 + \dots + j_q q + 1 + p$.

For simplicity, we mean that $x_{1j_1+i} = y_i$ and $x_{2j_2+i} = y_i$ for i = 1, 2, ..., p.

Put
$$a_{\ell} = \sum_{\substack{\ell_1 + \ell_2 + \dots + \ell_q = \ell, \\ \ell_1 \le i_1 \text{ or } \ell_2 \le i_2}} x_{1\ell_1} x_{2\ell_2} \cdots x_{q\ell_q} \text{ for } \ell = q, q+1, \dots, i_1 + \sum_{t=2}^q j_t + p. \text{ Then we have } \sqrt{(a_{\ell}; \ \ell = q, q+1, \dots, i_1 + \sum_{t=2}^q j_t + p)} = I \text{ by [Schm-Vo, Lemma]}. \text{ Hence ara } I = \text{projdim (} R/I).$$

(iii) The case of $j_{q+1} = 0$ and $(i_1 = j_1 \text{ or } i_2 = j_2)$. We may assume that every variable is a zero divisor on R/I. Then R/J is Cohen-Macaulay with a(R/J) = 0. Hence by Proposition 2.8 the equality holds in this case.

Reference

[Ba] M. Barile, On the number of equations defining certain varieties, manuscripta math. **91**(1996), 483-494.

[Br-He] W. Bruns and J. Herzog," Cohen-Macaulay rings," Cambridge University Press, Cambridge/ New York /Sydney, 1993.

[Ei] D. Eisenbud, "Commutative Algebra with a view toward Algebraic Geometry," Springer-Verlag, Berlin/Hidelberg/New york / Tokyo, 1995

[Ei-Ev] D. Eisenbud and E. G. Evans, Every algebraic set in n-space is the intersection of n hypersurfaces, Invent. Math. 19(1973), 107-112.

[Fr-Te] A. Frübis-Krüger and N. Terai, *Bound for the regularity for monomial ideals*, Mathematiche (Catania) **53**(1998), 83-97.

[Gr] V. H.-G. Gräbe, Über den arithmetischen Rang quadrafreier Potenzproduktideale, Math. Nachr. **120**(1985), 217-227.

[Ho-Tr] L.T.Hoa and N.V. Trung, On the Catelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229(1998), 519-537.

[Ly1] G. Lyubeznik, On local cohomology modules $H^i_{\alpha}(R)$ for ideals α generated by mono-

mials in an *R*-sequence, in "Complete Intersection, Acireale 1983 (S. Greco and R. Strano eds.)", Lecture Notes in Mathematics No. 1092, Springer-Verlag, Berlin/ Hidelberg/ New york / Tokyo, 1984 pp.214-220

[Ly2] G. Lyubeznik, On the arithmetical rank of monomial ideals, J. Alg. 112(1988), 86-89.

[Na-Vo] U. Nagel and W. Vogel, Über Mengentheoretische Durchschnitte Zusammenhang algebraischer Mannigfaltigkeiten in \mathbf{P}^n , Arch. Math. $\mathbf{49}(1987)$, 414-419.

[Sche-Vo] P. Schenzel and W. Vogel, On set-thoretic intersections, J. Alg. 48(1977), 401-408.

[Schm-Vo] T. Schmitt and W. Vogel, Note on set-thoretic intersections of subvarieties of projective space, Math. Ann. 245(1979), 247-253.

[Te1] N. Terai, Stanley-Reisner rings of Alexander dual complexes, 第 19 回可換環論シンポジウム報告集 (1997) 53-66.

[Te2] N. Terai, Local cohomology moduleswith respect to monomial ideals, 第 20 回可換環論シンポジウム報告集 (1998) 181-189.

[Te3] N. Terai, On almost complete intersection monomial ideals, 第 24 回可換環論シンポジウム報告集 (2002) 148-152.

[Te4] N. Terai, Arithmetical rank of monomial ideals, 第 25 回可換環論シンポジウム報告 集 (2003) 99-105.

[Ya] Z. Yan, On étale analog of the Goresky-MacPherson formula for subspace arrangements, Journal of Pure and Applied Algebra 146(2000), 305-318.