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Arithmetical rank of Stanley-Reisner ideals of small
arithmetic degree

Naoki Terai (Saga University)

1 Introduction

Let R = k[x{,...,x,] be a polynomial ring with » variables over a field & with deg x; =
I1(G=1,2,...,n). In this article we determine the arithmetical rank of squarefree monomial

ideals in R with small arithmetic degree. More precisely, we prove the following theorem:

Theorem. Let I be a squarefree monomial ideal. Then we have:
I
arithdeg! = reg I = ara I = projdim (R/I).

2) :
arithdegl = indeg/ + 1 = ara I = projdim (R/I).

First we fix the terminology we use in this article.
Let I be an ideal of R. We define the arithmetical rank aral of 7 by

aral : = min{r; 3ay,as,...,a, € I such that \/(al,ag,...,ar) =1}

In general, aral/ > ht /. And [ is said to be a set-theoretic complete intersection, if aral = htl.

Let I be a homogeneous ideal in R and
0— @R(—j)ﬁw — @R(—j)ﬁw =0
J i

a graded minimal free resolution of I over R. Here p is called the projective dimension of 1
over R and denote it by projdim/. We have projdim (R/I) = projdimI + 1. Put u(I) := 3, Boj,
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which stands for the minimum number of generators of 1. The initial degree indeg I of I and

the relation type rt(I) of I are defined respectively by
indeg/ = min{j : Bo; # O},
rt] = max{j : Bo; # O}
And the (Castelnuovo-Mumford) regularity of I is defined by

regl = max{j—i : B;; # O}.

We say that I has linear resolution if regl = indegl.

For a simplicial complex A on the vertex set V = {1,...,n}, we mean that A is a collection
of subsets of V such that
FeA GCF=GeA.

We call
I = ()C,'1 X h <ipb<...< ip, {il,.,.,ip} g A)
the Stanley—Reisner ideal of A.
Put ,
A ={Fe2': V\F¢Aa},
which is also a simplicial complex, and called the Alexander dual of A. We call I5- the
Alexander dual ideal of I,.

2  Arithmetical rank of squarefree monomial ideals

Let H j(R) be the i-th local cohomology module of R with respect to I. The cohomo-
logical dimension cd I of I is defined to be cd I := max{i; H}'(R) # 0}. It is easy to see
aral > cd I.

When / is a squarefree monomial ideal, the following theorem is known :-

Theorem 2.1 (Lyubeznik [Ly1] see also [Te2]). Ler! be a squarefree monomial ideal.

Then we have o
projdim (R/I) =cd .

Corollary 2.2. Let I be a squarefree monomial ideal. Then we have
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ara I > projdim (R/I).

In particular, ifI is a set-theoretic complete intersection, then R/Iis Cohen-Macaulay.

Problem 2.3.  Let I be a squarefree monomial ideal. Under what conditions do we

have ara I = projdim (R/I)?
We do not always have ara I = projdim (R/I) as the following example shows.

Example 2.4 (Yan [Ya]). Let / be the ideal in R = k[u,v,w,x,y,z] generated by
UYW, UVy, VWX, UWZ, UXy, Uxz, vxz, vyz, wxy,wyz. Then [ is the Stanley-Reisner ideal of a
triangulation of P2(R) with six vertices. In this case, ara ] = 4, which is proved by Yan,
using the étale cohomology. On the other hand projdim (R/I) = 3 if char (k) # 2.

We pick up some classes for whose members the equality holds.

Proposition 2.5 ([Te3]). Let I be a squarefree monomial ideal. If u(D)—projdim (R/I) < 1,

then we have
ara I = projdim (R/I).

For an ideal I in R, we define the deviation d(I) of I by d(I) = p(I) —ht I

Theorem 2.6 ([Ted]). Let I be a squarefree monomial ideal of deviation 2. Then we have
ara I = projdim (R/I).
Proposition 2.7. Let A be a disconnected simplicial complex. Le., let Iy be a squarefree
monomial ideal with depth R/I5 = 1. Then we have

aral, = projdimR/1I,.

(Proof.) By [Ei-Ev] we have n — 1 = projdimR/I, < aralp <n—1.

Proposition 2.8. Let A be a non-acyclic simplicial complex such that I, has linear resolu-
tion. (E.g., Ip is a non-Cohen-Macaulay Buchsbaum squarefree monomial ideal with linear

resolution.) Then we have
ara Iy = projdimR/1,.

(Proof.) By [Gr] we have n — indegls + 1 = projdimR/I, < ara Ip < n— indegly + 1.
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3 Squarefree monomial ideals of small arithmetic degree

We define the arithmetic degree arithdeg I of a squarefree monomial ideal / by
arithdeg I = H(Ass R/D).
For squarefree monomial ideals, we have the following relations:
Theorem 3.1 (Hoa-Trung[Ho-Tr], Stiickrad, Friibis-Terai[Fr-Te}). Let I be a square-
free monomial ideal. Then we have

indeg I < regl < arithdegl.

