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On Weierstrass 7-semigroups

RN TRRE KHE ZR (Jiryo Komeda)
Kanagawa Institute of Technology

§1. Introduction.

Let N be the additive semigroup of non-negative integers. A subsemigroup H of
N is called a numerical semigroup if the complement N\H of H in N is a finite
set. For any positive integer » a numerical semigroup H is called an n-semigroup
it H starts with n, i.e., the minimum positive integer in H is n. For a non-singular
complete irreducible curve C' over an algebraically closed field & of characteristic
0 (which is called a curve in this paper) and its point P we set

H({P) = {n € N|3 a rational function f on C with (f), = nP}.

A numerical semigroup is Weierstrass if there exists a curve C with its point P
such that H(P) = H. We are interested in the following problem:

Problem 1. Is every n-semigroup Weierstrass ?
We have the following positive results:

Fact 2. For n < 5 every n-semigroup is Weierstrass. (For n = 2, classical, for
n = 3, see [8] and for n = 4, 5, see [4] ,[5] respectively.)

But we know the negative result as follows:

Fact 3. For anyn 2 13, there exists a non- Weierstrass n-semigroup. {(Forn = 13,
[1] and for n 2 14 see, for example, [7].)

Thus, we have the following problem:

Problem 4. For 6 £ n £ 12, is every n-semigroup Weierstrass or is there a
non-Weierstrass n-semigroup ?

In this paper we are devoted to the study of 7-semigroups. In Section 2 we deter-
mine the 7-semigroups which are the semigroups H(P) of ramification points P on
cyclic coverings of the projective line P* with degree 7. In Section 3 we divide the
Weierstrass 7-semigroups generated by 4 elements into 31 cases and investigate
whether such a 7-semigroup is of toric type in each case where a numerical semi-
group is said to be of toric type if roughly speaking, the monomial curve associated
to the numerical semigroup is a specialization of some affine toric variety, because
we know that a numerical semigroup of toric type is Weierstrass ([4]).



§2. Cyclic 7-semigroups.

An n-semigroup is said to be cyclic if it is the semigroup H(P) for some totally
‘ramification point P on a cyclic covering of the projective line P* with degree n.
In this section we describe a necessary and sufficient condition on a 7-semigroup
to be cycle. Moreover, some non-cycle Weierstrass 7-semigroups are given. We
use the following notation: For an n-semigroup H we set :

S(H) = {n, 814« ':Sn—l}

where s; = Min{h € H|h =4 mod n}. We have the following necessary condition
on an n-semigroup to be cycle if n is prime.

Fact 5 ([9]). Let p be a prime number. If H is a cyclic p-semigroup with

S(H) = {pv Sty '7Sp—1},

then
8; + Sp—i = 83 + Sp—1, all 'L,j

We had already obtained an answer to the converse problem of the above state-
ment.

Fact 6. i) For a prime number p < 7, the converse of Fact 5 is true (See [9]).
ii) For any prime number p 2 11, the converse of Fact 5 is false (See [3]).

By Fact 6 i) we get the following:
Proposition 7. Let H be a T-semigroup with
S(H) = {7,81,. . .,85}.
Assume that
51+86=SQ+85=83+S4.
Then H is cyclic, hence Weierstrass.

For any positive integers bg, .. .,bm, < bo, ..., by > denotes the semigroup gener-
ated by bg,...,bn. We give examples of cyclic 7-semigroups.

Example 8. (1) Let H =< 7,8,10,12 >. Then S(H) = {7,8,10,12,16, 18, 20}.
Since 8 + 20 = 16 + 12 = 10 + 18, H is cyclic, hence Weierstrass.

(2) Let H =< 7,15,16,17,25,26,27 >. Then S(H) = {7,15,16,17, 25, 26,27}
Since 15+ 27 = 16 + 26 = 17 + 25, H is cyclic, hence Weierstrass.

We also have non-cyclic Weierstrass 7-semigroups.
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Fact 9. For integers g and s with 7 £ ¢ £ s £ 12, let H, , be a 7-semigroup with
No\Hsy =1{1,...,6,8 +s5—g,...,s+1}.

Then we have the following:

i) There exists a covering C — P* of degree 3 with non-ramification point P € C

such that H(P) = H,,. Hence, H,, is a Weierstrass 7-semigroup (See [2]).

i) If (s,g) # (9,9),(12,9), (12,12), then H,, is non-cyclic. For example, Hy; g =
< 7,8,9,13,19 > and Hig10 =< 7,8,9,19,20 > are non-cyclic Weierstrass 7-

semigroups.