The arithmetical rank is known when the arithmetic degree agrees with the initial degree:

Theorem 3.2 (Schenzel-Vogel[Sche-Vo], Schmitt-Vogel[Schm-Vo)). If a squarefree
monomial ideal I satisfies arithdegl = indeg I, then after a suitable change of variables, I is
of the form

I = (xi1s X12s - > X1j) 0 (a1, %22, -2 X2p) (oo N (Xqts Xg2s - -5 Xgj s

and projdim(R/I) = X1, ji—q+ 1.
Put ap = Xgrtyeorty=t X16%26, """ Xgt, for £ = gq,q + 1,...,Z?=1 ji. Then we have

\Rag; {=qg,9+ 1,...,2?:1]';) =L
Hence ara I = projdim (R/I).

Now we consider the case that the arithmetic degree is equal to regularity:

Theorem 3.3. Let I be a squarefree monomial ideal with arithdegl = reg 1. Then we have
ara I = projdim (R/]).
To prove the above theorem we define the size of a monomial ideal 7, which is introduced

by Lyubeznik. Let I = N_ Q; be an irredundant primary decomposition of /, where the Q;
are monomial primary ideals. Let & be the height of >, Qj, and denote by v the minimum
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number ¢ such that there exist ji, ..., je with /i, @ = ./ '=1 Q. Then sizel =v + (n—

h) — 1. Then we have:

Lemma 3.4 (Lyubeznik[Ly2]). Let I be a (squarefree} monomial ideal in R. Then aral <

n — sizel.
The form is determined for a squarefree monomial ideal I with arithdeg! = reg I as follows:

Lemma 3.5 (Hoa-Trung[Ho-Tr]). Let I be a squarefree monomial ideal in R such that
arithdegl = reg I. Then after a suitable change of variables, 1 is of the form

1 = O)Iﬁxfnﬁxilzs MR QXijl) n (,VZaxz‘z],xinw M ‘5xl'zj2) n A m (YQS qu}?xllqg3 . ‘)xiqjq)i
and

projdim(R/I) = deglem(x;,,, xi,,, ceen Xiyy o Xigys Kigys o o5 Xigy s e v o Kigys X o+ ,x,-qjq) + 1.

Lemma 3.6. Let I be a squarefree monomial ideal in R such that arithdegl = reg I. Then

we have
projdim (R/I) = n — sizel.

(Proof.) We may assume that every variable is zero divisor on R/I. Since sizel + 1 =

arithdeg/ = reg I by the above lemma, it is enough to prove to
projdim (R/I) + regl = n + 1.
Let J be the Alexander daul ideal of 1. Then we have
J = O Xy Xigy ** Xy, Y2 iy Xigg o Xigjyo oo o> YaXig Xigg =+ * Xigy, )-
Since projdim (R/I) = regJ and regl = projdim (R/J) (see [Tel]), it is enough to prove
projdim (R/J) +regJ = n+1.

Because of the form of the ideal J, the Taylor resolution of J gives a minimal free resolution
of J. Hence the last syzygy determines the regularity. Since every variable is zero divisor on
R/J,reg = n — projdimJ = n — projdim(R/J) + 1. QED

Now Theorem 3.3 is clear by Lemmas 3.4 and 3.6.
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Next we consider a squarefree monomial ideal whose arithmetic degree is one bigger than

its initial degree:

Theorem 3.7. Let I be a squarefree monomial ideal with arithdegl = indeg/ + 1. Then we

have
ara I = projdim (R/I).

To prove the above theorem we use:

Lemma 3.8. Let I be a squarefree monomial ideal with arithdeg! = indegl + 1. Then I is

one of the following forms after a suitable change of the variables:

M
T = (X1 K12 - 02 X1jy) 0 (2t X2, o5 X2jp) O o 0 (gL Xq2s o5 Xgjg)
n(-xll,xlzs"'9xli;5x21’x227-~-sx2i2"-'a-xplsxp25'-~5xpl'p)9
whereg>p22,1<ie<je(f= L2,y D)y Jotlseeendg 2 1.
(2)
I = (X11, X125+ 4+ X1jy) O (X215 X220+ - o2 X2j) (oo N (Xgls X - -5 Xgjy)

(X 1,1s Xg# 125 -+ » X Ljgers X115 X125+ o Xlips X215 X225 - o5 X2igs + > Xpls Xp2s v - s Xpiy)s
whereg>p2>21,1<ir<je E=1,2,...,D) Jptls-eesdp o1 2 1.
3
I= (xlla-xlz,---sxljpyls"-ayp) n(x21:x22,--»,x2j2,)’1,---s)’p) n(x319x323“-’x3_f3)m e

(15 Xg2s - -+ s Xgjy) 1 (Xgat, 1y Xgr1 2o+ o s XgtT,joai> X1 K125 <+ 5 Xli» X215 X225 - s X2y )s

wherquZ,P?_l,lSi,gsjg(le,Z),j3,.,.,jq2 1, jg+1 20,

(Proof) Let I be a squarefree monomial ideal with arithdegl = indegl + 1, and J its