Fact 10. Let H be the 7-semigroup < 7,9,10,11,12,13 >. Then there is a cyclic
covering of an elliptic curve of degree 8 with only two ramification points P; and
Py, which are totally ramified, such that H(P;) = H(P,) = H. Hence
<17,9,10,11,12,13 > is a non-cyclic Weierstrass 7-semigroup (See [6]).

§3. 7-semigroups of toric type.

For a numerical semigroup H we denote by M (H) the minimal set of generators for
H. In this section we are interested in 7-semigroups H with M(H) = {7,a1,a2,a3}
which satisfy the following condition:

Definition 11. Let H be a numerical semigroup with M (H) = m + 1. The
semigroup H is said to be of toric type if

3 1: a positive integer,

3 S: a saturated subsemigroup of Z* generated by by, ..., b, which generates Z'
as a group and

dgi’s(j=1,...,1+m): monomials in k[Xo, X1,..., Xy} such that

Spec k[H} < Spec k[S][Xo, X1,. .., Xm]

\ U 1
Spec k' — Spec k[Y1,. .., Yiim)
(0) — the origin

where the right vertical map is induced by the k-algebra homomorphism
ns © k[Yia veey Yz—é-m] —_— k[S][X()a Xl’ cey X’m]
which sends ¥; to T% — g, that is to say,

Spec k[H] < Spec k[Xo, X1,..., Xm)

{ ] \
Spec k[S] <  Spec k[Y1,..., Y]

where the horizontal maps are the embeddings through the generators and the
right vertical map is induced by the k-algebra morphism from k[Y3,..., Vi) to
k[Xo, X1,..., Xm] sending Y; to g;.
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We explain how to find a subsemigroup S of Z' as in Definition 11 below.

Remark 12. Let H be a numerical semigroup with M(H) = {ag,a1,-..,0m}-

i) Determine a generating system of relations among ag, a1, .. ., am, 1.€., a set of
generators for the ideal of the monomial curve Spec k[H].

ii) Determine a fundamental system of relations among aq, a1, . . ., Gm, .., 3 basis
of the relation Z-module among ag, a1, ..., Gm.

ili) We construct a subsemigroup S of Z! from the fundamental system In this
case, S is generated by [ + m elements b;’s and generates 7! as a group naturally.
Moreover, we associate the generators b;’s for S to monomials g;’s in k[ Xo, ..y Xm)
such that we have the fiber products in Definition 11.

iv) The remaining problem is whether the semigroup S is saturated or not. We
note that S is saturated if and only if the semigroup ring £[S] is normal, i.e.,
Spec k[S] is an affine toric variety. If S is saturated, the numerical semigroup H
become of toric type.

From now on we treat only 7-semigroups generated by 4 elements.

Lemma 13. Let H be a T-semigroup generated by 4 elements, i.e., M(H) =
{7,a1,aq,a3}. Renumbering a1,as and az it satisfies one of the following:

(D) a1 +as+a3 =0 (7),

(1)) a3 + ax =0 (7),

(I11) 2a; + a3 =0 (7) and 202+ a3 =0 (7).

We give the construction of a saturated subsemigroup S of 7! as in Definition 11
in (I) and some cases of (II).

Case (I) a1 + a2 + a3 = 0 (7). A fundamental system of relations consists of

Qs 209 — ag
ap + ag, 260 = ————0g + Q3.

a1+ as + a3 201 —
7 7

7 a0:a1+ag+a3,2a1:

For example, the relation

203 — a
203 = —3—-—1a0 + aq
7
is derived from the addition of the three relations. The determinant of the matrix

consisting of the coefficients of the three relations is

(0,1 +a2+a3)/7 -1 -1
—(201 - CL2)/7 2 -1 = as.
—(2a3 —a3)/7T O 2

A numerical semigroup H with M(H) = {ag, a1, a2, as} satisfying the above con-
dition is said to be 1-neat. Under the above condition we get a saturated subsemi-
group S of Z® as in Definition 11 from the fundamental system.
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Case (II-1) a1 + a2 = 0 (7) and 2a; = a3 (7).
Case (II-1-i) 2a2 < ai + 203 and 2a3 < 3a;. A generating system for relations
consists of

a1 + Qs 2&1 — a3 30/2 - 20,3

7 Qg = a1 -+ as, 2&1 = 7 ag + as, 3CL2 = Tao + 2(2.3,
dag — a az+az—a
3az = -—3-7—2@0 + Gg, —2——%&0 + a1 = ag + ag,
a1+2a3—2a2

7 ag + 209 = a1 + 2as.

i.e., the kernel of

@Hlk{Xg,Xl,XQ,X;;] — k[tao,tal,ta2,ta'3}

Xz‘ i 1%
is generated by
ay -j—az 2!}3 —ag 3@2—243

XO 7 _ XlXQ, X]? ham XO d X3, Xg "‘XO 7 Xg,

3aq—a aotag—a a.]+2a.3-2a2

Xs—X, 7 Xo, X, T Xi—XoXs, X, ©  XZ-XXZ
A fundamental system of relations is the following:

a1+ a 201 — a 3az — 2a
! 7 2(1,0 = Q3 +662, 2@1 = —L?——an + az, 3&2 = —“i———?)'a() + 2(1,3.

7
For example, the addition of the first and second relations

a; +a 2a; —a
L 2a0 + 20, = <a1 +CL2> + (——1—-——?1&0+a3)

7 7

induces the fifth relation. To get a subsemigroup S of Z' we divide this case into
three cases again.
Case (II-1-i-A) a; + 2a; > 3a;. We divide the coefficients in the fundamental
system of relations into the following:

HI

’ i ' "
(OZO + o + o7 )ao = Q101 + Ogele, 20501(11 = (0!0 -+ ao)ao + @303,

(2002 + dh)as = (o + o ag + aszaz.

We associate elements of Z® to the components of the above system as follows:
7 H ui
QgQqp — bl = €1, Qylg b2 = €3, 0y ay b b3 = e3, Qg101 > b4 = €4,

05120;2 ¥ b5 = €5, Qjgola > b6 = (1, 1, 1, —1, O),
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Qryadg > by = (-—1, '-1,0, 2, 0), QipaQg bg = (1, 2, 1, —2, 1)

where e; denotes the vector whose i-th component is'1 and j-th component is 0
if § £ 4. Let S be the subsemigroup of Z° generated by by, ..., bs. We can show
that

8
> Rb;NZCS
i=1

where R, denotes the set of non-negative real numbers. Hence, S is saturated.

Case (II-1-i-B) a; + 2a2 < 3as. We divide the coefficients in the fundamental
system of relations.into the following:

Hi
(ag + @i + Qgg)ap = Qo101 + Qo202, 200101 = Qi1pGo + 1303,

/
(20102 + &2)0,2 = Q9o + 2303,

We associate elements of Z° to the components of the above system as follows:
ahyag =+ by = €1, aeag > by = ey, anpag = by = €3, agray = by = ey,
Oféa.z > by = es5,0p209 —> bg = (1, 1,1, -—1,0),
o13Q3 = b? - (01 _17 07 2) 0)3 343 b8 = (2a27 1? _'23 1)
Let S be the subsemigroup of Z® generated by b, ..., bs. Then S is saturated.

Case (II-1-i-C) a; + 202 = 3a3. In the Case (II-1--A) let af = 0. We get a
subsemigroup S of Z* generated by 7 elements. Then S is saturated.

But our method does not work well in the following case.

Case (III—Q—E) 20y + a9 = 0‘, 2(12 + a3 = 0, 201 é as + as, 2a9 > 3a;y. We have the
following generating system of relations

2&1 + a9

7 G = 201 + 02, (1)
4oy —
day = ﬂTzﬂﬁzo + as, (2)
2a9 — 3
209 = —Gi'?—aiag -+ 3&1, (3)
2@3 — a1
2a3 = ——?‘—ao -+ as, (4)
-2
wao + 2a; = ag + as, (5)

a1+ a3 — a4
a2 73 2a0+ag = a1 -+ as3. (6)
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The three equations (1), (2) and (6) in the generating system of relations form a
fundamental system. In fact,

(1) +(2) = (3), *(1) +4(2) + (6) = (3) and "(1) +*(2) +(6) = (4).
We divide the coefficients in the fundamental system of relations into the following:
(010 + a0 + Qp)ag = apray + has, (aor + 0y + azi)ar = anag + cazas,

! ! !
Qplg + Ogly = Q101 + Qi3303.

We associate elements of Z° to the components of the above system as follows:
aigap - by = ey, agoap - by = ey, ajag ++ by = e3, apiay > by = ey,

a’1a1 — by = e;5, .Q,Qaz > bg = (1, 1,1, —1,0),
(311 > b7 = (2, 1,2, ~—2, “2), Q1303 —> bg = (l, 1, 2, —1, '—1)

Let S be the subsemigroup of Z® generated by by, ..., bs. Then S is not saturated.
In fact,
2(1,1,1,-1,-1)=(2,2,2,-2,-2) = by + by € 5,

but
(1,1,1,~1,~-1) ¢ S and (1,1,1,-1,-1) € Z°.

Hence, Spec k[S] is not a toric variety.