Alexander dual ideal. Then J satisfies that u(J) = ht/ + 1, that is J is an almost complete

intersection. Such J are classified in [Te3]. QED

(Proof of Theorem 3.7.) We check the equality for all the cases in the above lemma. LetJ

be the Alexander dual ideal of 1.
(1)We may assume that j; — i1 = min{je —ig; £=1,2,...,p}. Then

projdim (R/I) = regJ = i+ jato o+ jg—g+ Ll
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Puta; =Y  aetyestgee XigXog, + Xge, fOr € = q.q+ 1,...,0) + X7 ji. Then we have
£y <iyoréysiyor ..or Ep<ip

\/(:15; t=qg.q+1,...,ii+ 37, j:) = 1 by [Schm-Vo, Lemma]. Hence ara/ = projdim (
R/I).

(2)By Theorem 3.3 the equality holds in this case.

(3) (i) The case of j,41 > 0. By Theorem 3.3 the equality holds.

(ii) The case of j,+1 = 0and i, < je (€ = 1,2). We may assume that j; —i; < jo —ip. Then

projdim (R/I)=reg/ =i1 + jo+---+ j,—g+1+p.

For simplicity, we mean that x;,4; = y; and xp5,.; = y; fori= 1,2,...,p.
Put a, = Z£I+c’2+-»-+cq=t. X1g, X268, " * Xge, forf = q,q + ..., + Z?:g jt + p. Then we have

£y =ior fg<in
J(ag; t=q,g+1,...,01 + Z;’=2 ji + p) = Iby [Schm-Vo, Lemma]. Hence ara = projdim (
R/I).

(iii) The case of jo,; = O and (i; = j; or iy = j»). We may assume that every variable is a

zero divisor on R/I. Then R/J is Cohen-Macaulay with a(R/J) = 0. Hence by Proposition
2.8 the equality holds in this case. QED

Reference

[Ba] M. Barile, On the number of equations defining certain varieties, manuscripta math.
91(1996), 483-494.

[Br-He] W. Bruns and J. Herzog,” Cohen-Macaulay rings,” Cambridge University Press,
Cambridge/ New York /Sydney, 1993.

[Ei] D. Eisenbud, “Commutative Algebra with a view toward Algebraic Geometry,”’
Springer-Verlag, Berlin/ Hidelberg/ New york / Tokyo , 1995

[Ei-Ev] D. Eisenbud and E. G. Evans, Every algebraic set in n-space is the intersection of
n hypersurfaces , Invent. Math. 19(1973), 107-112.

[Fr-Te] A. Friibis-Kriiger and N. Terai, Bound for the regularity for monomial ideals, Math-
ematiche (Catania) 53(1998), 83-97.

[Gr] V. H.-G. Griibe, Uber den arithmetischen Rang quadrafreier Potenzproduktideale,
Math. Nachr. 120(1985), 217-227.

[(Ho-Tr] L.T.Hoa and N.V. Trung, On the Catelnuovo-Mumford regularity and the arith-
metic degree of monomial ideals, Math. Z. 229(1998), 519-537.

[Ly1] G. Lyubeznik, On local cohomology modules H' (R) for ideals o generated by mono-



135

mials in an R-sequence, in “Complete Intersection, Acireale 1983 (S. Greco and R. Strano
eds.)”, Lecture Notes in Mathematics No. 1092, Springer-Verlag, Berlin/ Hidelberg/ New
york / Tokyo , 1984 pp.214-220

[Ly2] G. Lyubeznik, On the arithmetical rank of monomial ideals, J. Alg. 112(1988),
86-89.

[Na-Vo] U. Nagel and W. Vogel, Uber Mengentheoretische Durchschnitte Zusammenhang
algebra;'scher Mannigfaltigkeiten iﬁ P", Arch. Math. 49(1987), 414-419.

[Sche-Vo] P. Schenzel and W. Vogel, On set-thoretic intersections, J. Alg. 48(1977), 401-
408.

[Schm-Vo] T. Schmitt and W. Vogel, Nofe on set-thoretic intersections of subvarieties of
projective space, Math. Ann. 245(1979), 247-253.

[Tel] N. Terai, Stanley-Reisner rings of Alexander dual complexes, % 19 EIGIE: 8=t vy
WU LREE  (1997) 53-66.

[Te2] N. Terai, Local cohomology moduleswith respect to monomial ideals, % 20 Bl [ #;
Ry URUULARESE  (1998) 181-189.

[Te3] N. Terai, On almost complete intersection monomial ideals, 55 24 B RTHERR S
WY LREE  (2002) 148-152. 7

[Te4] N. Terai, Arithmetical rank of monomial ideals, % 25 [ FI#ERER ¥ v BT LEE
£ (2003) 99-105.

[Ya] Z. Yan, On étale analog of the Goresky-MacPherson formula for subspace arrange-
ments, Journal of Pure and Applied Algebra 146(2000), 305-318.