To check whether a 7-semigroup generated by 4 elements is of toric type we divide
them into the 31 cases in the following table. But this problem is still open in the
last three cases. The right-hand side of column in the table means the dimension
of the affine toric variety which is constructed from a numerical semigroup of given
type in our way.
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Condition Toric | dim
I o1+ a+a3=0 , O 6
IT-1-i-A a1+ as =0, 2a; = a3, 209 < a3 + 2a3, 203 < 3a2, a1 + 2a2 > 303 O 5
11-1-i-B a1 +as =90, 201 = as, 209 < a1 + 2a3, 2a3 < 3az, a1 + 262 < 3a3 O 5
II-14-C ay +as =0, 20 = a3, 262 < a1 + 2as, 2a3 < 3ap, a1 + 262 = 3a3 O 4
II-1-ii-A a, +ag =0, 2a1 = as, 2a3 > 3ag, 4a; > a1 + a3 O 6
I1-14i-B ay +as =0, 2a; = as, 2a3 > 3ag, 4a = a1 + a3 O 5
II-1-ii-C a, +as =0, 2a1 = as, 2a3 > 3ag, 4as < a; + a3 O 5
-1-ii-A a1 + ag = 0, 2a1 = ag, 2a3 > a1 + 203 O | 6
II-1-ii-B a; +as =0, 201 = as, 2as = a1 + 203 O 5
II-1-iv a + a9 = 0, 201 = as, 2a3 = 3a3 O 4
II-2-i-A ay + ag = 0, 3a; = as, 2a2 > 2a; + a3 O 6
1I-2-i-B a1 + a3 =0, 3a1 = as, 209 = 2a1 + a3 O 5
I1-2-ii-A a1 + az =0, 3a; = ag, 209 < 2a1 + az, 2a1 > gz + 03, 343 > ay + a3 O 7
11-2-ii-B ay + as =0, 3a; = as, 2a; < 201 + a3, 2a1 > az + ag, 3ap = a; +ag O 6
11-2-ii-C | a1 + a2 =0, 361 = as, 2as < 201 + a3, 201 > a2 + 63, 3a2 < a1 + a3, 01 + 2a2 > 203 O 6
11-2-ii-D | a1 + a2 =0, 3a1 = a3, 2a2 < 201 + a3, 261 > a3 + a3, 303 < a1 + a3, a1 + 202 = 2a3 O 5
I1-2-i-E | a1 4+ a2 =0, 3a; = a3, 2a < 201 + as, 201 > a2 + as, 362 < a1 +as, a1 + 202 < 2a3 O 6
11-2-iii-A | a1 + a3 =0, 32y = aa, 2az < 201 + a3, 201 < a3 + a3, 362 2 a1 + 03, 01 + 203 > 203 O 6
I1-2-iii-B | a3 + a2 =0, 301 = a3, 202 < 201 + a3, 201 < ag + a3, 302 2 a1 + a3, a1 + 202 = 203 O 5
11-2-iii-C | a1 4 ag = 0, 3a1 = a3, 262 < 261 + a3, 261 < az + a3, 302 > 01 + ag, a1 + 202 < 2a3 O 6
11-2-3ii-D | a1 + as = 0, 3a1 = a3, 2a2 < 2a1 + a3, 201 < ag + 03, 3a2 = a1 + a3, a1 + 203 < 2a3 O 5
11-2-iii-F | a1 +a2 =0, 3a1 = as, 203 < 201 + as, 2a1 < ¢2 + a3, 30z < 01 + a3, 261 + 3z < 2a3 O 5
I1-2-iii-F | a1 + a2 =0, 3e1 = as, 203 < 2a1 + a3, 2a1 < a2 + a3, 362 < a1 + a3, 241 + 30z = 203 O 4
11-2-iii-G | a1 + a2 =0, 301 = a3, 202 < 201 + a3, 2a1 < ag + a3, 3az < a1 + a3, 201 + 3a; > 203 O 5
I1-2-iv-A a1 + ag =0, 301 = a3, 2a2 < 201 + a3, 2a; = ag +4as, 3a2 > a1 + a3 O 5
I1-2-iv-B a1 +ag =0, 3a; = a3, 202 < 2a; + a3, 261 = az + a3, 3az < a1 + a3 O 6
11-2-iv-C a; + az =0, 3a; = as, 2az < 201 + a3, 207 = ag + a3, 34z = a1 + 03 O 5
I1-1 20, +ag =0, 2a9 + a3 =0, 2a1 > az + a3 O 6
I1I-2-1 2a1 + a9 = 0, 2a9 + a3 = 0, 2a, é ag + Qa, 209 > 301 7 (5)
II1-2ii 201 +as =0, 2a9 + a3 = 0, 2a; § ag + a3, 202 < 3041 ? (5)
I11-2-iii 2a; +ag =0, 2a3 + a3 =0, 2a; < az + a3, 2a3 = 36 ? (4)
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